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Two diffusive-growth models with an indefinite range of local densities are studied, and their
fractal scaling properties are compared with those of diffusion-limited aggregation (DLA). The first
model, “penetrable DLA,” differs from standard DLA in that each diffusing particle interacts arbi-
trarily weakly with an aggregated particle. We derive an analytic expression for the growth rates
and find by simulation that the weak interaction leaves the DLA scaling properties unmodified. We
explain the observed dependence of the density on the interaction strength. Our second model is a
stochastic differential equation, without discrete particles. Simulations of this equation show fractal
scaling properties consistent with those of DLA. The scaling of this model shows new subtleties; the
average density and the spatial correlations are controlled by different exponents. We describe the

reasons for this novel behavior.

I. INTRODUCTION

The irreversible aggregation of small particles has re-
cently received considerable attention. Several years ago
Witten and Sander! suggested a simple model of irreversi-
ble growth—diffusion-limited aggregation (DLA). In this
model a seed aggregate is placed at a lattice site and
diffusing particles stick to it and join it if they visit a
neighboring site. (A more accurate definition is given in
Sec. IL) It has been found!~? that such aggregates exhibit
some of the striking scale-invariant properties of a fractal*
object; the complex spatial correlations seen in a piece of
the aggregate are reproduced in its subpieces. Such scale
invariance implies power-law behavior, e.g., for the aver-
age density at distance r from an arbitrary point on the
object. For r smaller than the size of aggregate this densi-
ty goes as r2—% where D is called the fractal* (Hausdorff)
dimension and d is the dimension of space. The numeri-
cal value of D seen in DLA does not depend on the lattice
type, and remains the same also in nonlattice simulations.’
This power-law behavior occurs in all spatial dimensions
where it has been studied; between two and six dimensions
D varies smoothly from about d —+ to about d —1.5®
In this study we seek a deeper understanding of this scal-
ing behavior.

The apparent analogy between the aggregation process
and the critical phenomena®® in thermodynamics has led
to several theoretical attempts”? to treat the phenomenon
similarly to the renormalization-group approach. Various
authors have produced approximate expressions for D,
which were reasonably close to the known numerical
values. But a systematic approximation scheme similar to
the renormalized perturbation theories®® for critical ex-
ponents has not been found.

The complex structure of DLA is the more intriguing
because of its relationship to other growth phenomena.
Growth of a surface by the absorption of a diffusing sub-
stance is the mechanism of dendritic crystal growth.’
This deterministic growth process has long been known to
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be unstable.l® Any small irregularities in the initial sur-
face are amplified. The instability leads'! to the rich, reg-
ular patterns. Recently, it has been discovered!? that the
long-range correlations of a diffusing field are not essen-
tial in producing these patterns.

In other recently studied cases of diffusive growth,
disordered, scale-invariant structures like DL A have been
reported. The electrodeposition experiments of Brady and
Ball’* and Matsushita et al.!* reported a fractal dimen-
sion D in agreement with that of DLA simulations. The
recent viscous fingering experiment of Nittman et al.!’
produces branched structures which are virtually indistin-
guishable from DLA. These systems are like DLA in that
the growth at a point is proportional to the flux of a
diffusing field onto that point.!® DLA with a screened
diffusing field ceases to show fractal scale invariance at
distances larger than the correlation length of that field.!”
The long-range correlations of this diffusing field are evi-
dently essential in producing these structures. But the
discrete, stochastic feature of DLA appears inessential,
since this feature is not shared by the fingering or electro-
deposition experiments.

Since DLA is scale invariant, the statistical correlations
measured on some length scale r do not reveal the scale of
the microscopic process producing the growth. Thus
these details must be irrelevant for determining the future
growth at scales r and larger. Only some coarse-grained
information, such as the local density averaged over dis-
tances smaller than 7, should suffice.

These ideas have led us to study DLA-like models in
which the microscopic features have been modified or re-
moved, while the growth from a diffusing field has been
retained. the simplest of these was the “continuum ap-
proximation,”’ which describes deterministic growth of a
smooth density profile from a diffusing field. This solv-
able model has a suggestive power-law relationship be-
tween the density and the size of the profile. It also shows
a wrinkling instability like that of dendritic growth.!! But
it does not show the scale-invariant interior correlations of
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a fractal object.

