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Anomalous dynamics of forced translocation
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We consider the passage of long polymers of leidgithrough a hole in a membrane. If the process is slow,
it is in principle possible to focus on the dynamics of the number of monosmnsone side of the membrane,
assuming that the two segments are in equilibrium. The dynamisétpin such a limit would be diffusive,
with a mean translocation time scaling & in the absence of a force, and proportionaNtevhen a force is
applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers
(more easily when forcgdand provide lower bounds for the translocation time by comparison to unimpeded
motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and
point to anomaloussubdiffusive character of translocation dynamics. This is explicitly verified by numerical
simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to
strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end
leads to much longer times than when a chemical potential difference is applied across the membrane. The
bounds in these cases growMN$ andN'"?, respectively, where is the exponent that relates the scaling of
the radius of gyration tdN. Our simulations demonstrate that the actual translocation times scale in the same
manner as the bounds, although influenced by strong finite size effects which persist even for the longest
polymers that we consideretNE512).
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[. INTRODUCTION the translocation proce$d,12—1§, which is schematically
depicted in Fig. 1. A single variabkerepresenting the mono-
Translocation of a polymer through a narrow pore in amer number at the porgl2,15,19 indicates how far the
membrane is important to many biological processes, such g@plymer has progressed, and is a natural variable for describ-
the injection of viral DNA into a host, DNA packing into a ing this problem. Due to its resemblance to the “reaction
shell during viral replication, and gene swapping throughcoordinate” for chemical processes, we calhe transloca-
bacterial pili[1]. Translocation also has practical applica- tion coordinate. Ifs changes very slowly, such that the poly-
tions in genetics as in cell transformation by DNA electropo-mer segments on both sides of the membrane have time to
ration[1], and in gene therapi2]. This has inspired a num- €quilibrate, the mean force acting on the monomer in the
ber of recentin vitro experiments, including the electric hole can be determined from a simple calculation of free
field-induced migration of DNA through microfabricated energy, and the translocation problem is then reduced to the
channelg 3], or through arx-hemolysin protein channel in a escape of a “particle’(the translocation coordinagtever a
membrand4,5]. Experiments are motivated by the possibil- potential barrier. In the following, we shall refer to this limit
ity to “read off” a DNA or RNA sequence by tracking its asBrownian translocationbut shall demonstrate that the re-

passage through a pofé—6). quired equilibration is not tenable for long enough polymers.

Translocation of a polymer involves both molecular con-  In many experimental situations the polymers are not very
siderations, such as the shape of the pore channel and #&g and the observed behavior strongly depends on the
interactions with DNA, as well as more macroscopic factors
such as the statistics and dynamics of the long polymer. It is
the universal features of the latter which are the focus of this
paper. While worming its way through the hole, the segments
of the polymer on each side of the membrane can “explore”
many possible configurations. The number of allowed con-
figurations actually is least when the polymer is halfway
through the hole, presenting an entropic barrier. In this re-
gard translocation resembles other entropically controlled
polymer systems, such as polymer trapping in random envi-
ronments[7—9], DNA gel electrophoresi§l0] or reptation
[11], where the geometry of the obstacles constrains the ki-

netics of the polymer. ) . FIG. 1. Schematic depiction of polymer translocation from the
A number of recent theoretical works have shed light onieft side of a membrane to its right sidd@hroughout the paper we
shall follow this convention for the direction of transpprihe
numbers of the monomer at the hole is denoted the “translocation
*Electronic address: kantor@post.tau.ac.il coordinate.”
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properties of the polymer and the pore. Thus introduction oequilibrium Boltzmann weight. If so, the dynamics is con-
some specific features into the channel propefti®s20, or  strained to reproduce the corresponding statistics. A simple
into interparticle potential21,22, may provide qualitative method to achieve this is to focus on the translocation coor-
explanations of the observed behavior. While the theoreticallinates, and to write down a stochastic Langevin equation
understanding of the experiments is growing, we are stilfor its evolution. This procedure, which we shall refer to as
quite far from quantitative understanding of many observedrownian translocationis the chief tool employed in most
featureq 23]. In this work, we restrict out attention to quali- analytical studieg12,15,19, and shall be reviewed in this
tative features of very long polymers that are independent o§ection.
the details of the pore or intermonomer potentials. Conse-
quently, we restrict ourselves to simple models. Furthermore, A. Unforced motion
since we are interested in contrasting the behavior of phan- _ _
tom polymers, in which the monomers do not interact with !N the absence of an external potential, the entropic con-
each other, with self-avoiding ones, in which monomers relfibutions to the free energy of the two polymeric segments
pel each other at short distances, we perform simulations iffSUlt in @ free energyr(s) = ykgTIN[(N—s)s] [12,15,19.
two-dimensional (2D) space, where such differences areNote that there is a decrease in the _number of possible states
more pronounced. as the_polym_er threads the hole, which can be regarde_d as an
The reduction of the motion of a large molecule to a&ntropic barrier. For phantom polymerandom walks y is
single-particle problem ignores the fact that the positions ofdual to 1/2, while for self-avoiding polymers it depends on
the monomers have strong correlati¢a4], leading to non- the dimensionality of space. -From this free energy, we can
trivial dynamical effects[11,24. In particular, in a dilute construct a Langevin equati®¥ —mdF/ds+ 5(t), where
solution of polymers in a good solvent, on time scales shortefn is a mobility coefficient indicating how easily the polymer
than the overall relaxation time of the polymer, the motion ofis pulled through the hole. To obtain the correct Boltzmann
monomers is characterized laypomalousdynamics[25,26]. statistics, the noisey(t) has to be uncorrelated at different
Not surprisingly, such effects are also present in translocatimes, with a variance equal tokgT.
tion. In a previous work we demonstratg2i7] that the scal- As demonstrated in Ref27], the corresponding Fokker-
ing of the translocation times with the number of monomersPlanck equation for the probability(s,t) can be maden-
has a power-law dependence which cannot be derived frolependendf N by a simple change of variablss—sN and
Brownian motion of a particle over a barrier, but rather fol-t—t/N2. Consequently, the average translocation time
lows from general scaling considerations. In this work, we(and its fluctuationsmust scale ad? for any v. In fact, a
focus on consequences of anomalous dynamics in the pregery similar distribution for the transit time is obtained by
ence of a force. ignoring the potential barrier complete(getting y=0). In
The rest of this paper is organized as follows. In Sec. llthis limit the translocation coordinate simply undergoes dif-
we review the limit of very slow translocation, in which case fusion, i.e., at time scales much shorter than typical translo-
the problem can be reduced to the Brownian motion of acation times we exped{s(t’) —s(t)]?)«=|t—t’|.
single coordinate. We demonstrate that the requirement of
equilibration breaks down for long polymers, especially in B. Pulling on the ends
the presence of a force pulling the polymer to one side. We : . .
alsopdemonstrate the imgortagce ofphgw such a force is ap- The ad"e'?t of optical tweezers has made it possible t_o
plied to the polymer, contrasting the cases of a polymermanlpulate single macromolecules. A common procedure is

