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The statistical mechanics of polymerized surfaces with a finite bending rigidity «’ is studied via
the Monte Carlo method. The model system consists of a hexagon, L atoms across, excised from a
triangular lattice embedded in three-dimensional space. Nearest-neighbor atoms interact via an
infinite-square-well potential, while the bending energy is proportional to the (negative) scalar

product of unit normals to adjacent triangles.

Self-avoiding interactions are not included. The

largest hexagon considered (L =19) consists of 271 atoms. Unlike linear polymers or liquid mem-
branes, these surfaces undergo a remarkable finite-temperature crumpling transition, with a diverg-

ing specific heat.

For small k=«’/kpT, the surface is crumpled, and the radius of gyration R,

grows as VInL . For large x we find that the surface remains flat, i.e., R;~L. Our results demon-
strate the presence of a finite-temperature (second-order) crumpling transition, and provide a lower
bound on a related transition in real self-avoiding membranes.

I. INTRODUCTION

Recent theoretical investigations have explored the
properties of flexible polymerized membranes.! Exam-
ples of such membranes are polymerized lipid mono-
layers or bilayers,? which are sufficiently cross-linked so
as to have a nonzero in-plane shear modulus. Although
the bending rigidity of lipid bilayers is often large, it
may be possible to reduce the rigidity considerably by
introducing short chain alcohol cosurfactants.> There
are, moreover, reports of the synthesis and extraction of
cross-linked poly(methyl methacrylate) from the surface
of sodium montmorillonite clays.* The resulting poly-
mers should be highly flexible, with properties similar to
a two-dimensional (2D) gel. Both kinds of membranes
can be modeled! by fixed-connectivity surfaces formed
from a regular two-dimensional lattice of hard spheres
embedded in three dimensions (3D); an infinite-square-
well potential between the nearest neighbors constrains
both the minimum and maximum distance between
nearest-neighbor pairs of particles (hence, the name
“tethered surfaces”). Tethered surfaces can be studied
in much the same way as linear polymers. In particular,
it has been shown that without self-avoidance, entropic
effects cause the radius of gyration R, to increase as
VinL, where L is the linear size of uncrumpled surface.
The introduction of self-avoidance leads to R,~L",
withlv~£. -

Imp]lCIt in the above description is the idea of a sur-
face which is crumpled on scales large compared to a
finite persistence length &£(7T). This is indeed the case in
the model described above, where £ is of order of a sin-
gle interatomic distance.! This model included only cen-
tral forces between atoms, but did not contain bending
energy terms, with the expectation that introduction of
such terms will not modify the asymptotic behavior.
This expectation was based on an analogy with linear
polymers and liguid membranes: For linear polymer
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- effective rigidity increases on large length scales.

chains the persistence length determines an effective
monomer size, and is always finite, with an Arrhenius
temperature dependence.’ Introducing bending or
bending-and-twisting force constants along the chain
only modifies the persistence length, with no effect on
the asymptotic behavior.®

For membranes, the persistence length is basically a
correlation length associated with order in the local nor-
mals to the surface.” It is believed that the persistence
length is also finite in membranes with liguidlike in-
plane order. It has been recently realized® that short-
wavelength transverse oscillations (undulations) of liquid
membranes reduce their effective rigidity on large length
scales. Detailed renormahzatlon group calculations of
the bending rigidity’ show that the persistence length of
the surfaces diverges (exponentially) only at T=0. As
emphasized by Polyakov, there is a useful analogy with
two-dimensional models of Heisenberg ferromagnetism:
the surface normals are like a (purely longitudinal) spin
field, and a crumpled surface is like a Heisenberg
paramagnet. The undulations which destroy long-range
order in surface normals are similar to spin waves.

Recent investigations of the behavior of rigid mem-
branes with the fixed connectivity of tethered surfaces
reached a very different conclusion. It has been shown!!
that (at least in the limit of rigid membranes at low tem-
peratures) the undulations of such surfaces interact via
the in-plane elastic constants, in such a way that the
This
result immediately raises interesting questions regarding
the relevance of the bending energy terms in polymer-
ized membranes.

In this work we investigate the dependence of the
asymptotic behavior of rigid membranes on their bend-
ing constant using Monte Carlo (MC) method. We show
that these surfaces undergo a remarkable second-order
phase transition from a crumpled (low rigidity, high
temperature) phase, where the membranes essentially
behave as the tethered surfaces described in Ref. 1, to a
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flat phase where one can use the ideas of Ref. 11 to de-
scribe the deviations from a flat configuration. The
simulations have been performed on hexagonal surfaces,
up to L =19 atoms across. Because of very large simula-
tion times [in some cases, 50 days of CFU (central pro-
cessing unit) time per data point on an Apollo DN460
computer] we could not include the excluded-volume in-
teractions. Our conclusions, however, strongly suggest a
related transition in real self-avoiding membranes as
well. Sore of our results have already been published.!?
Since then we have performed larger-length-scale simula-
tions; this paper includes both the impraved results and
detailed information which has not been included previ-
ously.

In Sec. I we summarize the behavior of various kinds
of random surfaces, and define the model system used in
our simulations. When a tethered surface is constrained
to lie in a plane, it behaves like an elastic: solid, with en-
tropic elastic constants, which are strictly proportional
to the temperature 7" In Sec. III we estimate the elastic
constants of this 2D solid, which are needed as input
into the theory of Ref. 11. In Sec. IV we describe the
MC (“diffusive dynamics”) method and sstimate the re-
laxation times. In the Secs. V and VI we show that the
surface indeed undergoes a phase transilion: its asymp-
totic behavior changes from crumpled to flat, and the
specific heat diverges near a second-order transition
point. Sec. VII describes the correlaticns between the
unit normals to the triangular faces of the surface.
These normals are a natural candidate for an order pa-
rameter, and their behavior is qualitatively similar to the
behavior of spins in three-dimensional Heisenberg fer-
romagneis. In Sec. VIII we argue that the crumpling
temperature found here is actually a lower bound on a
similar transition in real self-avoiding membranes. We
suggest, however, that excluded volume interactions are
a relevant perturbation at the actual phase transition, so
that the critical exponents of self-avoiding surfaces are
probably different. A brief discussion of the results, ex-
perimental tests, and possible future investigations is
presented in Sec. IX. ‘ '