In this study we consider two variants of DLA. The
first, which we call penetrable DLA, explores the effect of
taking the stochastic unit of growth to zero. This leads to
a process in which the microscopic randomness is re-
duced, and in which the local density takes on nearly a
continuum of values. In this sense, the model approaches
the continuum approximation. Yet, the structure at all
length scales shows the scaling behavior of DLA, and no-
where that of the continuum model. We give arguments
to account for this apparent paradox. Our second model
is a modification of the continuum model to make it more
like DLA. We allow the growth, at a point to be influ-
enced not only by the continuum equations, but also by
random noise. The results depend on the nature of the
noise. In the case of “binary noise” (defined below) the
DLA structure emerges. In the case of “uniform noise”
some scaling properties of the noiseless continuum model
are preserved, but the two-point correlation function
shows the fractal behavior of DLA. The structure shows
scaling features unlike either a smooth density profile or
an ordinary fractal object. We discuss how this novel
behavior arises.

II. EQUATIONS OF GROWTH

In this section we present a detailed derivation of the
equations of the DLA growth we will simulate. The main
points of this derivation are not new>’ and have been
briefly presented by several authors.

Usually DLA is defined in terms of a Monte Carlo pro-
cedure. We shall present a somewhat generalized version
of DLA which contains the original definition of DLA
(Ref. 1) as a limiting case. We start with a single seed
particle at the origin of a lattice; this is our initial cluster.
An additional particle is launched from a remote point
and undergoes a random walk. If it escapes to infinity, an
additional particle is launched. If it arrives next to the
cluster it can stick to it. The probability P(x) of sticking
to a certain point x is given by the number of cluster par-
ticles present at the nearest-neighbor sites multiplied by a
“sticking parameter” p, plus the number of cluster parti-
cles present at the site multiplied by another parameter g
(if this sum exceeds unity we assume P =1). After a par-
ticle has been added to the cluster by this process, a new
random walker is released and the process if repeated.
Thus P can be conveniently expressed in the following
form:

Px)=F(pZ +qlp+a*pV'%0) , )

where p is the density (number of particles per lattice site)
of the DLA cluster, a and Z are the lattice constant and
the coordination number, respectively. The symbol V’?2
represents the discrete Laplacian, i.e., the following
sum over nearest nei§hbors r+l1 of a point =
iam lp(r+1)—p(r)]/a® The cutoff function F(x) is
defined as min(x,1). For p =1 this represents the stan-
dard DLA in which a particle sticks with certainty to a
site adjacent to the cluster. (In this case p=0 or 1 and the
random walker can never step on an already occupied site;
thus the value of g is irrelevant.} For p <1, p can assume
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any integer value between 0 and 1/p.

The probability that the current walker is added at a
site x can be expressed in terms of the probability #;(x) to
find a random walker at the point x on its ith step. In the
simulation each step consists of two substeps. First, the
walker moves to a randomly chosen adjacent site. The
probability - that it is then at x is the sum of the probabili-
ties that it was on one of the adjacent sites on the last
step, times the probability Z ~' that the walker stepped to
x. The change A from this substep is simply
Z~'a®V'2g. The second substep is absorption; a walker
at x is removed with probability P(x). The resulting
change A, is — P(x)(#'+A,i). The net change over the
time step is thus

AT =0 — i =0T+ DT =Z " 'a*(1—P)V' 27 —PqI .

(2)
From # we may find the expectation value u(x)
=y oi; of the number of times site x is visited by a
walker. The equation for « is the sum on i of Eq. (2). On
the left-hand side we obtain the difference of #(x) be-
tween [ =0 and . Both these terms vanish everywhere
except in the distant region where the particles are
released. Except for this region the resulting equation
reads

0=Z"'"aX1—P)V'%*u —Pu , (3)

where P(x)=F((q +pZ)p+pa®V'?p), as discussed above.
Note that the argument of F is non-negative for ¢ >0.
The parameter g regulates the relative stickiness of occu-
pied points versus the stickiness of the points adjacent to
occupied points. It regulates the speed of the advancing
growth front. In all subsequent calculations we shall as-
sume g =0. The cutoff function F becomes unimportant
if the sticking parameter p is made small. We find below
that for p < 1/10Z, the sticking probability P and hence
the argument of F are virtually always less than 1. Thus
F(x) can be simply replaced by x. If in addition P «<1,
Eq. (3) simplifies to

