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Abstract. - We use complete enumeration and Monte Carlo techniques to study self-avoiding 
walks with random nearest-neighbor interactions described by voqiqj, where qi = k 1 is a 
quenched sequence of <<charges>> on the chain. For equal numbers of positive and negative 
charges ( N ,  = N - ) ,  the polymer with v,, > 0 undergoes a transition from self-avoiding behavior 
to a compact state at  a temperature e = 1 . 2 ~ ~ .  The collapse temperature e(%) decreases with the 
asymmetry x = IN+ - N -  I / ( N +  + N - )  and vanishes at  x - 0.6. For vo < 0, a &point is present 
at all x. 

Polymers in a solvent are subject to both the hard-core repulsions between the monomers 
and somewhat longer-range (e.g. van der Waals) attractive interactions. At high 
temperatures T ,  the repulsive interactions are dominant, and the radius of gyration 
(root-mean-squared size) of the polymer scales with the number of monomers N as R, - N' , 
where v = 0.588 in three dimensions. On a discrete lattice, the hard-core interactions are 
usually modeled by self-avoiding walks (SAWS). The attractive interactions are then included 
by introducing a negative energy for each pair of monomers residing on neighboring lattice 
sites. As temperature is lowered, a point is reached (T  = e) where the repulsive and 
attractive interactions effectively cancel and the polymer behaves essentially as an ideal 
random walk [1,2] with v = 1/2. For T c: e, the polymer collapses into a compact object with 
v = 1/3. Numerous Monte Carlo (MC) and exact-enumeration studies of the &point have 
been performed (see ref. [31 and references therein). 

The collapse transition for heteropolymers is particularly interesting in view of its possible 
relation to the problem of protein folding [4,5]. While models based on random hetero- 
polymers significantly oversimplify the specificity and complexity of real proteins, they do 
bring in fresh perspectives from the statistical mechanics of random systems and spin 
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glasses [6-111. We shall consider polymers formed from two types of monomers, labeled by 
qi = 2 1, and subject to a short-range interaction 

where ri are the coordinates of the monomers. Do these interactions modify the collapse 
transition of heteropolymers described above? A perturbative answer is provided by noting 
that [12] the relevance of such interactions in d space dimensions is controlled by the scaling 
exponent yI = 1 - dv. The inhomogeneities are marginal in the compact state (U  = l /d),  and 
may cause the polymer to  choose a particular configuration dependent on the specifics of the 
sequence. The statistical properties of such states are the subject of considerable current 
interest [13,14]. Here we address the simpler question of how ZI affects the non-compact 
states. For ideal (non-interacting) chains with v = 1/2, ZI is relevant in d < 2: in d = 1 the 
polymer swells if like charges repel, and collapses to a point, if they attract [12] (see also 
ref. [15,16]). For all other non-compact states (v > l/d) weak interactions are never relevant. 
However, we shall demonstrate that strong interactions described by ZI do lead to the 
collapse of a self-avoiding chain. 

We investigate a discretized model in which the only homogeneous interaction is the 
repulsion caused by the constraints of self-avoidance. In the absence of randomness the 
polymer explores all SAWs with equal probabilities. A short-range random interaction is 
incorporated by assigning an energy vo qi qj to every pair of monomers, i and j, on neighboring 
lattice sites. We primarily focussed on vo > 0, for which like charges repel and opposite ones 
attract. This choice corresponds to strongly screened Coulomb interactions. The asymmetry 
in the amount of positive and negative charges is measured by x = IN, - N -  I / N .  We shall 
show that for moderate values of x the polymer undergoes a 0-transition and explore its 
properties. Negative vo describes a situation in which the like monomers attract, and unlike 
ones repel. A mixture of hydrophobic and hydrophilic monomers would exhibit such a 
tendency. In this case the &transition is present for all x. 

