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Abstract. - We study the behavior of D-dimensional manifolds, embedded in d-dimensional 
space, in which the repulsive interaction between charges decays as llrd-". Tethered manifolds 
can be wrumpled., or <<flat.. In the crumpled regime the exponent v is calculated exactly, and y 
is obtained to O(E). In the flat regimes we discuss the coupling of phonons and undulations, and 
t h e  scaling of transverse fluctuations. For liquid manifolds with screening we obtain the 
dependence of the effective bending energy, and the resulting persistence length, on the 
screening length. 

There is currently great interest in understanding the behavior of surfaces, interfaces, 
and membranes [l]. In view of recent experiments on charged bilayer films [2], it is natural 
to inquire about the effects of long-range (e.g., Coulomb) interactions. One may generalize 
the theory of polyelectrolytes [3], by considering charged D-dimensional (D = 1 for 
polymers, D = 2 for surfaces, etc.) tethered surfaces [4,5] in which the constituent particles 
are permanently bonded to form a fixed network, moving in an external d-dimensional 
space. We find that at high dimensions the surfaces are crumpled and the radius of gyration 
R scales with the linear size L as R - L'. As indicated in fig. 1 for d > d, interactions are 
irrelevant, while for d, < d < d, the manifold becomes stretched and flat (R - L). In the flat 
regime we investigate the extent of transverse fluctuations, and find several qualitatively 
different behaviors. 

Configurations of a tethered manifold are described by {? (x)} where x is a D-dimensional 
vector denoting the position of a monomer in internal space, while ? (x) is the actual location 
of the particle in the external d-dimensional embedding space [5]. Subject to long-range 
repulsive interactions that fall off as W - " ,  a continuum Hamiltonian for the manifold is 

(1) 

with (V?)'= 2 (ahxi)' .  The first term is an entropic elasticity with a force constant K 

H = (K/2)  1 dDx (V ?)' + (&2) I dDxdDxr /?(x) - ? ( X ' ) I ~ - ~ ,  

i= l  
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Fig. 1. - Behaviors of charged (a = 2) D-dimensional manifolds embedded 
different regimes -are described in the text. 

in d-dimensions. The 

(proportional to kB T )  representing the gain in entropy of the manifold upon crumpling [4]. 
The long-range interactions of the second term describe Coulomb potentials for a = 2 due to 
a density 5 of immobile charges on the manifold. Implicit in eq. (1) is a lower cut-off a, 
representing the minimum separation of monomers. A realistic description of the manifold 
should also include the excluded volume (self-avoiding, steric) interaction 
v/2 dDxdDx‘ C‘d (7(x) - 7(x’)). This term, however, will be irrelevant in the determination 
of scaling behavior in all the different regimes. 