pulled by the end, with one forced into a favorable environ—toNit;aCh dla;tr:ax t;alls to thF teﬁt?\ Ofb a" pglymetr.(SLIJ(;h as
ment. Lower bounds on the translocation times are obtaine , an €n 1o manipulate the balls by oplical tweezers

in Sec. Il by comparison with the unimpeded motion of a 8,29. While this is not the method commonly used in the

polymer. The |0ng time scale for equilibration of a forced translocation experiments, it motivates an interesting exten-

polymer is due to its change of shape, e.g., into a stretche?jion of the previous calculation. Let us imagine that through

sequence of blobs when pulled at one end. Exactly how thi h optical tweezer setup forcEs. a'ndF, are applied to t'he
change of shape is achieved through transmission of th Vo ends of the polymefperpendicular to the wall as in
force from one end to another is explicitly shown in Appen- ig. 1. . L .

dix A which solves this problem for a 1D phantom polymer. A po!ymer cgnflgurauon n _V‘_'h'Ch the ends are S(.aparated
Our other model system, the self-avoiding two-dimensionaPy & distancer gets an additional Boltzmann weight of
polymer, is discussed in Appendix B. The bounds from un-exp(-r/kgT). For a Gaussian polymer of lenghty integra-
impeded motion serve a convenient reference point for diSton over all locationsr leads to a contribution of

cussion of anomalous processes that are described in detail @ N(Fa/ksT)?] to the partition function 4 is a microscopic

tS_ec. I?]/' In E)hartlcular, wel_fmdbthhat Fhe ac'iﬁalItranslgcaﬂznlength scalg Restricting the integration ove?ronly to half
Imes have the same scaling behavior as the fower boun Sspace(as appropriate for the translocation probjedoes not

LIMITATIONS
ke TN(Fa/kgT)?2.

If the translocation process is sufficiently slow, at each The above argument can be generalized to a self-avoiding
stage the statistics of the segments will be governed by thpolymer by noting that due to dimensional considerations a
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force F should always appear in the combinatiBR/kgT, In the experiments of Melleet al. [5], translocation is
whereR is a characteristic size of the polymer, such as itsdriven by an electric potential difference between the two
radius of gyrationRy. Quite generallyR~aN”, with v  sides of an artificial membrane suspended in a liquid. It is
=1/2 for a phantom(non-self-interacting polymer, andv. commonly assumed that since the conductivity of the liquid
=3/4 and 0.59 for self-avoiding polymers in space dimen-s significantly higher than the conductivity of the mem-
sionsd=2 and 3, respectivel{30]. The contribution of the  brane, the liquid on each side of the membrane is an equipo-
force to the free energy can thus be written astential. The voltage drop then occurs only across the mem-
kgT®(FaN"/kgT). When the force is sufficiently strong to prane, and is experienced only by tteharged monomers
deform the polymer into a sequence of bl shall argue  moying through the porf23]. If so, the voltage difference is
later that this is the relevant regime for translocaljidhe  eqyivalent to the chemical potential difference discussed
free energy 1s expected to be linear M necessitating apove. However, the previous results with force acting only
@ (x)~x"". Such con&deraﬂcms thus imply a free energy,, the end monomers serve as a warning that the results are
contrlbuthn Oka.BT(Fa/kBT) ' !n t_he specific case of quite sensitive to where the force is applied to the polymer. It
translocation, adding up the contributions from the two S€9vvould thus be reassuring to carry out a more precise calcu-

ments leads to lation of the electric field in the vicinity of the pore, and how

1w v

N F_a it acts upon the monomers.
F(s)~kgT S(kB—T +(N—5s) kB_T (1)
The corresponding Langevin equation for the transloca- D. Limitations
tion coordinate is now The analytical procedure outlined in this section rests on
) the assumption that the two polymeric segments have come
S=A(Fi’”— FU)+ 5(t), (20 to equilibrium, so that the corresponding free energy can be