V'2u =Zap(Zp+a®V' pu . 4

The average growth at a certain point is proportional to
the absorption rate of the diffusing particles. The absorp-
tion probability at a site x is the average number of visits
to that site times the probability P of absorption per visit.
The probability of a visit on the ith time step is #; + A,;.
The total number of visits for all time steps is
u +Z ~'a?V' 2y, where we have used the expression for Ay
above Eq. (3). Thus the absorption probability Q(x) is
given by

Q(x)=P(u+Z~'\V'%u)=Z"V'%y . (5

The last equality was obtained using Eq. (3), and it means
that the amount of growth of a site is equal to the net flux
onto it. Since 3. Q(x)=1, V' %y must obey a normaliza-
tion condition. Equivalently, the normal derivative of u
on the outer spherical boundary must be equal to the in-
verse surface area of the sphere. Note that this equation
gives exactly the average growth rate for given configura-
tion p(x), i.e, Q(x)=(3p/dM),,, where the average is
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over possible walks of the Mth particle. Equations (4)
and (5) can be used as an alternative method of construc-
tion of DLA. For each time step the actual change of p at
any point is found by choosing a site x with probability
QO(x) and adding a particle there.

Viewed in this way, the prescription for DLA has two
parts: a deterministic part and a stochastic part. The
deterministic part, given by Egs. (4) and (5), prescribes,
for a given density profile p(r), the probability of growth
at any site. The stochastic or random part, described after
Eq. (5), directs us to make a change of p at a point in ac-
cord with these probabilities. The present study investi-
gates varicus limits in which the amount of randomness is
made small.

The growth equations (4) and (5) make sense with the
randomness removed altogether. That is, one may simply
make the fensity p change by exactly the amount Q(x)
given in Eg. (5). This is the “continuum approximation”
introduced by Ball, Nauenberg, and Witten, as discussed
above. Sirice this approximation amounts to the replace-
ment of a stochastic quantity by its average, it is a type of

mean-field approximation. In it the density p is no longer

discrete, bit may take on a continuum of positive values,
which may be arbitrarily small.

The p fizld of the mean-field approximation itself is not
a fractal cbject: In a fractal the decrease of the average
density with an increasing length scale is due to appear-
ance of increasingly larger holes, while the typical density
of the occupied regions does not depend on the size of the
object. A convenient quantitative measure of the typical
density is (p?)/{p). Here the average ( --- ) is taken
over all pcints of the density profile. This typical density
may be expressed in terms of the two-point correlation
function 'C(r). This C(r) is defined by {p(0)o(r))/
(p(0)), where the averages are taken over all positions
and orientitions of the density profile with respect to the
origin O. Ihus C(r) is the average density at distance r
from an arbitrary origin point, where the origin points are
weighted in proportion to their density. Evidently, the
typical derisity {p*) /{p) is simply C(r =0).

If p cim assume only the values O and &, then
(p*)/{p) =a, regardless of the size of the aggregate. A
similar result will be obtained if the nonzero values of p
have a narrow distribution around a. (In general, if the
average value of p and its variance on a nonempty site are
a and V, respectively, then {p?)/{p)=a +V/a.) For a
smooth density profile, by contrast, C(0) is of the order
of the average density {p)~M /R% Here C(0) does not
remain ccnstant, but decreases indefinitely with {(p).
Thus C(0) distinguishes a fractal density profile from a
generic profile of low average density. v

We recall for future reference some qualitative features

_of the mean-field approximation.” The growing profile
consists of three regions: an outer, a middle, and an inner
one. In the outer region the density has not grown suffi-
ciently to perturb the diffusing field appreciably; thus u is

qualitatively a constant. In this region the growth equa-

tion (5) siniplifies to

%‘;—=‘B(p+a2V' %p) . (©
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The growth in the outer region eventually reaches suffi-
cient density to cause appreciable reduction of u. The
“opaque radius” R, where this first occurs increases
linearly in time (up to logarithmic modifications). The
bulk of the absorption occurs in the “growth region,” at
distances of the order of R,. This is the middle region.
Inside this is the inner region, where the diffusing field is
exponentially small, and the growth is negligible.  For the
profile as a whole the rate dM /dt of deposition is that of
a perfect absorber with radius of the order the opaque ra-
dius R, defined above. The change in radius with depo-
sited mass M may be inferred from dR /dt and dM /dt.
In two dimensions one finds that M grows linearly with
R.