Under the change of variabiles x -+ Ax and ?+ A‘ 7, the elastic and repulsive terms scale 
as K -+ AYKK and z2+ ),Y2z2, with yK = D - 2 + 2v and yz = 2 0  - (d - a) v.  In the free 
<<Gaussian)> theory the elastic term is scale invariant and v = vo = (2  - D)/2. Such behavior is 
valid if y!$ < 0 (when the repulsive term is irrelevant), i.e. for d > d, a + 4 0 4 2  - D).  (Note 
that d ,  is simply shifted by a compared to the self-avoiding case [5].) For d < d, the 
interaction term is relevant and a renormalization-group (RG) analysis has to be performed. 
The procedure is similar to the corresponding polymer calculation [3] and easily generalized 
to D-dimensional manifolds [5]. A perturbative calculation in g - 2 K(d-a)’2 is divergent in 
d<d,,  and is reorganized into an RG by first integrating over separations 
a < /x  - y I < a(1 + OR), followed by a resealing by A = (1 + OR) as above. For the elastic energy 
we find K+ K),YK-Bg, where the constant B can be obtained by manipulations similar to the 
self-avoiding case [5]. Perturbatively there is no correction to the long-range interaction, 
but rather a short-range (self-avoiding) term (v - g2) is generated [3]. This is quite a general 
feature of RG with long-range interactions, and in fact to all orders in perturbation theory 
cr2 -+ 2 AY2.  A fixed point is obtained for y52 = 0, leading to the exact exponent v = 2Dl(d - a). 
This is valid so long as the newly generated self-avoiding interactions are irrelevant, and 
holds for a > 0. For x < 0, the self-avoiding term dominates and long-range interactions are 
irrelevant. Note that a t  the fixed point the elastic coefficient K ,  and the self-avoiding 
interaction v, are kept constant by the proper choice of g* and U*. These fixed-point values 
can be calculated perturbatively in an E = (d ,  - d)(2 - D )  expansion. We can also define in 
analogy to polymers an exponent y for the anomalous scaling of the manifold partition 
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function [5], i . e .  2 - LY-l, where L is the linear dimension. This exponent in the lowest order 
is given by y (a )  = 1 + [d*A(D*)/D* (d* - a)]  E ,  where (d", D*) is the expansion point on the 
upper critical line (d = d, in fig. 1). The constant A@*)  is the coefficient of a logarithmic 
divergence in ZD=SdDxdDx' l / I x - ~ ' 1 ~  and is independent of d and a! This constant has 
been discussed in detail elsewhere[5] and in general depends on the shape of the 
manifold [5,6]. For the case of linear polymers A ( 1 )  = 1/4 and y (a )  generalizes previous 
results for polymers[3] to arbitrary a. 

At a lower critical dimension dl=2D + a, the exponent v equals one. Below this 
dimension the manifold ceases to be crumpled and becomes asymptotically flat and 
stretched. (To the lowest order in ? and its derivatives, the continuum Hamiltonian will still 
have the form in eq. (1). However, the value of the constant K may now be related to the 
specific form of the bond potential.) The typical size of the manifold in this regime can be 
estimated by setting 7(x) = mx, Zz ({a,} are D orthonormal .in plane. vectors indicating the 
directions in d space for stretching of the manifold) in eq. (1). Minimizing the energy with 
respect to m yields m = mo = { [ ( d  - a)52/(2DMSdDx/xI"-d}1"d+"+2) , where the integral 
involves lower and upper cut-offs of a and L, respectively. For d > d, D + a the integral is 
dominated by short distances and m is finite. We denote this interval .elastically flat., as 
the manifold size is set by the competition between harmonic elastic and long-range 
repulsive forces. For d s d ,  the integral diverges at  large L indicating a total repulsive 
energy increasing faster than the volume of the manifold; mo will increase with L indicating 
that the repulsion term will tear apart any surface with asoft,, intermonomeric potentials. 
The manifold will maintain its integrity only if the monomer bonding potential has a rigid 
&retchability limit.. This interval is denoted arigidly flat.. For linear (D = 1) 
polyelectrolytes (a = 2) d, = 3; and closer examination indicates that in the borderline 
dimensionality of d = 3, the polyelectrolyte is actually <<rigidly flat.. 

The flat phases are characterized by broken rotational symmetry (due to the choice of 
{ &}). This leads to a complicated coupling of undulations (out-of-plane fluctuations) and 
phonons [7] (in-plane fluctuations). To e_xamine these modes in the .elastic flat. regime we 
set [8] "r (4 = mo [((x, + U, (x)) Zz + hi (x) A]. Undulations hi are along the (d - D )  orthonormal 
vectors { J ; }  which are orthogonal to the D vectors 2,. Substituting this ?(x) in (l), we 
obtain after some manipulations H = i7 + Ho + Hi, where i7 is the electrostatic energy of the 
uniformly flat hase. For small fluctuations the normal modes Z(q) and x ( q )  have energy 
costs Ho = f i D q  -x(q) r$(/h(q)l2 + I~(q)1~)/[2(2x)~], with x ( q )  = [(d - a) ~~/(2&-")1* 
.sdDp(2 cos(q.F)-2-q2p2/D)/(qAFd-u+2). Note that q2x(q)+0 as q + O ,  which is a 
consequence of the rotational symmetry of the initial Hamiltonian. The coupling between 
phonons and undulations come from an interaction term 

