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Numerical investigation of a random, one dimensional Kronig-Penny-like model 
is performed using long chains and large ensembles. Dependence of the inverse 
localization length ~ on randomness, irreproducibility of resistance measure- 
ments and the dependence of the standard deviation of ~ on e and the length 
of the chain were studied. For energies, E=k 2 close to the zone boundary 
k=~, we have found ~(~-k). 

Recently the electrical properties of one- 
dimensional disordered chains of scatterers 
have been studied extensively. Both analy- 
tical I-4 and numerical 4-6 calculations have 
received attention. We investigated variety 
of properties of one such system. In our model 
an electron moves in a Kronig-Penny like pot- 
ential, which consists of L equally spaced 
6-functions with random strengths. The state 
of an electron at the Fermi level, whose energy 
is k 2, thus satisfies the following Schrodinger 
equation: 

d 2 L 
[---+ ~ Un6(X-n)]~ = k2~ (i) 

dx 2 n=l 

where Un=U(l-cyn). The randomness of the 
system is determined by the parameter c and 
the binary distributed random variable Vn, 
which can take the values i or 0 with the pro- 
babilities p and l-p, respectively. If p is 
small enough we can still talk about the origi- 
nal, undisturbed band structure. The location 
of a state in the band will be determined by U 
and k 2. Most of the calculations, unless speci- 
fied otherwise, refer to the middle of the first 
allowed band: U=~, k=3~/4. Long random chains 
(up to L=I6000 in most cases) were generated by 
computer, and large ensembles (up to N=400 sys- 
tems) were used to get reliable results. The 
dimensionless resistance R of each chain was 
evaluated from Landauer's formula 7 using the 
transfer matrix method 2,3,5 . The inverse loca- 
lization length ~ ~n(I+R)/L was calculated for 
each chain. 

The statistical distributions of a for 
different values of c and p, i.e. different 
values of <=> (the brackets denote averaging 
over the ensemble), and different L were cal- 
culated. We found that ~ is really the well 
behaved variable of the problem in agreement 
with previous investigations2, 5 . The typical 
results are depicted by the histograms in Fig.l. 
For <~>'L~IO the distribution of ~ appears to be 
approaching a Gausian distribution. For small- 
er values of <~>.L the standard deviation o~ 
becomes of the order of <=>, and the distribu- 
tion is highly assymetric. 
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Fig.l. Typical distribution of = calculated for 
ensembles of N=200 chains. Each chain 
has a length L=2000 sites. 
(a)p=0.5,c=0.1,<~>.L=l.4;(b)p=0.5,c=0.3, 
<~>.L=II.3. 

Fig.2 shows the power law dependence of 
o~/<~> on <a>.L: 

O 

% (<a> .L) -~ (2) 
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Fig.2. Dependence of ~/<~>on<a>-L. The values 
of parameters that were used to calculate 
the points are: L=2000,4000,8000; 
c=0.I,0.2,0.3; p=0.5. 

with w=0.47 ± 0.07. The relation ~ L-" was 
found in Ref. 5. Combining this result with 
scaling considerations we find ~=½. 

If the statistical behaviour of ~ is des- 
cribed by a Gaussian distribution (with the 
appropriate parameters <m> and ~), then it is 
easy to show that for large L 

2 

OR ~ exp (0 2 2 
<R--~Z> e ) (3) 

Inserting (2) into (3) and substituting ~=½ 
it is now obvious that 

o 
R 

log <R> = K<~>L (4) 

where the coefficient K depends only on the 
location in the band and not on the randomness 
of the system. This phenomenon has a great 
impact on experiments since it indicates the 
irreproducibility of the measurements of R 8. 
It also indicates that a direct calculation 
of <R> is impossible. Fig. 3 depicts the re- 
sults of such averaging. For constant c,p and 
L we have calculated the average resistance 
<R> N of N such chains. Gradually increasing 
the size of ensemble up to N=400, we followed 
the behaviour of <R> N. The curve is very ir- 
regular (note the logarithmic scales, and the 
fact that the small jumps in <R> N for large N 
correspond to a single chain with a huge re- 
sistance that appeared in the ensemble). 

Varying c and p, we checked the dependen- 
ce of <~> on the randomness of the chain (na- 
mely, on the variance of the potential strength, 
which, in our case, is c2p(l-p)U2). These re- 
sults were consistent with <a>~c2p(l-p). This 
is in agreement with analytical results in Refs. 
4 and 5 which treated similar systems. Two 
examples of such dependence are shown in Fig.4. 
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Fig.3. Dependence of the average resistance 
<R> N on the ensemble size N. 
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Fig.4. Dependence of <a> on c.200 chains were 
averaged to calculate each point. For 
the upper curve p=0.5, L=8000, U=~, 
k=~/2 were taken. For the lower curve 
p=0.5, L=I0000, U=3~/4, k=~/2 were 
taken. 
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The lines correspond to a power law dependence 

<~> ~ c 8 (5) 

with 8=2.10±0.20 (the upper line) and 8=1.86±0.15 
(the lower line) which are consistent with 8=2. 

For k=~ (i.e., zone boundary) the resistan- 
ce of a non random chain is proportional to L 2. 
At this special point an analytical calculation 
of the resistance of a random chain can also be 
performed easily 9, showing the same dependence 
on the length. Obviously this means <a>=0. 
The mapping of Fig.5 demonstrates the decrease 
of <e> (divergence of the localization length) 
for any value of U. 
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Finally we have studied, for the first 
time, the behaviour of <~> (k) as k approaches 

from below. It was found that close enough 
to the zone boundary 

<~> ~ (~-k) Y (6) 

Fig.6 depicts such a dependence for U=~. For 
the range 2.10-3<(~-k)/~<0.2 we found 
y=l.O01±O.014, which suggests y=l. To ensure 
small variance of the results we have chosen 
L to be such that <~>. L~]O0. Thus the numeri- 
cal calculations were performed using extremely 
long chains (up to 24,000,000 sites); each case 
was repeated for 6 different chains. 
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Fig. 5. Lines of constant <~> inside the first 
allowed band. aa=2-10 -~, ~b=4.10 -4 , 
ac=l.lO -3, ~d=l.lO -3. The mapping was 
done for c=0.1, p=0.5 and the length of 
the chains was determined by the condi- 
tion <~>.L>IO0. Dashed line stands for 
the lower boundary of the first allowed 
band 
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Fig.6. Dependence of <~> on (~-k)/~ for U=~ 
near the zone boundary. 
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