This reasoning does not apply to standard DLA, since
this has no outer, transparently growing region. The den-
sity at a site cannot be indefinitely small; if it is less than
one particle, it must be zero. Thus at sufficiently large
distances, there is no growth. In contrast, the mean-field
density at large distances is exponentially small, but there
is still growth—enough growth to affect the screening of
the diffusing field and the deposition of mass. The trans-
parent growth region is an unphysical feature of the
mean-field model, since it allows indefinitely small densi-
ties, while real growth processes have some minimal den-
sity below in which no growth occurs.

HII. PENETRABLE DLA

In this section we describe the behavior of DLA with
small sticking parameter'® p. We used standard Monte
Carlo methods® to generate two-dimensional DLA. clus-
ters on a square lattice with sticking probabilities p =1.0,
0.03, 0.003, and 0.0003 and measured their properties.
The masses of these aggregates (3000, 6000, 60000, and
500 000, respectively) have been chosen to maintain the ra-
dius of the circumscribing circle at approximately 100.
Figures 1 and 2 depict DLA’s with two different sticking
probabilities. It can be clearly seen that the decrease of p
smooths the density profile and creates wider branches.
However, the main properties of the structure do not seem
to change. It can be clearly seen from Fig. 2 that the re-
sulting aggregate has a certain typical density which
creates a structure similar to fhe standard DLA depicted
in Fig. 1. Furthermore, the apparent smoothing of the
profile does not seem to have a large influence on the
two-point correlation function' C(r). The function C(r)
for four different p’s is depicted in Fig. 3(a). For r
greater than three lattice constants all the functions exhib-
it a well-defined linear behavior (on the log-log scale) for
more than one decade followed by a sharp decrease of -
C(r) when r becomes of the size of the aggregate. Linear
parts of all the curves have the same slope {within the er-
ror bars) corresponding to the codimension d —D=0.3,
which is in good agreement with the known numerical re-
sults® for a two-dimensional DLA. There are some differ-
ences between the curves in the region 1 <r < 3: the initial
drop observed in the p =1 curve disappears in the curves
with smaller p and they become more horizontal when p
decreases. The range of those differences is too small to

be attributed to the appearance of a different power-law
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FIG. 1. DLA of 3000 particles generated with sticking prob-
ability p=1.

regime in C(r); instead, the changes indicate the appear-
ance of a smoothly varying behavior of the density at
short-distance scales.

It is interesting to notice that for small p the typical
densities C(0) are considerably smaller than the maximal
possible value 1/p. In these four examples the typical
densities are 1, 3.6, 12, and 59, while the maximal possible
values are 1, 34, 334, and 3334, respectively. We found
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FIG. 2. DLA of 500000 particles with sticking probability p =0.0003. Each figure shows the location of site occupied by a num-
ber of particles in a certain range: (a) 120—169, (b} 70—119, (c) 30—69, (d) 1—29.

that for this aggregate Zpp <0.2 everywhere, and there-
fore dropping of the cutoff function F in Eq. (4) is cer-
tainly justified.

We can understand the way in which the aggregate
selects the typical density from the following considera-
tions. Let us consider the initial stages of the growth of
an aggregate with an extremely small p. When the mass
of the aggregate is still very small, the probability that a
random walker approaching the aggregate will be ab-
sorbed is also very small, and therefore the particles deep
inside and on the exterior of the aggregate are equally well
accessible. In the limit p—Q we can replace our Monte
Carlo process with random walkers by a process resem-
bling the Eden model.'” In this process,® which is called
the transparent Eden model, a point of a cluster is selected
randomly (each point has the same probability to be
selected independently of its location) and then the de-
cision whether the particle sticks is made in the same
manner as in DLA. This process is described by Eq. (5)
in which u is no longer determined by Eq. (4) but is con-
stant. The mean-field approximation of this process is
given by Eq. (6). This equation can be readily solved.
The density p has a Gaussian shape, while the total mass
M grows exponentially with time. The actual density pro-
file created by the Monte Carlo process deviates from the
prediction of the deterministic Eq. (6); however, it can be

(d)
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FIG. 3. Correlation functions C(r) for penetrable DLA. (a)
Double logarithmic plot showing the dependence on r of the
two-point correlation function C(r) of 3000-particle DLA clus-
ter with sticking probability p =1 (bottom curve), 6000-particle
cluster with p =0.03 (second from the bottom), 60 000-particle
cluster with p =0.003 (third from the bottom), and 500000-
particle cluster with p =0.0003 (top curve). (Since we are con-
sidering a discrete lattice, » =n means the average in the region
n—1<r<n.) (b) plot showing the apparent linear dependence
of the quantity [ pC(0)]~! on log?p, using the data from (a).

shown® that the real average density is what one would
obtain by integrating the mean-field equations. Thus for
M >>1 the density of the transparent Eden model is given
by

p(rY=M exp[ —r?/(2a>InM)]/(27 InM)?/? ,

where we have eliminated the time in terms of total mass.