II. MODEL SYSTEM

In this paper we consider a two-dimensional triangular
array of atoms with positions {r;}, embedded in three
dimensions. The energy assigned to a particular
configuration of particles is

b=—«" 3 (gymp—1)+ 3 V(|r/—r1;|).
{a,B) (i)}

The first sum is over pairs {a,B) of unit normals {n,}
erected perpendicular to each elementary triangle in the
surface (see Fig. 1). In methyl methacrylate polymer,*
the “atoms” in Fig. 1 would represent rodes in the 2D
cross-linked network. In a lipid membrane, the normals
would be aligned along the long axes of the lipid mole-
cules. The bending rigidity «" plays 'the role of a
“Heisenberg exchange coupling” between neighboring
normals. The second summation in Eq. (2.1) is over
neighboring pairs of atoms i,j ) in the array interacting
via a tethering potential :

2.1

36 PHASE TRANSITIONS IN FLEXIBLE POLYMERIC SURFACES

4021

FIG. 1. A tethered surface: a hexagon of size L =3 atoms
across excised from a triangular lattice. Bonds indicate the
pairs of atoms connected via square-well potential V. Spheres
show the range of the repulsive (hard-core) part of potential V.
Unit normals n, which are used to define bending energy, to
two elementary triangles are shown.

0 if 1<r<V3
0, otherwise.

Vir)= 2.2)

This potential consists of a hard-core repulsion (when
the distance between the atoms becomes r=1), and a
part which causes neighboring atoms to behave as if
tethered by a string, i.e., distance bétween them cannot
exceed r=v"3. The range of the repulsive (hard-core)
part of potential ¥V is represented by the size of the
spheres in Fig. 1.

For k'=0, i.e., without the bending forces, this system
has been extensively investigated.! It has been shown
that at large-length scales it is described by a (continu-
um) free energy

Fo 1 5
kBT—szdx

where the discrete index of atoms has been replaced by a
continuous 2D internal (i.e., attached to the surface)
coordinate x=(x;,x,). This result is a consequence of
crumpling of the surfaces, and the asymptotic form ap-
pears at length scales where the surface is already
strongly crumpled.! Using the form (2.3) one can
show'>! that the radius of gyration R, of a surface L
atoms across increases as VInL, ie., it overfills the
space (has an infinite fractal dimension). Not surprising-
ly, self-avoiding interactions play a very important role
in crumpled tethered surfaces. Equation (2.3) can be
used as a starting point in the investigation of surfaces
with self-avoiding interactions.b!*

What happens when we combine bending rigidity with
the fixed connectivity of a tethered surface? For small
rigidity one might expect an increase in the persistence
length, but no change in the asymptotic behavior. Inves-
tigations of the effects of rigidity usually take a point of
view diametrally opposed to the crumpled surface ideas
which underlie Eq. (2.3): One assumes that the surface
is (at least locally) flat, and describes its fluctuations uvs-
ing the Monge parametrization in terms of a normal dis-

or 2
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placement f, r(x;,x,)=(x;,x3,f(x1,x;)). To lowest or-
der in if and its gradients, the surface energy may be
written®’

F=1x [d (V2P +1 [dxQuul+iuf),  (2.4)

where the strain matrix u;; is related to f and the in-
plane displacements u; by u;=4(3;u;+9;u;+3,f9;f),
% is the bending rigidity, and p and A are 2D Lamé con-
stants. Using the Monge form of the normal,

n=(3.f, 0,1, 1)/(1+ | Vf | )2=(8,f,3,f,1),

it is straightforward to check that the first term in (2.1)
reduces to the first term of Eq. (2.4) in the continuum
limit, with ®=(2/3V3)x’, plus boundary terms.

In the liqguid membranes the second term of (2.4) van-
ishes, and, as discussed in the Introduction, this leads to
a crumpled surface on sufficiently large length scales.”—*
As discussed above, the surface also crumples when ®
vanishes. When both terms in Eq. (2.4) are present
simultaneously, however, nonlinear couplings between
the undulations of the membrane are generated, and the
transverse fluctuations are strongly suppressed.!! The
coupling between the modes is strong if the parameter

Ko=da ulu+1)/2u+1), 2.5)

defined using the 2D Lamé constants and the lattice con-
stant @, is much larger than % In this limit one can
show!! that the effective bending constant depends on
the size of the surface (measured in lattice constants) L

as,
Reﬂ'z[a V kB TKO »

and that consequently the mean-square transverse fluc-
tuations of the surface {(f2?)~L. Unlike a crumpled
surface the root-mean-square fluctuations normal to the
surface are now small relative to the surface size. We
can, therefore, expect that R, of a tethered surface in
this limit will be proportional to L. This also leads to
long-range order in the normals to the surface, resem-
bling the ordered phase of a Heisenberg ferromagnet.
Since the treatment of Ref. 11 is valid only in the high-
rigidity, low-temperature limit, it remains to be seen
what happens as one reduces the rigidity or increases the
temperature.

Clearly, the «'=0 and large-«’ results are not compati-
ble, and one might expect a phase transition from a
crumpled to flat phase as x=«'/(kgT) is varied. One

(2.6)

- must keep in mind, however, the possibility that the .

transition point may, in principle, occur at x'=0, mean-
ing that any real surface is always asymptotically flat, or
at K'=o0, meaning that the approximate treatment of
Ref. 11 is not valid, and the bending energy is not
relevant for large surfaces. Most of the effort of our
simulations has been devoted to the proof that the tran-
sition appears at a finite value of the bending constant.
We will show that the transition is continuous (second-
order): the persistence length in the crumpled phase in-
creases with increasing bending constant and diverges at
a finite value of that constant; beyond that point the sur-
face is asymptotically flat.
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One should emphasize that (2.2) acts only between the
neighboring atoms of the network. Our simulation did
not include an excluded volume interaction between
non-neighboring atoms, i.e., we are considering a phan-
tom surfaces. As we shall see, these systems exhibit a
low-temperature ““flat” phase, where the neglect of self-
avoidance is justified. We shall argue, moreover, that
the finite-temperature crumpling transition discussed
here for phantom surfaces is in fact a lower bound on a
related transition in real self-avoiding membranes.

II1. PROPERTIES OF PLANAR TETHERED SURFACES

In this section we describe the elastic properties of the
membrane used in our simulation, when confined to a
plane. With this constraint, the surface should behave
like a two-dimensional isotropic solid with entropy-
induced elastic constants.