The joint sum of (6u) and (Sh)2 terms in the above_expzssion is similar to the appearance of 
the modified strain [7,8] iZ+ = [a, Ti, + 8, U, + 3, h, 3, h]/2 in short-range models, and is 
another consequence of rotational symmetry. In fact, although not explicitly included in eq. 
(l), a strain energy H,! = C dDx [ (. (a+)' + i/2 (iZJ2], is consistent with symmetries and will be 
present [ 7-91. 

We would like to calculate the exponent C controlling transverse fluctuations via 
( / & h i )  - L'. Under a rescaling x+ Ax, and h+ Ach (U+ h2'-lu, due to rotational 
symmetry) the interaction terms in Hi and H :  scale as H+ AY H with yi = 2 0  - d + a - 4 + 42; 
and y: = D - 4 + 41, respectively. Since y; = yi + d - D - a ,  the short-range interactions 
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always dominate in the elastic flat regime. The scale of long-wavelength fluctuations is set 
by the q + 0 limit of x(q). For d > de = D + cr + 2 (dot-dashed line in fig. l), cos (q . p) can be 
expanded in powers of q leading to a constant x(q) which is characteristic of bending 
energies in short-range models. This term is made scale invariant by the choice of 
< = <,, = (4 - D)/2. However, at such a fixed point the interaction term becomes relevant for 
D - 4 (y; > 0) and has to  be treated by a perturbative RG [9]. Indeed in the regime d > d, 
and D < 4  the exponent < equals to calculated for short-range models [9], while for D > 4  
< = o .  

For d < de (however, still in the <<elastic flat. regime) we can no longer expand cos (q p) 
analytically in powers of q in x(q), and indeed as q +  0, x(q) - Qd-a-D-2.  Such a <<bending 
constant. leads to transverse fluctuations scaling with an exponent 

<= 1 - D + (d - a)/2, (2) 

However, again at  such a fixed point H ;  grows with an exponent y; = 2(d - a) > 0, and an 
RG analysis[9] is necessary. We speculate that Hl does not generate corrections to  the 
nonanalytic bending constant. This would be similar to nonrenormalization of the interaction 
term in the crumpled regime which lead to  the exact expression for v .  We similarly 
conjecture that eq. (2) gives the exact value of the exponent <, but this statement should be 
checked by more explicit RG analysis. Note that < = 0 for d < d, = 2 0  + a - 2 (dashed line in 
fig. 1) which connects to the line d = d ,  at D = 4  (see fig. 1). 

In the <<rigid flat. regime (d < d,), we can no longer use eq. (1) as a basis for calculations. 
The bonds are stretched by the long-range forces to their limit and the surface becomes 
incompressible and isometric. We attempt to  evaluate fluctuations by estimating the energy 
to deflect a manifold of linear size L by a height h along a particular direction. This energy is 
easily seen to  scale as o2 h2 Lw-d+a-2, which equated to a thermal energy of kB T gives h - L' 
with < as in eq. (2). Note, however, that interference from fluctuations in other directions 
may indeed increase this bending energy and reduce the exponent <. A similar reasoning 
would indeed fail with short-range forces only, but we have currently no better argument to  
offer than possible <<freezing>> of phonon modes for <<rigid flat. manifolds. If eq. (2) is correct, 
then the exponent C is continuous at d = d,. Polyelectrolytes and charged surfaces for d = 3 
both fall in this regime. For surfaces < = 0 (superflat), while for polymers < = 1/2, i .e.  as if 
the polyelectrolyte performs a random walk in the transverse direction. 