Using this density, we may estimate the interaction
with a random walker. We may approximate the aggre-
gate as a uniform density within some radius R. We take
R as the radius where p(R)=1; i.e., the boundary of the
aggregate. Using the expression above for p(r), we find
R ~InM. A random walker within the aggregate requires
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about R? steps to leave it. Its total probability of absorp-

. tion is thus of order ppR? When this probability be-

comes of order unity, the transparent Eden model no
longer approximates the DLA; the center becomes
screened and stops growing. Using p~M /R 472 we find
that pM =const in two dimensions. Thus screening be-
comes important for (pp)~!=R%= —In’p.

It is reasonable to assume that the “building blocks” of
the aggregate will have this density, so that
[pC(0)]~'~In?p. Our simulations confirm this depen-
dence, as Fig. 3(b) shows.

We note that the maximal sticking probability at a time
step is Zppmax~pC(0)~(logp)~2. This accounts for our
observation that perfectly absorbing sites, where Zpp > 1,
become negligible for small p. The changes in the
behavior of the correlation function C(r) with decreasing
p in Fig. 3 are consistent with the appearance of the trans-
parent Eden modellike behavior for small r. The C(r)
should be constant out to distances » of order logp, and
then should fall off as in DLA. The observed flattening
of C(r) for small  in Fig. 3(a) is in accord with this pre-
diction.
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FIG. 4. (a) DLA cluster generated using Egs. (4) and (5) and
using “binary noise” (see text). Numbers denote the number of
particles at each site. The total mass (number of particles) is
308. (b) Penetrable DLA cluster with mass 309 and p =%, pro-
duced as described in Sec. III. (c) Correlation function C(r) for
cluster in (a) (solid line) and (b) (dashed line).
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FIG. 5. Density profiles generated by integrating the stochastic growth equations, (4) and (5). (a) Noiseless growth in a single qua-
drant of the plane. Seed, in upper-left corner, has density about 1.5. Mass for four quadrants is 206; R¢=30. Each dark or light
band covers a density range of a factor Ve =1.65. Dashed band has density about equal to the average density (p) defined in the
text. (b) same as (a) except that the average of neighboring densities described below Eq. (1) was replaced by a weighted average of

first and second neighbors. The weight for the second neighbors was % that of the nearest neighbors. (c) Uniform-noise profile

grown as described in the text. Seed was a single site the center with p==1. The total mass is 35.4, and its radius of gyration is 14.8.
Sites where density exceeds 1.5 10~% are shaded. (d) Same as (c), but with only sites with density greater than 0.02 shaded (e). A
uniform-noise profile grown under the same conditions as (c),(d), but in a single quadrant of space with plus-shaped seed, as described
in the text. Mass is 274; Rg =38. Sites with density greater than 8 X 10~7 are shaded. (f) Same as (e) but only points with density
exceeding 0.02 are shaded.
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FIG. 5. (Continued).

IV. GROWTH FROM THE STOCHASTIC
CONTINUUM EQUATIONS

The penetrable DLA studies of Sec. III show that many
features of standard DLA may be modified without
changing the ultimate scaling behavior. . The geometric
impenetrability of the cluster is not important and the
density at a site may vary almost continuously. Thus the
microscopic randomness of the process may be modified
drastically without substantial effects. In this section we
consider models in which this randomness is modified
more radically. In these models there are no random
walkers and no aggregating particles. Instead, we consid-
er various implementations of the stochastic growth equa-
tions (4) and (5) without restricting the fluctuations as
described after Eq. (5). In these simulations the u field of
Eq. (4) is found numerically, and a small increment of the
density p is generated randomly on every site, respecting
the average in Eq. (5).

Our main simulation is motivated by the hypothesis
that the mere qualitative presence of noise is sufficient to
produce DLA scaling. Accordingly, we used a simple

multiplicative noise. The actual growth increment at a

site was the average given in Eq. (5) times a random num-
ber uniformly distributed between 0 and 2. The noise was

independent on each lattice site, as it is in actual DLA.

This multiplicative uniform noise has a form that assures
nonnegative growth at each time step.