The potential energy of the system in an allowed
configuration is always zero, and the total energy will
only include the trivial kinetic part of L1k T per degree
of freedom, which will be the only contribution to the
specific heat. The free energy per atom of such a two-
dimensional solid has the form

kyT

Fo=——

1nZ=kBT[1nA2(T)—--;—TlnCQ =F +F ,

(3.1

where Z is the partition function, A(T) is the thermal
de Broglie wavelength, N is the number of atoms, while
the two terms in the brackets correspond to the kinetic
and configurational parts of the free energy. The kinetic
term F, does not depend on the shape of the solid, while
the configurational integral @ in ¥, does not depend on
the temperature. The elastic stiffness tensor
Cijir =A8;;8,y +11(8 8, 48,85 ) of an isotropic solid is
given by the second derivative of the free energy with
respect to the strain tensors 7],~j,6

kT 3 1In@
A anij I

where A is the area (“volume”) of the solid. Since @
does not depend on 7, the elastic stiffness will be strictly
proportional to 7. The long-wavelength elastic proper-
ties should be similar to real polymerized ampiphiles,
whose elasticity arises from a combination of van der
Waals and covalent forces. The tethered solid will
display, for example, long-wavelength phonons, whose
frequency will depend on the temperature of the solid.

A simple, order-of-magnitude estimate of the elastic
constants can be obtained by replacing the “square well”
interaction (2.2) by a harmonic potential V(r)=%kr2.
Consider a pair of atoms confined to one dimension in-
teracting via (2.2). The mean separation between the
atoms and the variance of that separation will be =~1.37
and 0.045, respectively, and will not depend on the tem-
perature. Let us replace this binary system by a pair of
atoms connected by a harmonic (Hookean) spring, and
choose the length of the spring to be 1.37 and its force
constant k=~22k, T to ensure the right size of the fluc-
tuations. We now may replace the actual tethered solid

Cyar =— (3.2)
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by a triangular lattice of harmonic springs of this
strength. (Other simple replacements, obtained, e.g., by
consideration of the pair of atoms in 2D, lead to very
similar results.) The Lamé constants ‘cf the harmonic
lattice are easily shown to be given by A =p=(V3/4)k.
From the above estimate of k we find.:that the Lamé
constants are i

p=A=10ksT . (3.3)

The elastic constants can also be calculated directly
from MC simulations of thermal fluctuations. It can be
shown!® that the elastic compliance tenscr

A

. 1 ‘
Sijkl= —mﬁij8k1+2;(8,-k8ﬂ+6,{8jk) 3.4
is related to the thermally induced strain: {7;;} by

A nyni ) =k TSy - (3.5)

As in Ref. 1, we randomly chose an aton1 and attempted
to move it by § =0.2 in a randomly chosen direction. If
the new position was permitted by the potentials (2.2),
we updated the position of the atom; if il was forbidden,

the atom was left in its original position, During a sin-

gle “MC time unit,” on the average, one attempt of posi-
tion change is made for each atom. We excised an L XL
parallelogram of a triangular lattice and equilibrated it
in, 2D. We started from a perfect triangular lattice
configuration, performed the MC equilibration, and
recorded the resulting configurations every 7o=L?2/s?
MC time units, for the total time t =10Gr,. These times
suffice to ensure both the statistical independence of
configurations, and good averages.

To see that our 2D MC simulations are indeed equili-
brated, note first that the motion of the surface is purely
diffusive, so that its equations of motion can be schemat-
" ically written as

kliT B eV,
D ot _
where u and c¢ are a displacement and elastic modulus
(here we suppress the detailed tensor notation), and D is
the diffusion constant of a unit surface area. The
diffusion constant of a single atom is 45% Division of
this result by the area per atom gives $)=8s2/(V"3a?),
where a is the mean distance between the atoms. Solids
governed by (3.6) will have spatially sinusoidal normal
modes which decay exponentially in tims with time con-
stant dependent on the length scale of the oscillation.
For a square solid of linear size La the lpwest mode will
have wavelength 2La, and its relaxation time will be

Lky Ta } (3.7)

= sk '

(3.6)

Assuming that ¢ is of order of few kzT (ind a =~1.34) we
find that 7~0.17g. This ensures that tte time intervals
between our measurements of the positions of the atoms
were long enough to ensure statisticzlly independent
configurations. '
To evaluate Eq. (3.5), one must associate a set of
strains {7;;} with a given MC configuraiion. To do this,
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we consider a succession of parallelograms built using
two “basis vectors,” b; and b,, emerging from the same
atom. As illustrated in Fig. 2, each of these vectors ter-
minates in an atom #n tethering units away. Their equi-
librium length b is defined by the thermal averages
b2={(b;)?)=((b,)?), while the angle between their
mean directions is 7 /3, i.e., (b1>~(b2)=%b2. If at a
particular moment these vectors have values b; and b,,
the instantaneous strain tensors within the parallelogram

are
7711=“;“ "Z‘z‘-—l} ; (3.8a)
”)12=2‘/—;312(2b%—b1'b2‘) , (3.8b)
”22=}i7(4b%+b2_4b"b2’_% , (3.8¢)

where the x; axis has been chosen to coincide with the
instantaneous direction of b;.

We considered the case of free boundaries, so that the
elastic properties were measured at zero pressure. A
typical equilibrium configuration is depicted in Fig. 2. A
sequence of such configurations was analyzed to deter-
mine the thermal averages of strain-strain correlations,
using the definition (3.8). (The averaging was performed
over all configurations and over the possible positions of
the origin of the basis vectors b; and b, in each
configuration as well.) The length of the basis vectors
(in lattice units) # ranged between 1 and L —1. In a very
large system (n[jnk,) eventually becomes proportional
to n? (or to A ), and the compliance tensor (3.5) becomes
independent of n. Therefore, we need to extrapolate our
results to 1/n=0. On the other hand, our free bound-
ary conditions are expected to lead to strong finite-size
effects.