used to construct a Langevin equation. The minimal require-
where we have absorbed various coefficients into the paraninent is that the typical translocation timeshould exceed
eterh. Note that the average velocity has a nonlinear depente equilibration timereg, of a polymer. For a chain of finite
dence on the forces; in the casefof =0 growing asFY”.  sjze, it is always possible to achieve this by designing the
Consequently, the translocation time in such a setup shoulgore to have a large friction coefficient. In RéL5], it is
decrease with the applied force asN/FY”. Note that this  argued that this is the case applicable to the experiments of
expression breaks down femall forces where the typical  Ref. [5]. However, the equilibration time of a polymer de-
translocation time is controlled by the diffusive ﬂuctuations.pendS strongly on its length, scaling ag(N)=N?. As
The distinction between weak and strong force regimes has §scussed in the following section, the exponentis typi-
specific meaning in the context of polymers, and quantified,y )y |arger than 2 for Brownian dynamics of self-avoiding
through the Scaling combinatioh= FaNV/kBT. For weak po|ymers(and equa| to 2 for a phantom po]ymer
forces this combination is small, and the Squilibrium Poly-" Since typical transit times for unforced translocation scale
mer shape is not changed. For strong fortesl, and the asN?, itis possible to imagine that the formalism may apply
polymer becomes stretched. The same division applies t@ phantom polymers. Indeed there is some evidence of this
forces that are strong enough to overcome the diffusive chafrom numerical simulationg31], although with an inexplica-

acter of the translocation coordinate. bly large friction coefficient. The situation becomes worse in
the presence of a forcéeither imposed by pulling or a
C. Chemical potential difference chemical potential differenggin which case typical translo-

A more common situation for translocation is when thecation times are predicted to be proportionalNo In the
environments separated by the membrane are not equivalefdter case, the range of applicability of Brownian transloca-
so that the polymer encounters a chemical potential differtion is even further limited.
ence between the two sides. In this case, the leading contri-
bution to the free energy iF(s)=u,s+(N—s)x_, and 1. UNIMPEDED MOTION OF A POLYMER

the Langevin equation takes the form . . .
) q Since the collective dynamics of the passage of polymer

S=NAu+ p(t), 3 through the pore is hard to treat analytically, as a first step we
shall derivelower boundson the characteristic time scale.

with Ap=(u_—u.)>0. In this case the average translo- The key observation is that the restriction that the monomers
cation velocity is predicted to be proportionalAq:, leading ~ should sequentially pass through a hole in a membrane can
to typical exit times that scale a$/Au for large Au. It is only impede the motion of the polymer. Hence the time scale
possible to envision situations in which the polymer is forcedfor the polymer to travel the same distance in the absence of
(or hindered by a combination of both a chemical potential the wall should be a generous lower bound to its transloca-
difference and forces applied to the two ends. For the corretion time. In this section we shall thus explore the time scale
sponding Langevin equation, we merely need to add thdéor unimpeded motion of the polymer in the circumstances of
force contributions in Eqg2) and (3). interest.
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A. Unforced diffusion phantom polymer. In Appendix A this model and the corre-

In the unforced limit, the translocating polymer simply SPonding analysis are presented in some detail.

goes from one side of the membrane to the other by “diffu- o . o
sion.” In the process, the center of mass of the polymer C. Mimicking a chemical potential difference

moves a distance of the order of a typical size, say the gyra- |t js difficult to come up with an unhindered situation that
tion radius ofRy. How long does it take for a polymer to pest resembles the case of a chemical potential difference
move a similar distance without the constraints imposed bycross a membrane. Absent the restrictions imposed by the
the pore and the wall? In the absence of hydrodynamic inmembrane, there is now a force that is applied to a single
teractions, the diffusion constabtof a polymer is related to  monomer, at the spatial position where the membrane would
the diffusion constantD, of a single monomer byD reside. Unlike the previous case, the monomer to which the
=Do/N. Consequently, the time that a polymer needs toforce is applied now changes constantly. There is thus no
diffuse its own radius of gyration scales$™# [11]. (This incentive for a drastic change in the shape of polymer, and
is also the relaxation time of the slowest internal mode of aye assume that the scaling of the size remains the same, i.e.,
polymer[11], and is called the Rouse equilibration timéor ~ R~aN, independent ofA . At each moment there is a
self-avoiding polymers/>1/2, and the equilibration time is force of Au/a applied to the entire polymer, as a conse-
clearly longer than that obtained for translocation though gyuence of which its center of mass should move with a ve-

hole in the wall assuming Brownian translocation. The|ocity ycAu/N. We thus conclude that the time for such
Rouse time scale dfi**2” should thus be a lower bound to ynhindered motion scales as

the correct translocation time.
1+v

Ap -’

T(Ap)~ = ©)

B. Pulling on the end
ThNOW c;on&dfer_ &,: pol);nler thaF IS bﬁ'ngtﬁu"?d by _onetend. Note that to recover the equilibration time of the unforced
€ regime of Interest to us 1s when the force 1S stron olymer we have to seAuxN"" in the above equation.
enough to deform the shape of the polymer. The equilibriu

h fth | i< th tretohed f “blob hile this is the same scaling form as that of a force applied
shape of the polymer s then a stretched sequence ol DI0DS, the end, it is different from the weak/strong criterion that
[11]. The number of monomers per bldig is such that

i S ) ) would have been deduced on the basis of energefiga\
force acting on it is r_nargln_ally strong, and ol:_)tamed from~kBT). This is a reflection of the manner in which we in-
FaNEkaT' The typical size of each blob is thiBs  y,4,ced the unimpeded versidas a force, rather than a
”aNB“kBT”;' while the number of blobs isN/Ng  chemical potential differengeNonetheless, we still expect
~N(Fa/kgT)"". The overall length of the stretched chain is the velocity and hence the time scale in E5).to saturate for

now R(F)~Rg(N/Ng)~aN(Fa/kgT)"”"*. The mobility A, ~kgT, as explicitly demonstrated for the models consid-
of the center of the mass of a polymer of lenditlis propor-  gred in the following section.