As a control we replaced the uniform noise by a noise
whose values were only zero or one, weighted so as to
have the proper average on each site. This is the prescrip-

tion for DLA. described following Eq. (5). We denote this

model as “binary noise.”

This control simulation [Fig. 4(a)] produced a cluster
indistinguishable from an actual DLA cluster using the
same sticking probability p [Fig. 4(b)]. The qualitative

appearance was the same as shown in Fig. 4(a), and the
correlation functions agreed in both amplitude and r

- dependence [Fig. 4(b)] as well as one would expect from

two DLA clusters of this size. This serves as a check on
the simulation program as well as on the reasoning lead-
ing to Eq. (5).

For the uniform noise case as well as the above case the
simulations were done on a 100X 100 square lattice in two
dimensions. The seed cluster was a small “plus” sign; i.e.,
a density of 1.5 at the middle site of this lattice, and a
density of 1 on its nearest neighbors. A sticking parame-
ter p of + was chosén. The time steps were chosen to as-
sure only a small change in the deposit per time step. In
most of the simulations the total mass deposited per time
step was regulated to be about unity throughout the
growth. Factor-of-2 changes in the time step made no
substantial difference in the behavior reported below.?’
The diffusing field u was fixed at 1 on a circle inscribed
in the 100X 100 lattice. The u field of Eq. (4) was found
iteratively using the method of overrelaxation.?! The
iteration was repeated until the sum over the lattice of
squares of corrections (Au)* was smaller than 10~>. Fifty
to one hundred iterations were usually required to attain
convergence to this tolerance. An order-of-magnitude
reduction in the tolerance made only barely perceptible
changes in the growth. ‘

To extend the range of growth we supplemented these
simulations with “single-quadrant™ simulations. Here the
noise pattern was taken to have symmetries such that the

- growth was forced to remain symmetric under reflection

in the x or y axes.. In practice this allows one to restrict
the solution to one quadrant of the lattice. The seed is put
in one corner of this quadrant. The u field is forced to be
even under reflection in either axis. The single-quadrant
scheme was checked by generating a growth increment
with a given (reflection-symmetric) density profile and
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verifying that the growth at each site was identical to that
in the original simulation.

In the uniform noise simulations the effective amount
of noise depends on the size of a time step. If the time
step is very small, so that the growth of a site occurs over
many time steps, then this growth reflects on average of
many independent noise values at the various time steps.
In effect the amount of noise is reduced. To control this
effect, we allowed the noise to remain constant in time
during the growth of any lattice site. In practice the noise
was frozen; it varied in space, but not in time. We expect
that holding the noise constant over a finite correlation
time sufficient to allow each site to accomplish most of its
growth would have produced the same results.

For comparison we made simulations identical to those
described above, except with the noise removed. This is
the continuum growth model of Ref. 7. The density pro-
file of a noiseless, single quadrant simulation is shown in
Fig. 5(a). The profile is represented as an array of printed
characters. The seed is in the upper-left corner. Moving
outward from this seed, the alternating bands of charac-
ters and dots represent ranges of decreasing density. The
scale is logarithmic; each band covers a factor 1.65=V"e
change in density. The band shown as dashes corresponds
to the average density 0.07. Evidently, most of the picture
contains guite small density. Half of the total mass lies
within the solid band beyond the dashed band. The dot-
ted band beyond this contains the most total mass of any
single band. This band also occupies the most space in
the picture.

The picture shows an obvious breaking of circular sym-
metry; fingers have developed along the x and y axes.
The origin of this is lattice anisotropy.!>?2~?* The lattice
enters our growth equations through the discrete Lapla-
cian V'%p in Eq. (4). We report elsewhere?*® our investi-
gation of this lattice effect. It may be suppressed by re-
placing V'%0 by a more isotropic finite difference, as
shown in Fig. 5(b). The lattice effect proves unimportant
for the simulations with noise reported below. Thus for
simplicity we have used V’? throughout the present study.

In spite of the lattice effect, which leads to increasingly
anisotropic fingers within the profile, the outermost re-
gion does not show increasing anisotropy. This is the
. “transparent” region discussed preceding Eq. (6). The
diffusing field u becomes irrelevant for this region. Com-
pletely transparent growth is not expected to show the lat-
tice instability.”® Since this outer region controls the
density, as discussed below Eq. (6), we expect this density
to vary as described there: as the inverse distance from
the origin.