Figure 3 depicts three different components of S;;; as
a function of 1/n. The simulation has been performed

0RO 0o =00
LR FERD
0:0,00:0200:4'0 9,95
3OS R R
\.gtgt"ughguexg:QgcQ‘.
sitvcveisasee
939,00 e K

FIG. 2. Equilibrium configuration (at zero pressure) of a
tethered solid in 2D (parallelogram of linear size L =12 ex-
cised from a triangular lattice). Vectors b; and b, used to
define strains are shown for the case # =35.
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FIG. 3. Elements of the elastic compliance tensor S ob-
tained from the strain fluctuations on the length scales of » lat-
tice constants vs 1/n. A pair of curves for each element of S
corresponds to the results obtained from parallelograms with
L =12 (lower curve) and L =20 (upper curve).

‘for L =12 and L=20. For 1<rn <3 we see a weak
dependence of the compliance on 1/n. However, for
larger values of n, the compliance constants increase to
very large values. One can clearly see that this is a finite
size (boundary) effect by comparing the results of two
different network sizes: for larger L, the sudden increase
of the compliance is delayed to larger values of n. The
importance of the finite size effects can also be seen by
measuring the elastic constant S,;;,, which is supposed
to vanish in an isotopic solid. For n <3 the calculated
value of that constant is an order of magnitude smaller
than S,;y,, although for larger n, S;;;2 and Sy;; gradu-
ally become comparable. Errors originating from statist-
ical averaging can be estimated by comparing S;;; with
S5, which are calculated independently but should
coincide. Differences between these two constants do
not exceed a few percent, i.e., we got good averages. Re-
sults of Fig. 3 do nor permit accurate extrapolation to
the large-n limit. Our estimate of the extrapolated
values (ignoring the finite size effects at large n) is

S =A+2u)/[4u(X4-p)]~0.085/(kpT) ,

Siz2=—A/[4u(A+p)]=~—0.01/(ksT) ,
and

S12=1/(4u)=0.045/(kpT) .

These three estimates are supposed to produce fwo Lamé
constants A and y. They are in fact approximately con-
sistent giving

p=5.4kpT , (3.9a)
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A=1.4kpT , (3.9b)

results which should be contrasted with the rough esti-
mate (3.3).

In Ref. 11 it is shown that the renormalized wave-
vector-dependent rigidity Ky is renormalized by elastici-
ty to lowest order in perturbation theory as follows:

KOkBTf % 1@P; kg |7

Rrlg)=R+ a? (27 ®|k+ql|*

>

(3.10)

where Py(k)=28;—k;k; /k? is the transverse projection
operator. Taking the limit ¢ —0 and restricting the
wave-vector integration to k > /(La) we find that the
second term exceeds the first when L > L., where

172
32712

Le~ \ 5k, 1K,

(3.11)

Here, L. is measured in lattice constants, and K, is
given by Eq. (2.5). From the measured values of u, A,
and ¢ in a simulation of a tethered surface confined to a
plane, we find that Ky=22kpT, so that nonlinearities
should have a strong effect on the bending undulations
characteristic of a purely liquid membrane, whenever
L24r/kgT=~1.5k'/(kgT)=1.5x. We conclude that
the surface studied here will be dominated by elastic
effects at quite modest values of L over a wide range of x
values.

IV. MONTE CARLO PROCEDURE
AND RELAXATION TIMES

We now allow the membrane to bend out of the plane,
and use the MC method to investigate the spatial confor-
mations and thermodynamic properties of surfaces with -
bending energy in three dimensions. We used the Ham-
iltonian (2.1) with nearest-neighbor potential (2.2). The
procedure resembles the one explained in Sec. III. The
random moves by amount s =0.2 are made in 3D. The
move is always accepted if the energy of resulting
configuration E; does not exceed the original energy E;.
If E;<E;, the move is accepted with probability
exp[(E;—Ef)/kpT]. The outcome of this equilibration
procedure depends only on one parameter, the dimen-
sionless rigidity k=«'/kgT. Our simulations were car-
ried out on a hexagon with diameter of L atoms
(L =3,5,7,11,15,19). When an atom is moved the bend-
ing energy embodied in (2.1) makes E; —E; depend on
the 3D positions of six nearest neighbors and six next
nearest neighbors as well. This, together with long
equilibration times, creates quite a time consuming pro-
cedure: the largest (L =19) hexagon required 50 days of
CPU time on an Apollo DN460 computer for each value
of k. For this reason we did not attempt to include the
repulsive (excluded volume) interactions between the
atoms which were not nearest neighbors on the triangu-
lar network.

In Fig. 4 we depict equilibrium configurations of the
surface for several values of k. We observe a dramatic
change in the shape of surface. As will be shown in the



FIG. 4. Equilibrium configurations of hexigons with L =15
in the crumpled phase (k=0.01 and 0.2%), in flat phase
(x=2.0), and in semicrumpled region (k=0.5) closer to «,.

following sections the surface undergoes a second-order
phase transition from a “crumpled” to “dat” state. Not
surprisingly, for small values of k, the surface has the
same qualitative behavior as in the case of k=0, which
has been investigated in the previous publications.! In
this regime the surface overfills the space (has an infinite
fractal dimension). In this simulation we measured
strongly fluctuating quantities, whose rms fluctuations
were of order of the quantities themselves. Quantitative
measurement of such properties requires the total simu-

lation time to exceed the relaxation times by a significant

factor, to ensure a reasonable accuracy of the average.

For k=0, the relaxation time (or the tirne between two
statistically independent configurations) is given by! the
Rouse relaxation time 7z =7q=N /s%, where N =(3L?
4-1)/4 is the number of atoms in the surface. The total
simulation time for each x was 3007, fcr L <11, 5007,
for L =15, and 10007, for L =19. Such simulation times
produce good statistical averages for sma‘l .

In Fig. 5 we show the time dependence of the radius
of gyration of the surfaces for several values of x with
L =11. Notice that for small x’s both R; and its fluc-
tuations increase with increasing «. For larger «’s this
tendency disagpears: the surface becomes flat and the
changes in R} are essentially governed by the fluctua-
tions of the in-plane size of the 2D tethered solid de-
scribed in Sec. IIL.