tional to 1N, and since there is only a force applied to one
monomer, i_ts net velocity scales E$_N. The characteristic V. ANOMALOUS TRANSLOCATION
relaxation time is the same as the time scale of the polymer
moving a distance of order of its size, and hence behaves as Having established som&resumably generoudower
bounds, we now would like to focus on the true asymptotic
dynamics of translocation. Given the limitations of analytical
studies, the chief tool employed in this section is numerical
simulations. Interestingly, we find that the lower bounds ob-
(The same conclusion is obtained if we start with a globulaitained in the preceding section are actually quite restrictive.
polymer and then apply the force to one end, and wait until
the other end feels the forge. A. Subdiffusive behavior of unforced motion

Note that upon approaching the boundary between weak
and strong forces aF«N~", we regain the equilibration

7'equil(lz)w%:jiOCNZF_Z-*—MV- (4)

In a previous wor27], we made a detailed study of the
time NL*2” for unforced polvmers. However. the result in N dependence of the mean translocation time. One of the
poly ' ' central conclusions was that in the case of Brownian dynam-

Eq. (4) is only valid forN §Fa/kBT$.l.’ since for stron- ics of a self-avoiding polymer, the translocation time scales
ger forces, as we shall see in the specific models described n

the following section, the velocity of the monoméand

hence of the entire chairsaturates. r~NLt2v, (6)
Unimpeded motion of the pulled polymer thus places a

lower bound ofN? on the translocation time, far exceeding This is of the same order as the equilibration time of a poly-

the time scale €N) calculated in the preceding section. It mer of lengthN, and also demonstrates that the actual exit

may not be readily apparent how the force applied to one entime scales in the same manner as the bound established in

of the polymer is transmitted to the other end, and why théhe preceding section.

qualitative picture of blobs presented above is valid. There is The aboveN dependence of is inconsistent with simple

actually one limit in which the problem of pulling a polymer diffusion of the translocation coordinagét), reflecting the

by the end can be solved analytically, and that is for a 1Dconstraints imposed by the collective motion of the entire

021806-4



ANOMALOUS DYNAMICS OF FORCED TRANSLOCATION PHYSICAL REVIEW E59, 021806 (2004

' ‘ ' consequently influenced by the averaging ot/er(For ex-

10° 1284 ample, choosing a short averaging range may increase the
effect of the initial conditions. We performed averaging over
shorter ranges df and did not see significant differences in
the correlation functions.Second, for each value af we

can only include processes whose translocation time exceeds
t; consequently, the size of the ensemble decreases with in-
creasingt. (However, this effect is insignificant fdrseveral
times shorter than the mean translocation tinre Fig. 2 all
availablet’ are included, i.e., for each polymer the statistics

. was collected up to the moment that the translocation was
completed.

Since the values o cannot exceedl, as the time differ-
encet becomes of the order af, As? saturates, as is appar-
ent in the case dl=8 in Fig. 2. However, for times shorter
10° than 7(N), the results for different lengths seem to form a
t single curve. This instills confidence in the quasistationary
character of translocation on time scales shorter tha®n
the logarithmic scale the graph seems to have curvature for
t<<1000. This is probably a consequence of discreteness of
the model, since corresponding differencessiare smaller
than 5. For larger times the slope of the curve approaches

polymer. A related situation occurs for the fluctuations of a0-80, which clearly indicates the presence of anomalous dif-

labeled monomer in space, which are also anomalous anfySion, and is consistent with the expected value 2/(1

subdiffusive[25] on time scales shorter than the equilibration T 2¥), With v=3/4 for 2D self-avoiding walk$30]. Thus,
time. Following this analogy, we suggesté27] that the despite its finite duration, the translocation process at short

. 2 . .
short time fluctuations o(t) follow the anomalous diffu- Scales re/semb_les a stationary proo@gdeastAs is insen-
sion relation sitive tot’) which exhibits anomalous dynamics.

1

10

FIG. 2. Temporal fluctuations of the monomer numb&rcated
at the hole, averaged over the initial tifeand over 1000 inde-
pendent simulations, for polymers of lengtis-8, 16, 32, 64, and
128.

(AS?(t))~t2. 7) B. Pulling on the end

As discussed in Sec. Il, the polymer pulled by a fofce

For Egs.(6 d(7)tob istent, t obtalrs of . . . ~
or Egs.(6) and (7) to be consistent, we must o ° is relatively undistorted as long ds=F,aN"/kgT<1, and

orderN, whent of order r, leading to the exponent relation h ding t location ti ¢ diff i
{=1/(1+2v). Note that for a phantom polymep=¢ e corresponding translocation times are not very differen