The uniform-noise profiles shown in Figs. 5(c)—5(f) are
clearly different from the noiseless case. In Fig. 5(c) all
points with density p above about 10~* are shaded. To
make the structure apparent we have reprinted the pro-
files in Fig. 5(d) showing only densities larger than a
threshold. This threshold is of the order of the average
density and the dark region contains the bulk of the mass.
Figures 5(e) and 5(f) show a single-quadrant profile,
represented the same way.

The profiles have the appearance of a connected,
branched structure, surrounded by a diffuse, low-density
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cloud or halo. The cloud is apparently an outer,
transparent-growth region similar to that in the noiseless
profile. The relative homogeneity of the outer region sug-
gests that it is not qualitatively affected by the noise.
Thus one might expect that this region grows to opacity
in qualitatively the same way as for the noiseless case. In
that case the reasoning below Eq. (6) again would apply
and the average density {p) should scale as the inverse ra-
dius. The bulk of the structure, shown in Figs. 5(d) and
5(f), is evidently radically affected by the noise. In con-
trast to the local randomness seen in the outer region,
there are now marked long-range spatial correlations. The
branches appear to occupy a progressively decreasing pro-
portion of the image, as a fractal structure would. The
preferred growth along the x and y axes has disappeared;
instead, there are two dominant branches canted inward
from the axes.

The graphs in Fig. 6 make a quantitative comparison
between the noiseless and noise cases. Figure 6(a) shows
the scaling of the average density {p) with the radius of
gyration Rg. The quantity {p)Rg is plotted against
RG'2. In isotropic noiseless growth this ratio goes to a
constant in the limit of large Rg. The same appears true
for the anisotropic noiseless growth. The density de-
creases to the asymptotic behavior with a leading correc-
tion apparently varying roughly as Rg !/ The product
{p)R¢ is also approximately constant for the noise simu-
lations. It fluctuates narrowly in a 5% range as Rg varies
over an order of magnitude. As anticipated above, the
scaling of the average density is unaffected by either noise
or lattice anisotropy.

We compare the correlation functions C{(r) for the
noiseless and noisy profiles in Fig. 7(a). The C(r) for the
smooth, isotropic noiseless growth, calculated as in Ref. 7,
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" FIG. 6. Evolution of the average density {p) for stochastic-

equation profiles. The quantity Rs{p) is plotted against
RG'%. Curves are for noiseless growth: lower curve, single
quadrant, cf. Fig. 5(a); upper curve, full plane, profile not
shown. The symbols are from uniform-noise simulations.
Squares, single quadrant, cf. Figs. 5(e} and 5(f). Circles, full
plane, same conditions as Figs. 5(c) and 5(d); profile not shown.
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FIG. 7. Correlation functions C(z) for three profiles with
mass =94. (a) Lower curve, isotropic continuum model; solid
curve, anisotropic continuum model of Fig. 5(a); remaining
curve, a profile grown under the same conditions as Fig. 5(c)
and 5(d) with mass 94.3 and Rg=17.2. (b) Evolution of the
correlation function during growth for noisy simulation
described in (a). Curves for mass 15, 26, 37, 49, 71, 94, and 117
are shown. The straight line, drawn for reference, has a slope of
—0.35.

is plotted for comparison. This function shows the regu-
lar behavior of a smooth object for r <<Rg. By contrast,
the noisy case shows a strong suggestion of a power-law
behavior, but shows no clearcut difference from the aniso-
tropic, noiseless case. Figure 7(b) illustrates how the
power-law behavior develops during the growth of a pro-
file. The apparent power behavior extends over a progres-
sively longer range, while the apparent power itself
remains roughly constant.

To make clear the difference between these profiles and
a smooth profile, we have examined the evolution of the
typical density C(r =0)={p?)/{p) during the growth.

For a smooth object C(0) is of the order {p), as noted

above. This is the behavior of the isotropic mean-field
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FIG. 8. {p)/C(0) vs Rg. (a) Upper curve, noiseless, simula-
tion of Fig. 5(a). Lower curve, noisy, simulation of Figs. 5(e)
and 5(f). () {p)2/{p*)RE* vs Rg. Curves are noiseless simu-
lations; symbols are uniform-noise simulations, as in Fig. 6.