The discussion so far omits the important effects of screening by counter charges. 
Treating these charges consistently, even for polymers, is quite cumbersome, and may for 
example lead to a nonuniform charge density o(x). Instead we shall briefly discuss a model 
potential with a screening length A ,  i . e .  a two-body potential V(r)  - cr2 exp [- idA1/rd-'. 
Within this model our previous results are valid only if A >> R. Otherwise, on length scales 
larger than A there is an effective .self-avoiding>> interaction and a crossover to short-range 
behavior. However, on length scales less than A the exponential cut-off can be ignored, and 
bending a unit of size 1 by h costs an energy cr2h21w-dia-2 as before. Since typical bending 
energy ( x  JdDx(V2h)2) scales as xh2 lo-*, there is a scale-dependent bending constant 

( I )  - $ p + a + 2 - d  , Therefore, upon coarse-graning to the screening length there is an 
effective bending rigidity of x, = c2hD+a+2-d. If the internal dimension D of a tethered 
manifold is sufficiently large it can still support a flat phase [B, lo], even in the absence of 
interactions, for'x, greater than some critical x,. I t  should therefore be possible to induce 
such a transition in D = 2 and d = 3 by simply changing the screening length. 

Since the above calculation of the bending energy induced by screened charges only 
assumes a fixed charge density, it can also be applied to liquid surfaces, such as soapy 
bilayers[2]. Indeed the estimate is more likely to be correct due t o  the absence of the 
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coupling between bending modes, present in tethered surfaces. Given the bending energy 
x , ,  the persistence length t: for orientational order is estimated as follows: due to thermal 
excitation of bending modes, typical orientational fluctuations over a distance t: scale as 

Since on the scale of a persistence length these fluctuations are of the order unity, 
5 - (x , /kB T)"('-'). Combined with the scaling of x ,  calculated in the previous paragraph, 
we obtain 5- (cr2/kB T)1'(2-D)AcD+a+'-d)ic'-D), while for the special case of D = 2, - - exp - [cg2 A4+"-d/k BT]. Note the persistence length t: is typically much larger than the 
Debye screening length A. This is indeed known for polymers, where 5 is the <<Odijk 
length. [ l l] ,  and our result can be regarded as a generalization of this result to arbitrary 
manifolds. For charged surfaces in d = 3, the persistence length is C - exp [ccr' A3/kB TI; 
where the numerical constant c is of the order of unity [12]. Once g2 A3 exceeds k B  T ,  this 
length becomes very large, and can quickly exceed the system size. The effects of the 
effective bending constant X = xo + cr' A3 should therefore by very pronounced in 
experiments. 

Finally we note that the usual Flory theory in the crumpled regime, obtained be equating 
<<typical>> elastic and interaction energies ( i . e .  ZJK = yr2) predicts vF = (D + 2)/(d + 2 - z) 
which clearly disagrees with the exact result. The manifold is always less crumpled than 
predicted by vF. This may be a consequence of the charges being fixed on the network 
skeleton. If we instead introduce a model of .conducting manifolds. in which the charge 
density is allowed to vary along the surface (again a possible consequence of counter 
charges), the dominant configurations may be closer to those described by Flory theory. 
Indeed if all the charges migrate to the boundary of an object of size R ,  there will be a 
repulsive energy of 0' LW/Rd-". Balancing this repulsion with the elastic attraction R2 L2-D, 
from the purely Gaussian manifold in the charge-free internal region, leads to R - LyF with 
the Flory exponent given above. 

The above, rather condensed, discussion indicates some of the interesting problems that 
arise in charged manifolds. For polyelectrolytes in d = 3 transverse fluctuations still scale as 
L1", while there are no such fluctuations for tethered surfaces. Indeed the most 
experimentally useful aspect of the discussion may be the dependence of the bending energy 
(and the persistence length) on the Debye screening length. Further experimental 
verification and theoretical analysis will be valuable. 

* * *  
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