~1/2, i.e., the anomaly disappears in this limit, and the pro-to those in the absence of force. Increasing polymer length at

cess becomes diffusivéThis differs from the corresponding fixed F . ultimately leads to a regime with>1, in which
motion of a labeled monomef25,26, which remains the polymer is expected_to be §tret.ched_|nto a sequence of
anomalous even for a phantom polyméfhis is consistent blo_bs. It is the latter regime WhICh' is of interest to us, and
with a detailed study of a three-dimensional phantom polyWhich shall be explored by examining the one- and two-
mer by Chernet al. [31] which concluded that the results dimensional polymer models introduced earlier.
may be interpreted in terms of diffusive motion of the trans-
location coordinate over a barrier. Such correspondence is
likely a fortuitous coincidence for phantom polymers, and Simulations are carried out with the model 1D phantom
even in this case, the value of the effective diffusion constanpolymer presented in Appendix A, starting with a polymer
could not be obtained from the geometrical features of thehat is equilibrated on ongay, lef) side of the “membrane”
model[31]. (a point on a 1D lattice with one end point held at the
To establish the anomalous nature(ahforced translo- ~ membrang32]. The “narrow opening” is implemented by
cation dynamics, we carried out Monte CafMC) simula-  allowing only sequential passagef the monomers across
tions on a model ofwo-dimensional self-avoidingolymers  the membrane, i.e., th&h monomer can move from the left
[32], described in Appendix B. Simulations in tweather  to the right only if (@ — 1)th monomer is already on the right
than thre¢ dimensions have the advantage of relative easeside. Conversely, th@th monomer may diffuse from the
and stronger differences from phantom polymers. We folvight side to the left, only if ther{+ 1)th monomer is on the
lowed the dynamics o$(t), focusing on the quantiths® |eft side. The first monomer of the chain is restricted to re-
=[s(t’ +t)—s(t’)]2 This correlation function is depicted in main on the right throughout the process. We study the dy-
Fig. 2, and was obtained by averaging oveof over 1000  namics of translocation as a function of the fofe@pplied
independent simulations fo¥=8, 16, 32, 64, and 128. Two to the first monomer. However, the results become indepen-
cautionary points must be made in considering this data: Theent of F when the reduced force=Fa/kgT exceeds unity,
first is that we have na priori assurance that this process is since it becomes very unlikely for the first monomer to move
stationary; the results may depend on botandt’, and backwards.

1. One-dimensional phantom polymer
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FIG. 3. “Snapshots” of a 128-monomer phantom polymer pass-
ing through a membrane in one dimension. Each line depicts th?
position x (in lattice unit3 of the nth monomer at a fixed time. un
Different lines correspond to times when the 20th, 40th , 120th
(bottom-left to top-right monomer crosses the membrdtiee thick
line atx=0).

FIG. 4. Logarithmic plot of the mean translocation time as a
ction of length for a one-dimensional phantom polymer with an
infinite force applied to one end. The circles represent passage
through an opening, while the squares represent motion in the ab-
sence of a membrane. Each data point represents an average over
1000 processes.

Figure 3 depicts a sequence of “snapshots” of a 128-
monomer polymer going across the membrane. Since thgonomer. Figure 5 depicts the distribution of translocation
max'mal separation between adjacent monomers Is two Ia1ETmes for a 128-monomer polymer at three values fof
tice spacings, the slopes of_the curves are limited by 2. Note. Fa/ksT. As f increases from 0.25 ta, the mean translo-
that for x>0 the polymer is almost maximally stretched,

while the x<<0 configurations resemble the initial random cation time dr'ops by less .tha'n one order of magnitude, and
the relative width of the distribution decreases somewhat.

walk state. There is also much similarity between the pmﬁlel\lote that oncd > 1 the first monomer always moves in the
of the polymer forx>0, and the steady-state conflguratlonsgorward direction énd the results become i)r/1dependerf1t of

of a polymer moving in the absence of the membrane, as™ ™ ) .
depicted in Fig. 14 of Appendix A. Figure 6 summarizes the results obtained for polymer

The results of averaging the translocation tifoeer 1000  !engthsN ranging from 8 to 128, and for a variety of forces.
realization$ are indicated by the circles in Fig. 4. The points Each point corresponds to an average over 1000 realizations.
appear to fall on a straight line in this logarithmic plot, with The figure depicts the scaled inverse translocation time as a
the slope of 1.930.01 from a least-squares fit. There is a function of the dimensionless forde= Fa/kgT. The vertical
slight upwards curvature, and the effective slope varies fronscale has been multiplied by'#’ to produce moderate col-
1.84 for points withN<128 to 1.93 for all the points, indi-
cating potential crossover effects persisting even [for
=512. From this data by itself it is difficult to determine the
ultimate slope. However, we can compare the results with the
times required to cross an imaginary membrére, unim-
peded diffusion This lower bound which was described in
the preceding sectiofand discussed in detail in Appendix A
leads to the mean passage times depicted by the squares in
Fig. 4. The extrapolated slope for this unimpeded motion is
indeed 2.00. Since the unimpeded crossing times are indeed

50 1
shorter, the asymptotic exponent in the presence of the mem-
brane has to be larger than or equal to(@therwise, for
sufficiently largeN the curves will intersect causing longer
times for passage if the membrane is abseme therefore
conclude that the translocation of a phantom polymer in 1D o r }
10°

should asymptotically scale &, saturating the bound ob- 10
tained previously.

100

number of cases

translocation time

FIG. 5. The distribution of translocation times for a 2D polymer
with N=128. Each histogram represents results from 250 indepen-

We next study the translocation of a self-avoiding poly-dent translocations for forcésa/kgT=0.25, 1, and= (from right
mer in 2D as a function of the forceé applied to the first to left) applied to one endThe horizontal axis is logarithmic.