Although the Rouse relaxation time controls the dy-
namics for small «, a different dynamical mechanism
controls the relaxation when the membyrane is flat. In
the limit of large x the relaxation times of the surface
are determined by the transverse fluctuations (undula-
tions) of the surface. (The in-plane rclaxation times,
which have been discussed in Sec. III, are significantly
shorter than the times required by the transverse
motions.) If we disregard the in-plane interactions be-
tween different undulations, the equation of motion fol-
lows directly from the first term in (2.4)
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FIG. 5. Time dependence of the squared radius of gyration
R} (with L =11) for several values of k, indicated near the
curves. In the crumpled phase (x <k, ) both R} and its fluctua-
tions increase with increasing «. In the flat phase (k>«x.) R?
increases and its fluctuations decrease with increasing x, to-

.wards the values typical of a 2D tethered solid.

af _ 212

3t =B(V*)*f,
with B =&m, where m is the mobility (ratio between the
applied force and the drift velocity) of a unit surface
area. In our MC procedure the mobility of a sin-
gle atom is s2/(12kpT), and therefore m=s5s2a*V3/
(24kp T'), where a is the lattice constant of the 2D teth-
ered solid. Thus

B=s5%%/(8V3kyT)=s%a/36 .

“4.1)

The eigenmodes of (4.1) will decay exponentially in time,
Flt,x)=fo(x)e "', and the decay times 7, will be
determined from the solution of an eigenvalue problem
B(Vz)zfo(x)=—fo(x)/1'f. This is a well-known prob-
lem of vibrations of thin plates.'® ,

We are not aware of a solution of plate with hexago-
nal geometry, so we use a square plate geometry to esti-
mate 7,. The slowest eigenmode in a square plate of
linear size .L with free boundaries satisfies”

(4.2)

We expect the corresponding eigenmode of a hexagon to
be located between the eigenmodes of inscribed and cir-
cumscribed squares. We shall therefore approximate our
system by a square of linear dimensions .L=pBLa, with
B=0.7£0.3, where the lower and upper limits corre-
spond (approximately) to the cases of maximal inscribed
and minimal circumscribed squares, respectively. Thus
the relaxation time is given by

368°L%?2 0.268'NT,
T % '
45K K

For, say, L =19 (with «~1) the simulation time is 2 or-

NTO

~0.05 4.3)
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ders of magnitude larger than 7,, and we expect to have
a well-equilibrated system, while the averages will be ac-
curate up to a few percent.

The above estimates of relaxation times may not be
valid close to the transition point, where one expects
critical slowing down. Direct measurement of the auto-
correlation function indicates that the simulation time is
still much larger than the relaxation times, so we may
expect to have reasonable statistical averages.

V. SIZE AND SHAPE
OF POLYMERIZED MEMBRANES

To quantify the nature of the crumpled and flat behav-
iors depicted in Fig. 4 and to establish the validity of the
claim that these apparently different behaviors indeed
reflect two different asymptotic regimes, we measured
several shape parameters of the surface for various
values of L and k=«"/kpT. In particular we measured
the radius of gyration of the surface

i

2 —
Rg(L,K)= 2N2

(5.1

23—,
i

where N=(3L2?++1)/4, and { ) denotes the average
over the configurations. For L <15 we scanned the en-
tire range of «’s, while for L =19 we concentrated on the
values close to the anticipated transition point. This in-
formation is summarized in Fig. 6. The steep increase of
R, of large surfaces at «~0.3-0.4 indicates the presence
of the transition. We shall demonstrate a qualitative
difference between the large-L behavior of R, of the sur-
faces as a function of their linear size at the two sides of
the transition point

50 ———r—r T —TT T T
X L=3 N=7 # L=11 N=91 _
o L=5 N=19 O L=15 N=189 4
0O L=7 N=37 + L=19 N=271 1
40 : -+

!

_f

30
o w
20
10 ]
0 Ry ik s J”-; IJ;_
0 0.2 0.4 0.6 0.8 1
x/(1+k)

FIG. 6. Squared radius of gyration R} as a function of « for
several values of surface size L.
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EVInL for k <k,

Rg(L) =
EL for K>k, .

Lo (5.2)
The parameter £ measures the persistence length of a
surface which has the same qualitative behavior as the
phantom surfaces with k=0, which have been investigat-
ed in Ref. 1. The high-x (low-temperature) part of (5.2)
represents the behavior in the expected flat regime,
where the coefficient { measures the possible shrinkage
of a macroscopically flat surface due to small-length-
scale fluctuations. Both & and § depend on k, i.e., on the
temperature.

Equation (5.2) represents only the asymptotic behavior
of R;, as L-—>w. For small L we may expect the
effective values of £ and £ to depend on L. We can
define the effective values of the parameters via
§(k,1/L)=R,/V'InL and {(k,1/L)=R,/L, and at-
tempt an extrapolation to 1/L =0. Figure 7 depicts the
L dependence of the inverse persistence length. We ex-
pect the transition from crumpled to flat regime to occur
via the divergence of £ near the transition point. Indeed,
for small xk the curves extrapolate to a constant as
L — «, while for large x the 1 /& decays to zero. Figure
8 depicts the effective values of {. For large x these
values tend to a constant as L — . For small x they
decay to zero. The extrapolated values of £ and £ ean be
obtained by assuming that both 1/£ and & approach
their asymptotic values as A4 A4,/L. Fitting to this
form presumes that finite-size effects are controlled by
atoms near the boundary. Within the limited accuracy
of our measurement the extrapolated values are not very
sensitive to the method of extrapolation. Figure 9 sum-
marizes the extrapolated values of the parameters. No-

[ T T lM’ T T T T I T T T T J
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0.76 |— —

W i ]

~— - X £=0.01 4
0.50 |— © ©=0.25 _]

5 0O £=0.43 4

I + £=0.50 -

: X x£=0,75 1
0.25 |— % x=1.00 —

3 X x=2.00 4

[ O x£=9.00 1
ooo b o o 4 o o0 by

4] 0.1 0.2 0.3 04
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FIG. 7. Effective values of inverse persistence length 1/£
(see text) vs 1/L. For small x persistence length extrapolates
to a finite value in the limit 1/L =0. For large « the quantity
1/& appears to vanish in this limit.
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FIG. 8. Effective values of ¢ (see text) vs 1/L. For large «
the parameter { extrapolates to a finite value in the limit
1/L =0. For small k it apparently decays to zero in that limit.

tice, that the divergence of £ and vanish'ng of § appears
in the same narrow region of values of x. From this
figure we estimate k,=0.3333:-31 and; hypothesize a
continuous-phase transition as L — co0.