We used exact enumeration to study the properties of chains of up to L = 12 steps ( N  = 13 
monomers). We examined all spatial conformations of SAWs and all possible quenched 
sequences of charges. Taking advantage of rotation and reflection symmetries, as well as the 
degeneracies related to inverting the order of the sequence or the signs of all charges, we 
reduced the number of independent configurations to 4 162 866 for 2080 sequences, i.e. a total 
of roughly 8. lo9 possibilities. Since the number of cases grows by an order of magnitude 
when L is increased by unity, we could not go beyond L d 12. By comparison, the maximal 
chain lengths considered in enumeration studies of compact walks in d = 3 [14] and d = 2 [17] 
are about twice longer. In the two-dimensional case the number of spatial conformations is 
smaller by 2 t o  3 orders of magnitude, while in the former case only a random sample of 
quenches was used. Our results were supplemented by MC simulations for L 9 95, using the 
pivoting method [ 181. (The method provides excellent equilibration at high and intermediate 
temperatures, but does not permit equilibration of almost compact structures [ 191.) 

Exact enumeration provides a quite detailed picture of the energy landscape. Figure 1 
depicts contours of the density of states in the variables Rg" and E for a)  a homogeneous chain 
with q z  = 1 for all i, and b)  a particular quench that is approximately neutral. All energy 
levels are proportional to vo and fig. 1 corresponds to choosing vo = + 1. The corresponding 
densities for vo < 0 are obtained by simply reflecting the figures around E = 0. From such 
histograms, the behavior as a function of temperature is deduced as follows: at high T the 
system explores the region of highest density and moves to the lowest-energy states at 
T + 0. Both chains are SAWs at T + w with Rp" = 2.4. As T is reduced the uniformly charged 
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Fig. 1. - Contour plots of the number of states as a function of Ri (in lattice units) and energy (in units 
of vo) for a 10-step polymer, in a) uniformly charged case ( N ,  = ll), and b )  for one quench in an almost 
neutral case ( N ,  = 6, N -  = 5). The data bins are of size 1 on the energy scale, and size 1/4 on the Rp" 
scale. The smooth contour lines were created by interpolation at levels 0.5, 33, 129, 513, 2049, 8000, 
16 000, 32 000, 64 000. The full circles indicate the location of average Rp" as the temperature changes 
between 0 and m. 

chain expands; its scaling at T = 0 is still that of a SAW, as the only effect of the potential is 
to exclude configurations with chain segments on neighboring sites. This effectively 
increases the range of the excluded-volume interaction and swells R, by a finite factor. The 
random chain in fig. l b )  behaves quite differently, collapsing to a dense low-energy 
configuration as T+O. 

If the collapse of random chains is through a &transition similar to homogeneous 
polymers, we expect that at the transition Rg" - L as in ideal random walks. This expectation 
is confrmed in fig. 2 which depicts the T-dependence of (quench-averaged) R i / L  for T's 
ranging from 3 to 95. (The quench average is exact for enumeration data, and obtained from 
20 quenches in the MC simulations.) The curves intersect in the vicinity of the same point. 
Since for T e 8 the polymers are compact (Rg" /L - L - ' I3), while for T > 8 they are expanded 
SAWS (Rg" / L  - Lo.'7), the graphs representing larger L's show steeper crossover. Despite a 
slight L-dependence of the intersection points we can locate the &temperature with 
reasonable accuracy at T = 1 .2w0, but because of small chain lengths the crossover exponents 
cannot be determined reliably. We also examined the heat capacity per monomer which 
exhibits a sharp peak whose height increases with L. The position of the peak is close to T = 
= 0 . 5 ~ ~  for short chains and moves towards higher T's for longer chains. 

A &transition in a nonrandom heteropolymer was observed by Victor and Imbert in 
ref. [20]. These authors consider an alternating sequence (hence at x = 0) of charges, subject 
to long-range Coulomb interactions. Due to self-screening, the interactions are effectively 
short-ranged, and the resulting behavior is not dissimilar to the &transition of homo- 
polymers. Randomizing the sequence in a chain with Coulomb interactions, however, leads to 
a quite different behavior [21]. 