2. Two-dimensional self-avoiding polymer
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0 1 2 3 4 5 FIG. 8. Logarithmic plot of the dependence of the translocation

Fa/k T time 7 on polymer lengthiN, when an infinite force is applied to the

end monomer. The line is a fit to a power-law dependence with
FIG. 6. Scaled inverse translocation time as a function of theexponent 1.875.

reduced forceFa/kgT applied to the end monomer, fad=8,

asymptotic convergence to this value. However, as far as we

can judge by analogy to phantom polymers, we nided be

lapse of data for differeri’s, although as explained further much larger than 1000 to see an exponent of 2.

on, we do not believe this to be the correct scaling factor in

the asymptotic regime. As expected, the curves saturate

whenf significantly exceeds unity. . When the environments on the two sides of the membrane
Note that all the points in Fig. 6 belong to the regime ;. different, the monomer at the pore experiences a force
wheref>1, i.e., when the shape of the polymer is expectechyshing it to the more favorable side. As explained previ-
to be different from equilibrium, and stretched. This is con-gysly, this form of forcing leads to yet a different form of
firmed in Fig. 7, which depicts configurations of the polymer agsymptotic behavior which is once more explored using our
in the process of translocation under the action ofrdimite  two numerical models.
force The front end of the polymer is quite stretched, some-
what resembling alirected random walk, suggesting that
self-avoiding interactions play a secondary role in this limit.
If the front part of the polymer controls the translocation
time, it should have the same scaling withas the corre-
sponding time for a phantom polymer, i.e., we expect

2 ; . _
N Figure 8 depicts the dependencerobn N; the effec plot are fitted to a straight line with exponent 1:46.01,

tive exponent in this range is 1.8FZ®.005. Although . :

o . although there is a slight upward curvature even [for
smaller than 2, it is close to the value of the effective expo-_ 512 Note that in the limit of lar hemical potential dif-
nent of a phantom polymer in this range of lengthsGiven y ge chemical potential dir
the bound presented earlier, it is reasonable to expeé?rence, the monomers that haye already cross_ed to the right

Side no longer play any role in the translocation process,
which is thus constrained by the dynamics of the monomers
remaining on the left side. In Sec. lll we argued that the
translocation time of annimpedeghantom polymer should
scale adN®?, since the leftmost monomer must travel a dis-
tance of ordeN? with a velocity of order IN. Thus 3/2
should be a lower bound for the exponent characterizing the
scaling of the translocation time with. By comparing this
limit with our numerical results, we conclude 3/2 to be the
true asymptotic form describing our simulations.

C. Chemical potential difference

1. One-dimensional phantom polymer

Figure 9 depicts theN dependence of the translocation
time 7 for a 1D phantom polymer under the influence of an
infinite potential difference, i.e., when the monomer at the
pore can only move to one side. The data on the logarithmic

FIG. 7. Configurations of a polymer of length=128, pulled
through a hole by an infinite force applied to its first monomer. The
circles, diamonds, and triangles represent the initial configuration, Figure 10 presents the distribution of translocation times
and at time¢ =60 000 and 120 000 Monte Carlo time steps. for a polymer withN =64 at several values of the dimension-

2. Two-dimensional self-avoiding polymer
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FIG. 11. Scaled inverse mean translocation time as a function of

reduced chemical potential differendeu/kgT, for N=8, 16, 32,
FIG. 9. Logarithmic plot of the mean translocation time as g4 and 128 P cuks

function of polymer length for a one-dimensional phantom polymer
subject to an infinite chemical potential difference. The solid line is

a fit to a power law with exponent 1.45. figurations of the translocating polymer to be different from

those of a polymer in equilibrium. To explore this difference,
in Fig. 12 we show a pair of configurations for an infinite

tions are quite wide—although they becotnelatively) nar- chemical potential difference. We see that fast translocation
q 9 y results in a higher density of monomers immediately to the

trrcl)wer with n:jcreasn:g&u, the width of .th(tehd'sl.t“btu“]?n IS ?cf .tright of the pore, which may in principal slow down the
Ae sime or e[ ‘ZS the average (iven :n f.’ Imtl' 0 ar(; inmini %qrocess.(Recall that in the case of phantom polymers the

p. AS expected, the average transiocation imes decreasg, o mers that have passed through the hole have no further
and saturate when u/kgT exceeds unity. The results for

different values ofs u/kT andN can be approximately col influence) Nevertheless, the whole process should still be
> VB e me " bounded by the corresponding time for passage of an unim-
lapsed by scaling with N*4° as shown in Fig. 11where y P g s g

peded polymer, as discussed in Sec. lll. For considerations of

each point represents an average over 1000 independegfs hong, the relevant time corresponded to motion of the
runs. The quality of the collapse is very poor, and we shall

argue thaiN'*®is notthe expected asymptotic power.
Since(with the exception ofA x=0) the points in Fig. 11
correspond to a strong force at the pore, we expect the con

less chemical potential differendeu/kgT. These distribu-

60 T

number of cases
1

20 | = :

0 .h'ﬂ
10 10° 10°

translocation time . i .
FIG. 12. Configurations of a polymer of lengith=64 crossing

FIG. 10. Distribution of translocation times of a 64-monomer a membrane from left to right under an infinite chemical potential
polymer subject to chemical potential differencesAgh/kgT=0, difference. Full and open symbols represent times=0f0 000 and
0.25, 0.75, and Zright to left). (The horizontal axis is logarithmic. 25000 Monte Carlo steps, respectively.
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motion. The curves are displaced along the vertical axis such that

FIG. 13. Logarithmic plot of the dependence of the translocationth® Position of the first monomer is at=0.