Precisely at the transition, one might expect inter-
mediate “semicrumpled” behavior, i.e.,
~aL" ,

R (5.3)

4

where a is the mean distance between {wo neighboring

a 1 T | [ J
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FIG. 9. Dependence of the extrapolated values of the pa-
rameters 1/£ and £ on the bending constant «. Both quantities
vanish as k—k.. The transition appears at x, =~0.33.
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(connected) atoms, 0 <+’ <1, and we have neglected nu-
merical factors of order unity. For k4., we can define
a dimensionless correlation range Y(«) (measured in the
units of nearest-neighbor distance) inside the surface,
within which (5.3) holds and outside of which either of
the cases in (5.2) obtains. Above T, this length will be
comparable to the correlation range of surface normals
discussed in Sec. VII. We expect that Y(«) diverges at
KC

Ko—K |1
CK ] for k <k,
L4
Y(k)=~ —w, (5.4)
KC
for x>k, ,
KC

where the analogy with critical phenomena in ferromag-
nets suggests that w;=w,.

Although our data do not permit accurate estimates of
v, wy, and w,, we can relate these exponents to £ and ¢
via a simple scaling hypothesis: Far from the transition
the radius of gyration should have the form

[al\/ﬂ for k <<k,
gz

a,L for k>>k, , (5.3)

where a; and a, are microscopic lengths. Close to the
transition we assume that the role of a; and @, will be
played by (5.3) evaluated with L =Y(x)

Rg(L) I L=T(K)=aY"' f (5.6) )

The surface has broken up into crumpled fragments of
size a'Y, each consisting of approximately Y*(x) mono-
mers, so that L should be replaced by L /Y in Eq. (5.5),
while ¢; and a, should be replaced by aY". Upon mak-
ing these substitutions, we find that the radius of gyra-
tion near the transition behaves as in Eq. (5.2), with
{neglecting logarithmic corrections)

—vw,
K, —K

(k)=aY’ ~ for k <k (5.7a)
. c

[+

(1—v"w,
K—K,

El)maYV 1~ for K>k, . (5.7b)

K

(4

Because 0 <4’ <1 these scaling laws show that &(x)
diverges as k—k , while {(k) tends to zero as k—«k],
consistent with Fig. 9, although the limited accuracy of
the data prevents extraction of the values of the ex-
ponents. (For a rough estimate of v/, see Sec. VII.) One
should keep in mind that, in fluid membranes, we would
always expect that £=0, because the radius of gyration
should have the crumpled form, R, ~L Y, with v<1. In
polymeric surfaces however, { in fact remains finite for
large «’s, and vanishes at a finite value of k. In this
sense, £(k) plays the role of an order parameter for the
crumpling transition. ' '

The finiteness of §(x) at low temperature does not by
itself prove that the surfaces are flat in the usual sense,
since surfaces folded into, say, spherical or cylindrical
shapes also have the property that R, ~L. Following
Ref. 11, we expect the surface to be flat in a stricter
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sense: its shape when embedded in 3D will have two di-
mensions significantly larger than the third one. A
quantitative measure of such behavior in a random ob-
ject is asphericity A defined as
R}
A(K,L)5<——2—) R

5.8
R2 (5.8)

where { ) denotes configurational average, and R? and
R?% are, respectively, the minimal and the maximal prin-
cipal moments of inertia, i.e., the minimal and maximal
eigenvalues of the inertia tensor .

Top= 3 (1)ulr, )B—;l-z— S (5)alr )y (5.9)

H

where the Greek subscripts denote the Cartesian com-
ponents of 3D coordinates of an atom. [The trace of
this tensor coincides with R} defined in (5.1).] With
definition (5.8), 4 =1 for a sphere, and 4 =0 for a flat
surface. Measurements of 4 as a function of « provide
excellent evidence for the presence of the phase transi-
tion.

Figure 10 depicts A (x,L) for several values of L. For
fixed L the asphericity is a monotonically decreasing
function of x. However, the increase in L affects
_ differently the low- and high-temperature regions: for
k>k,, A decreases with increasing L, i.e., the surfaces
become more flat, while for k <k, the surfaces become
more spherical (4 increases) with increasing L. In the
limit L — «, we expect that A(x,L) tends to zero for
k>k.. For k<k,., A(x,L) should approach a universal,
x-independent, nonzero constant in this limit, in analogy
with related results on the universality of polymer
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FIG. 10. Asphericity 4 of the surface (ratio between the
minimal and the maximal moments of inertia) as a function of
x for several values of L. The decrease of 4 with increasing «
becomes steeper for larger L.
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shapes.'”'® We can estimate x, by following the L

dependence of k; and k; defined, say, via 4 (x,;)=0.35
and A(x,)=0.15, where k; underestimates x, and is ex-
pected to approach «, as L — «, while k; overestimates
k., and will decrease towards «, in that limit. Values of
xy/(14x,) and k,/(1+k,) have been obtained from the
intersections of the interpolating lines in Fig. 10 with
A=0.35 and A =0.15, respectively, and the results
were depicted in Fig. 11 as a function of 1/L. This re-
sult clearly indicates the presence of the critical point at
k. =~0.33, which can be obtained by extrapolation to
1/L =0.

If the surface becomes flat in the large-x regime, we
may expect (for large L) to have 4 ~L 77, with 0 <p <2,
where small p corresponds to a very slow flattening out
of the surface, while p=2 corresponds to a surface with
transverse fluctuations independent of its linear size L.
Reference 11 provides two predictions of the asymptotic
behavior of 4: (a) According to discussion which fol-
lows Eq. (2.6) the mean-square transverse fluctuations
{f2?)~L, and therefore 4 ~{f%)/L*~1/L, ie, p=1;
(b) crossover to this asymptotic behavior is delayed for
larger values of . Our results permit a limited check of
these predictions. Figure 12 depicts the L dependence of
A for several values of x, on a logarithmic scale. All
graphs have a pronounced curvature, and it is impossible
to extract their asymptotic behavior. A rough estimate
of the asymptotic slope gives p=0.8::0.3, which is con-
sistent with p=1 predicted in Ref. 11, and depicted as a
straight line in Fig. 12. These results seem to be con-
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FIG. 11. Successive estimates of x, /(14 x.) as a function of
inverse surface size 1/L, obtained from the point of maximum
of the specific heat (crosses), from value of x for which
A =0.15 (squares), and from valué of « for which 4 =0.35 (di-
amonds). Circle on the vertical axis indicates the asymptotic
value, corresponding to k. =0.33.
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FIG. 12. Logarithmic plot of the aspherizity 4 as a func-
tion of surface size L for several values of k. Straight line indi-
cates the slope of the dependence predicted iniRef. 11.

sistent with the expectation that for large «’s we have a
delayed crossover to the slope p=1. On the basis of the
available data we cannot, however, make any quantita-
tive comparisons.