solution of Ref. 7 and Fig. 7(a). On the other hand, an ir-
regular, scale-invariant profile, with C(r)~r—4 for
r <Rg, must have C(0) progressively larger than (p) as
Rg increases. For such C(r) we have {p)~C(Rg), s0
that C(0)/{p)~Rg. In Fig. 8 we compare
{p)/C(0)={p)?/{p*) for the noiseless and noisy simu-
lations. Figure 8(a) is a simple log-log plot. The curve for
the noisy case is approximately a straight line, suggesting
a power law of exponent 0.35. The noiseless case, though
not greatly different, shows curvature. In Fig. 8(b) we re-
plot the data to emphasize the different behavior of the
two cases. The ratio {p)2/{p*)RE¥ is plotted versus
Rg;. The curves 1 and 2 for the two noisy simulations
both suggest that this ratio attains a finite asymptote,
again consistent with the 0.35-power behavior. Curves 3
and 4 for the noiseless simulations, by contrast, continue
to increase. The power behavior seen in these plots con-
firms that seen in the C(r) plots. The apparent exponent
A =0.35 is consistent in the two plots, though the power
is seen over a wider range in the C(0) plots of Fig. 8.
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V. DISCUSSION

The uniform noise simulation appears to show an inter-
mediate scaling behavior not hitherto reported in a growth
model. Its overall mass-radius scaling is that of the
mean-field or noiseless models. This is natural, since the
growth of the mass with size is believed to be controlled
by the outer, transparent region.””!! In this region the in-
stability associated with diffusive growth is absent, and
the cooperative effects of noise should be correspondingly
not decisive. The lack of correlated structure in the outer
region is seen qualitatively in the simulations as well.

Even though the total mass is forced to grow as in the
noiseless case, the distribution of this mass in space inside
the outer transparent region is still free to show the insta-
bilities of diffusive growth. In other known cases, these
instabilities lead to the r—%3 correlations of DLA. This
remained true in our studies with small sticking probabili-
ty, where the local density takes on a near continuum of
values, and when the effect of a single-growth event on
the profile is made indefinitely small. It is natural for the
same behavior to emerge in the uniform noise case.

The “typical density” C(0) in the uniform-noise model
does not behave as in DLA. In DLA C(0) remains con-
stant; the aggregate is made of some characteristic build-
ing block which maintains its integrity throughout the
growth. In standard DLA this building block is a single
particle; with small sticking probability it is the opaque
unit of order (plog’)~!. In the uniform-noise model,
there is no underlying connected structure with a fixed
characteristic density. Thus, in contrast to ordinary frac-
tal structures there is no reason for the typical density
C(0) to remain fixed. Indeed, the constraint on the total
mass, together with a DLA-like correlation function, dic-
tate that C(0) decrease as the cluster grows. Because of
this feature of decreasing C(0), the uniform-noise model
represents a new kind of scaling behavior that distin-
guishes it from other fractal structures in statistical phys-
ics, such as random walks, percolation clusters, and other
particle and cluster aggregates.

The new scaling behavior suggests a picture of DLA
made with branches of a density C(0) which decreases as

the profile grows, roughly as R —0.6 Since these branches
must be strongly screening, they must have a width or
thickness # which also grows as the profile grows. To
maintain  screening within the branch requires
h?>C(0)~!'~R¢, using the same reasoning used above
for penetrable DLA. Using this estimate, the thickness #
grows slower than the radius R and becomes negligible
compared to R; the profile becomes increasingly irregular
and locally inhomogeneous.

VI. CONCLUSION

This exploratory study suggests that the uniform-noise
model has DLA scaling as discussed above. But extensive
work is needed to establish this reliably. The scaling with
noise amplitude must be established and DLA scaling
must emerge independent of the amplitude. The obvious
extensions to larger lattices, higher dimensions, different
sticking coefficients, and different forms of noise should
also be made. It may emerge from these studies that the
0.35-power scaling seen here is distinct from that of DLA.
The uniform-noise model may even prove to produce a
simple structure with no fractional power-law properties.
Still, the growth mechanisms of the model, its qualitative
appearance, and its measured scaling properties all suggest
the behavior of DLA.

The uniform-noise model is essentially a continuum
formulation, with no elementary unit of structure, either
in the form of discrete particles or of a sharp surface. Be-
ing a continuum description, it is in a sense explicitly
scale invariant. In this sense it is analogous to Wilson’s
continuum formulation of continuous phase transitions.?
In phase transitions, the discovery of a continuum formu- .
lation laid the basis for understanding of the scaling prop-
erties, as discussed above. An analogous treatment of the
growth equations appears promising for explaining DLA
scaling as well.
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