time 7 on polymer lengthN, for an infinite chemical potential dif- break down for long enough polymers; even more drastically
ference. The solid line is a fit to a power-law dependence with ’

exponent 1.53 when the polymer is pulled to one sid.e by a force. We argued
o previously[27] that the collective motion of the whole poly-
mer slows down the translocation to the extent that the cor-
. . g . responding dynamics is anomalous and subdiffusive. This is
a time scale growing as to a power of 1 » which in 2Dis gy piicitly verified in this paper by quantifying the temporal
L.75. . . . correlations of the fluctuating translocation coordinate. We
The optimal data collapse of the inverse translocation, i that there is a general theoretical framewi@8] for

times forN=<128 leads to an exponent 1.4&ith a rather  5nomajous dynamics of a single variable, which may be
poor data collapge Therefore, we extended our simulations profitably applied to this problem.

for the case of the infinit& u to larger values oN. Figure One of the objectives of this paper was to find how dy-

13 represents the dependence of mean trgnslocation time @& mical anomalies affect the motion of the polymer under
N, for polymer lengths up to 512. Data points Wkh<128  he action of a force. With this in mind, we also emphasized
cor_respond to averages over 1000 independent simulationg,at the method by which the polymer is forced is quite
while N=256 and 512 include 300 and 130 runs, respecimportant. In particular, pulling the polymer by one end leads
tively. The effective slope of the fit for data points below o stretched configurations, and slower overall dynamics,
N=128 is 1.45-0.01, while all the data points produce an compared to applying a chemical potential differefwaich
effective slope of 1.530.01. Also by directly measuring the 5, modify the densities on the two sifle&/hile pulling the
effective slopes between successive pairs of points we deflolymer by optical tweezers is not the currently favored
nitely see an increase, with the last pair of points giving amnethod for artificial translocation of biopolymers, for poten-
slope of 1.6@-0.03. However, the increase is very slow, andtjg| applications such as decoding the sequence, it should
the uncertainties are too large to enable a reliable extrapolgstfer a better controlled procedulevhether by itself or in
tion to largeN. By comparing the results to data obtained inconjunction with a voltage differenge

the simulations of phantom polymers we believe that even- To ynderstand the time scales involved in forced translo-
tually the exponent will reach 1.75; however, this will prob- cation, we initially provided what at first glance appear to be

leftmost monomer over a distance of sReN”, leading to

ably happen only foN significantly larger that 1000. quite loose lower bounds by analogyunimpeded motionf
a polymer, i.e., neglecting the constraints imposed by pas-
V. DISCUSSION sage of the polymer through a hole in a wall. We then per-

formed numerical simulations on two model systems: a 1D
Translocation of a polymer through a pore is intrinsically phantom polymer, and a self-avoiding polymer in 2D. Direct
a many body problem involving collective and cooperativeinterpretation of the numerical results was made difficult by
motion of monomers crossing a membrane. If the process igery large crossover effects which persist in the length scales
sufficiently slow, it is possible for the segments on the twoof 100—-1000 monomers accessible to numerical study.
sides to come to equilibrium, in which case the dynamics ofNonetheless, by appealing to the lower bounds found earlier,
the translocation coordinatéhe number of monomers on we concluded thatrather surprisingly the actual transloca-
one sid¢ is similar to Brownian motion of a single particle. tion times scale in the same way as in the limit of unimpeded
However, the assumption of equilibrium must necessarilynotion. Thus the constraints from the collective motion of
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FIG. 15. Scaled coordinateof the first monomer as a function FIG. 16. Scaled coordinateof the first monomer of a translo-
of scaled timet, for N=8, 16, ..., 512(right to left), in the ab-  cating phantom 1D polymer, as a function of the scaled tinfer
sence of a membrane. N=8, 16, ..., 512right to left).

the whole polymer turn out to be at least as important aghe chain. Independently of the details of the interactions of
those imposed by the requirement of passage through a hof@djacent monomers, long phantom polymers laaemonic

The experiments of Ref5] suggest that in the range of 11], in the sense that the probability distribution of the dis-
10-100 base pairs, the puiling velocity of single-stranded@nCelri—r;| between monomeisandj approaches a Gauss-
DNA through a nanopore is independent Nf but with a  1an for Iar.ge|.|—j|. In practice, such behavior qlready ap-
nonlinear dependence on the applied force. In R&f], we  Pe€ars for[i —j|~10, and on such a “coarse-grained” level
briefly speculated whether such behavior may be consistef@€ can view the polymer as consisting of monomers con-
with anomalies associated with polymeric constraints. Asnectgd by springs whose energy is proportional o (
demonstrated in this paper, such constraints result in time ;)" In this limit, certain aspects of phantom polymer dy-
scales(and hence pulling velocitigsvhich must depend on Namics can be analyzed analytically, and we can compare the
N for large enoughN. The only case where we observe a €xpected asymptotic behavior with the numerically observed
nonlinear force-velocity relation which is independenthof ~ dynamics. Such treatment provides both a better view of
is when shorthence equilibratédpolymers are pulled by a Crossover effects, a_nd_ produce_s 'some insights into the dy-
force applied to one end. namics of more realisti¢self-avoiding models.