V1. SPECIFIC HEAT OF THE SURFACES

The presence of the phase transition' is also clearly
seen in the specific heat, which has been found from en-
ergy fluctuations in the surface. The only source of po-
tential energy in our model is the bending energy of the
surface. The specific heat per atom C can therefore be
found from a simple expression

o Fk {3, mem ) (2 weni)']

N (@B (@B)

(6.1)

where the summations are performed cver all pairs of
adjacent (triangles, and the big ( ) denotes an average
over the configurations. The dependence of C on « is de-
picted in Fig. 13. (We suppress the trivial kinetic part
3kp of the specific heat.) It has a well-pronounced peak,
whose height increases with L.

For k=0, the fluctuations are purely entropic since
the potential (2.2) allows only configurztions with zero
potential energy. Consequently, C =0 at this point. For
sufficiently large «, one can neglect the coupling between
the transverse fluctuations. The only coutribution to the
potential energy will come from the degree of freedom
embodied in transverse oscillations. [Th: two additional
(in-plane) degrees of freedom are entropi, and hence, do
not contribute to specific heat.] Therefore, for large «
we expect to obtain C=i5kp, in accordance with
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FIG. 13. Specific heat per atom C as a function of bending
constant k for several values of L. The peak in the specific
heat becomes more pronounced for larger L. ‘

Dulong-Petit law. Indeed all the curves in Fig. 13 ap-
proach that limit for k— «. In the absence of a phase
transition one might expect a smooth interpolation of C
as k changes from 0 to . Figure 13, on the other hand,
shows a pronounced peak, which sharpens for large L.
The position of the peak appears to be drifting towards
smaller «’s with increasing L. It does not tend to zero,
however, but approaches a constant value. In Fig. 11 we
plotted the positions of these peaks as function of 1/L.
(Since the values of «, for which C has been measured
are very sparse, we found the position of the peak by in-
terpolating the data points by a smooth curve.) We ob-
serve that these results also converge to the same critical
point which has been obtained from the measurements
of ky and ;.

Since our measurements have been performed for sys-
tems of quite limited size, we did not attempt to deter-
mine the critical index of the specific heat. Our data is,
however, sufficient to practically exclude the possibility
of a first-order phase transition. In the case of first-
order phase transition the presence of latent heat or,
equivalently, a 8-function singularity in the specific heat,
will appear as a peak in a specific heat for small system
sizes. Following the method of Ref. 19, one first as-
spmes that the system undergoes a first-order transition,
and concludes that the apparent height the specific heat
peak C,, should increase linearly with N, with slope pro-
portional to the squared jump in entropy. We do not see
linear dependence of C,, on N (the graph curves), and
the estimated latent heat decreases as we go to larger
values of N. We estimate that the jump of the entropy
at the transition point cannot exceed 0.08kp, which sup-
ports our contention that we are dealing with a second-
order phase transition.
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VII. NORMAL-NORMAL CORRELATIONS

We have also explored the analogy between the sur-
faces and a 2D Heisenberg model by examining the
" correlations between the unit normals to the surface.
Figure 14 shows the dependence of {n(x)-n(0)) for an
L =15 on the distance x, which is measured in a Carte-
sian coordinate system (x,,x,) attached to the fluctuat-
ing surface, for variety of values of x. For k>« the
normals are strongly positively correlated, suggesting a
“ferromagnetic state.” Finite-size effects due to the free
boundary conditions obscure the expected approach of
{n(x)-n(0)) to a constant, however. Near the transi-
tion, finite-size effects are very important and we ob-
served a pronounced L dependence of these correlation
functions. At small x, we expect the correlations to de-
cay to zero. This effect is clearly seen for, say, k=0.25,
where the correlations decay within few lattice spacings.
The negative correlations observed for small x when
£=0.01 and k=0.25 are due to folding of adjacent trian-
gles in a highly crumpled phantom surface (see Fig. 4).

If the conjectured semicrumpled regime indeed exists
we may expect power-law correlations between the nor-
mals at the length scales smaller than the correlation
length, i.e., {n(x)-n(0)) ~x 7. The exponent 5’ can be
related to the exponent v' via a simple argument:?® we
can calculate the algebraic projection A, of the surface
area of our membrane on a plane perpendicular to some
arbitrary 3D unit vector p. We treat our surface as
orientable, and therefore the projections may have both
positive and negative signs, depending on whether the
normal to the surface forms an angle smaller or larger
than 7/2 with p. Clearly,

A,= [dA,= [d* n,(x),
where n, =p-n is the projection of the normal on direc-

tion p. We now assume that the (np(x)np(O)) are
correlated with the same power law as {n(x)-n(0)).

(R(X) RO

0] 5 10 15

FIG. 14. Normal-normal correlation function in L =15 hex-
agon as a function of the internal distance x (in lattice con-
stants) for several values of x (shown near the graphs).

(7.1)
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Therefbre, the cc;nﬁgurational average of .ﬂg satisfies

(_ﬂi—):fdzx fdzx’(np(x)np(x’))

1 e
szfdzx(np(O)np(x)>~L2fd2x :177~L4 7,

(7.2)

The above derivation assumes that the integrals are
dominated by the upper (large-length-scale) cutoff, and,
thus, is valid for % '<2. If we now assume that
(A2)=R}~L*, we find that

' =41—v") . (7.3)

Our data is too crude to allow a direct reliable estimate
of '. However, we may use the value of v’ determined
in Sec. VIII (v'=0.7810. 10) and the relation (7.3) to ob-
tain an estimate 5’ ~0.8.