What happens to  the collapse transition if the charges on the chain are not exactly 
balanced (x > O)? Due to the excess of repulsive interactions, the chains initially swell on 
lowering temperature. Nevertheless, at sufficiently low temperatures, they may find some 
compact configurations of low energy. The &temperature is expected to decrease due to 
charge imbalance. Figure 3 depicts partial plots of R t / L  ws. T at x = 0, 1/2, and 516. The 
curves for x = 112 are qualitatively similar to x = 0, but with a lower &temperature. For 
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Fig. 2. - R," (in lattice constants) divided by the length of the walk L as a function of temperature, for 
N ,  = N -  . Dashed lines represent the results of exact enumeration for L = 3 , 5 , 7 , 9  and 11, in order of 
increasing slope. Full squares and circles, open squares and circles, and open triangles represent MC 
results for L = 9, 13, 23, 47 and 95, respectively. 
Fig. 3. - R," (in lattice constants) divided by the length of the walk L, for L = 95 (solid lines), L = 47 
(dot-dashed lines), L = 23 (dotted lines), and L = 1 (dashed lines). The groups of lines represent (from 
right to left) the values of x: = 0, 1/2, and 5/6. 

x = 5/6,  however, the curves do not intersect and there is no collapse transition; the chain is 
a SAW at  both high and low temperatures. An approximate phase diagram in the (x, 2') 
plane is constructed in fig. 4: the &temperature decreases monotonically with x, finally 
disappearing at x 2: 0.6. In the T + 0 and x + 1 limit, the action of minority charges is to 
form loops in the SAW of majority charges. This is somewhat reminiscent of a model of 
SAWS with periodically distributed <<stickers,, which attach in pairs [22]. Unlike our model, 
the minority stickers are not randomly situated and do not stick to the majority monomers. 
With such stickers, the collapse transition apparently persists all the way to x = 1. 

The phase diagram is different for vo < 0, i .e. when like charges attract. The limit of x = 1 
describes a homogeneous polymer with nearest-neighbor attractions. This is precisely the 
model used to investigate the collapse of uniform polymers, and is known to undergo a 
8-transition at  T = 3.7 Ivo I [23]. At the other extreme, when x = 0, the situation somewhat 

Fig. 4. - Phase diagram of a random polymer with vo > 0 in the plane of temperature (in units of U,,), and 
asymmetry x:. Vertical bars indicate estimated uncertainties in the extrapolated values of the 
0-points. 
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resembles the case of vo > 0. Although the model is not symmetric under changing of the sign 
of vo which corresponds to changing the sign of E in fig. 1, the energy landscape of fig. lb )  
appears approximately unchanged by such a reflection. Therefore, it is not surprising that 
there is again a collapse for x = 0 at  8 = 1.2 I v0 I . We verified that the model with vo < 0 does 
indeed have a collapse temperature for all values of x which interpolates between the above 
two limits. 

Most models of protein folding assume that a homogeneous short-range attraction leads to 
formation of a compact phase, whose details are then determined by the particulars of the 
sequence. In this work we have shown that even random sequences with no .built-in>> overall 
attraction can create a compact state. Related behavior is observed in models where instead 
of considering a random sequence, a random interaction is assigned to any pair of monomers. 
A replica analysis of such polymers indicates a similar tendency towards collapse, even in the 
absence of a bias in the average interaction [24,25]. Our polymers are not long enough to 
determine the critical behavior at  the collapse transition. (Even for uniform polymers, chains 
with L > 200 are needed to determine exponents with any degree of accuracy.) However, 
scaling arguments suggest that randomness is irrelevant for &chains, and that the collapse 
transition should be in the same universality as that of uniform polymers [26]. 

Some aspects of the model deserve further study. It is plausible that a random polymer 
initially collapses to  a dense-liquid (<<molten globule.) state, followed by a glass transition 
upon further cooling. (Studies that only enumerate compact states [14], as well as models 
with random painvise interactions[25], appear to find such a transition.) We could not 
investigate such transitions due to either limitations on polymer size in exact enumeration, or 
difficulties in equilibrating MC runs in the appropriate (low) temperature range. It would 
also be interesting to  investigate the behavior of polymers close to the point at which the 
&transition disappears. Detailed investigation of this point, however, requires use of much 
longer chains (L  = 1000) and methods which permit reliable equilibration of dense structures 
at  low temperatures. 
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