We hope that these results encourage further experimental e employ a phantom polymer model in which the mono-
and analytical studies of forced translocation. In particular, ifNers are restricted to sites of a 1D lattice with spaeinghe
would be interesting to better characterize the manner iRlymer connectivity is implemented by requiring the dis-
which external forces act on the polymer, even in the case dnce between adjacent monomers not to exceed two lattice
a voltage difference across the membrane. Hydrodynamigonstants. An elementary MC step consists of randomly
effects, not considered in this paper, are also likely to play aRicking @ monomer and attempting to move it in a randomly
important role. Some of these effects can be included irselected direction. If an external forEds applied to the first
more realistic numerical simulations, although in that casdnonomer of the chain, then the probability to make a step in
one should keep in mind the rather long crossover times thdf'€ direction opposite to the force is proportional to

appear to be intrinsic to this process. exp(—aF/kgT). AMC time unit corresponds thl attempts to
move monomer$32].
ACKNOWLEDGMENTS We first performed simulations of polymer motion when

F—oo, in the absence of a membrane. Figure 14 depicts
This work was supported by the Israel Science Foundaseveral examples of spatial configurations in steady state,
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Foundation through Grant No. DMR-01-182114.K.). The resulting profiles can be explained analytically by noting
that in the Gaussian limit the equation of motion of a 1D
APPENDIX A: THE ONE-DIMENSIONAL PHANTOM phantom polymer is given by
POLYMER MODEL 5
X IX
Self-avoiding interactions are integral to understanding W:E* (A1)

the statics and dynamics of real polymers. Nevertheless, it is
useful to study one-dimensionphantompolymers, with no  where we have used dimensionless uhilistance in lattice
interactions between monomers which are not adjacent alongpnstants, and time in MC units, which leads teraonomey
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diffusion constant of order]land omitted prefactors of or- The above arguments suggest thatN)? should be a
der unity. The model used in the MC simulations has a finitdinear function oft/N2. Thus appropriately scaled plots of
stretchability, while a Gaussian chain can be stretched indefthe motion of the first coordinates should collapse for differ-
nitely. However, once the scaled forée=Fa/ksT becomes ent values ofN. The actual picture appearing in Fig. 15 is
significantly larger than unity, the dynamics becomes essermore complicated: while we see an approach to a single
tially independent of, as a backwards step of the end pointcyryve for the largesN, there are very strong finite size ef-
has negligible probability. Thus, instead of usifig->, we  fects for moderate values of. The results for crossing the
can get seff=1, which leads to the boundary condition jmaginary wall are surprisingly similar to those for translo-
dx/on=—1 at the beginning of the chain. For such a bound-;4tjgn of the phantom polymer through a héées described
ary condition we can easily find a stationary solution of Eq.;,, Sec. I\V), as depicted in Fig. 16Both plots are obtained
(A1) as by averaging 1000 translocation processé&$e linear be-
havior of these curves close to the origin confirms our ex-
(n—N)?, (A2) pectation that at short times the velocity is proportional to
t~ 2. However, for scaled variables around 0.5 the line has a

wherev = 1/N. Simulations of our model polymer in the ab- slight curvature, which distorts the apparent scaling relations,
sence of a membrane indeed confirm that the stationary stad creates the illusion of slightly different exponents.
velocity is proportional to M. Moreover, the actual shape of
the polymer in steady state, as depicted in Fig. 14, is similar
on average to EqA2). APPENDIX B: THE TWO-DIMENSIONAL SELF-AVOIDING
The solution in Eq(A1l) can also be used to understand POLYMER MODEL
the crossover to stationary motion, starting from a relaxed ) )
initial state. It is easy to see that the initial velocity of a point ~ We used a 2D lattice fluctuating bond polymer mdd]

to which the force is applied is of order unity. As time for MC simulations of a self-avoiding polymdB2]. The
progresses, this velocity decays tas’? until after time 7 monomers are placed on the sites of a square lattice, with the

~N?Z it reaches its finalstationary value of order IN. The ~ bonds between adjacent monomers restricted not to exceed
monomer at the opposite end does not feel the external forcd10 lattice constants. The excluded volume between mono-
in the beginning, and starts moving with velocity of order mers is implemented by requiring that no two monomers can
1/N after time 7. We also performed simulations of unim- approach closer than two lattice constants. The membrane
peded polymer motion mimicking the translocation setup, bywith a hole is constructed from a row of immobile monomers
considering an imaginary membrane located at posikon arranged in a straight line, with a three lattice constant gap
=0 which has no effect on the motion of monomers. Therepresenting the hole. Such a hole is small enough to allow
initial configuration was chosen by equilibrating the polymeronly a single monomer to pass through, thus enabling a
on one side X<<0), with the first monomer fixed ta=0. unigue identification of the monomerwhich separates the
Then an infinite force was applied to the first monomer, ancholymer into two segments on different sides of the mem-
its positionx was tracked as a function of time, until all the brane. An elementary MC move consists of randomly select-
monomers crossed t>0. For everyN, the results were ing a monomer and attempting to move it onto an adjacent
averaged over 1000 independent runs. In these simulatiorattice site (in a randomly selected directipnlf the new

the end point only needs to move a distance of ofélgr position does not violate the excluded-volume or maximal
~N*¥2to cross tax>0. Moving at a steady velocity of i/ bond-length restrictions, the move is performddelemen-

this would take a time of ordeX®? which is significantly tary moves form one MC time unit. The first monomer is not
shorter thanr. Thus the time~N? required for the last allowed to withdraw to the opposite side of the membrane.
monomer to start feeling the force sets the time scale for &ince we are investigating a nonequilibrium process, the ini-
polymer with a large force applied to its first monomer, totial conditions may play an important role. We chose an ini-
move a distance of order of its radius of gyration. The meatial state in which the first monomer was fixed inside the
suredN dependence of the translocation time is depicted byole, and the remaining polymer was equilibrated for more
squares in Fig. 4. There is a slight curvature in the logariththan the Rouse relaxation tinig1]. After such equilibration,

mic plot and the slope approaches 2{0@01, confirming the first monomer was released, and that moment was desig-
7~N?2. nated ag=0.

v

X(n)=vt+ 5
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