VIiI. EXCLUDED VOLUME EFFECTS

To make contact with real polymer surfaces, we must
discuss effects of distant self-avoidance. In the flat
phase, self-avoidance should be unimportant at long
wavelengths. The behavior of asphericity displayed in
Fig. 12, in particular, should be qualitatively unchanged.
Its main effect is to augment the bending forces, thus de-
laying the transition to the crumpled state. Clearly, the
critical temperature (i.e., x; y found in this work is a
lower bound on the critical temperature (i.e., an upper
bound on k) with self-avoidance. In the crumpled
phase, on the other hand, self-avoidance plays a major
role,! since it swells the surface and replaces the logarith-
mic dependence of R} on L, by a power law R, ~L"”
with v=0.8. As in the semicrumpled case described in
Sec. VII, the self-avoiding surfaces are expected to have
power-law normal-normal correlations, with exponent
n=4(1—v)=0.8. Figure 15 shows these correlations,

(RL%) R D)

FIG. 15. Normal-normal correlation of self-avoiding sur-
faces without bending energy (k=0) for several values of L (in-
dicated near the curves) as a function of the internal distance x
(in lattice constants).



which have been measured on the surfaces with «=0.!
These correlations decay within few lattice constants,
consistent with power-law correlations and a relatively
large value of 5. There is no indication of long-range or-
der in the normal for «=0, in contrast to the behavior
expected in the large-x flat phase discussed in this paper.
Differences between the crumpled self-avoiding surface
at k=0 and the flat phase found for large x (without
self-avoidance, but in a regime where self-avoidance is ir-
relevant) suggest that the tranmsition will appear for
0 <k < oo even in the presence of self-avoidance.

The details of the transition are likely to be different,
however. To show this we will use the results of our
simulation at the transition point, i.e., ia the semicrum-
pled regime and inquire about the relevance of a small
excluded volume interaction. Figure 16 depicts the L
dependence of R, in the semicrumpled regime. The
effective transition point was defined as a _point of max-
imum in the specific heat. Value of R, at that point has
been found from the interpolating curves in Fig. 6.
Since the points lie in steep region of the graphs in Fig.
6 (near the transition point the curves move from values
of order InL to values of order L? the uncertainties are
quite large. Nevertheless, this procedure provides a
rough estimate of v'. From the slope of the graph in
Fig. 16 we find +'=0.78%0.10. By :examining the
configurations created without excluded volume in the
semicrumpled regime we find the number of overlapping
atoms N, increases like Ny~L%, with ©=3.6%0.3.
Thus in the presence of a very weak excluded volume in-
teraction, the total excluded volume energy would in-
crease with this power. The number of overlaps per unit
volume ny scales like n0~L“"/Rig~LJ’, where
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FIG. 16. Properties of semicrumpled surfaces as measured
at the effective phase transition point (where the specific heat
achieves its maximum): squared radius of gyration RZ and the
number of overlaps between atoms N,, which measures the
possible strength of the excluded volume effect, are shown as
functions of surface size L on a logarithmic scale. Slopes of

these graphs determine 2v' (R? graph), and «i(N, graph).
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y=0-—3v'. According to our estimates y is positive, in-
dicating that the density of self-intersections increases,
as one goes to larger-length scales. This result suggests
a new critical behavior at the transition for self-avoiding
surfaces. :

One can only speculate on the details of the transition
in the presence of the excluded volume effect. In the
presence of bending forces and self-avoidance we expect
v, of the new semicrumpled regime to be larger than v,
0.8 <v'<1. The scaling relation (5.7b) for &£(x) will be
unchanged, while (5.7a) must be replaced by
i — (V' —v)o;

, K, —K
E(K)=aY" ™V~

for K<k, . 8.1)

Ke

However, it may be difficult to distinguish numerically
between the behavior on the length scales shorter and
longer than the correlation length. It is even possible
that there is no correlation length below «,. These pos-
sibilities indicate desirability of investigations of the sur-
face including self-avoidance.

IX. DISCUSSION

Theoretical discussions of conventional linear poly-
mers often exploit a remarkable analogy with second-
order phase transitions:® as the molecular weight be-
comes large, a polymer behaves more and more like a
magnet at its critical temperature. The radius of gyra-
tion grows with polymerization index like the correlation
length near the Curie point. Flexible sheet polymers
with low bending rigidity also display singular properties
as they become large.! In this paper, we have explored
via Monte Carlo simulations the suggestion!! that there
is in addition an unusual phase transition with increasing
rigidity within the polymer itself. Although most of our

- computations. are restricted to sheet polymers without

self-avoidance, we have presented a strong evidence for
an analogous transition in real self-avoiding membranes.
Such a transition could be explored in the laboratory us-
ing low rigidity polymerized lipid bilayers®® or systems
similar to the crosslinked polymethyl methacrylate stud-
ied in Ref. 4. '

In our simulations we found that the transition ap-
pears when ®/K;=0.02. In the presence of excluded
volume interactions this value can be reduced even
more. Because the elastic constants varied strongly with
temperature in our simulation (A,u« kT, for entropic
reasons), the model studied here is strongly thermotro-
pic. Polymerized lipid bilayers and monolayers should
be less sensitive to temperature, however, because the
bending constants and the in-plane elastic constants have
similar molecular origin, K/K, should be a relatively
weak function of T. One can get some idea about the
possible range of these parameters by considering a mac-
roscopic membrane. If it is made of isotropic material
with Young modulus E and Poisson ratio o, then®®
®=h’E /[24(1—0?)], where h is the thickness of the
membrane. The coupling constant Ky of such mem-
brane will be a?hE/(1—c¢?). Thus the ratio ®/K,

=h?/(24a?), and for a ~h we may get ratios close to

the critical values predicted in this simulation. We thus
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expect that many microscopic systems will have parame-
ter values close to the critical point, so that one can
drive the system through the transition point by small
variations of, for example, cosurfactant concentration,
and the nature of the solvent.

Many interesting questions remain. What are the pre-
cise critical exponents without self-avoidance? Can one
check or refine the prediction?! that the renormalized ri-
gidity increases with system size in low-temperature
range? What is the nature of the finite-temperature tran-
sition which occurs when self-avoidance is taken into ac-
count? References | and 11 treat distinct model Hamil-
tonians which describe, respectively, the high- and low-
temperature phases discussed in this paper. Both these
have singular long-wavelength properties which are in-
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teresting in their own right. Can one construct a tract-
able theoretical model which treats these phases as well
as the transition between them in a unified way? It
would be gratifying to learn the answers to some of these
questions from further theoretical analysis and, more im-
portantly, from real laboratory experimenits.
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