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Knot Probability for Self-Avoiding Loops on a Cubic Lattice
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We investigate the probability for appearance of knots in self–avoiding loops (SALs) on a cubic lattice. A set
of N–step loops is generated by attempting to combine pairs of N/2–step self–avoiding walks constructed by a
dimerization method. We demonstrate that our method produces unbiased samples of SALs, and study the knot
formation probability as a function of loop size. Our method produces knot probabilities slightly higher than
those obtained by Yao et al.[1] using a Monte Carlo method to generate loops.
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1. Introduction

Knots and links naturally appear in long poly-
mers [2], and play a prominent role in biological
systems and processes[3]. Examples include chro-
mosomes during cell division [4], knots in bac-
terial DNA [5], or knots in the native states of
proteins[6]. It can be shown rigorously that very
long self–avoiding loops are always knotted[7].
However, the theoretical proofs do not provide
the frequency of the knots, or the functional de-
pendence of their frequency on loop size. Quanti-
tative insight into this question was first provided
by a numerical study of random walks on a lat-
tice [8]. Excluded volume effects, or self–avoiding
(SA) interactions, are certainly crucial for cor-
rect description of polymers[9]; however, their
incorporation into numerical studies is not sim-
ple. Earlier studies considered continuum models
of self–avoiding loop (SAL) polymers with vary-
ing degrees of self–repulsion [10, 11], and demon-
strated that with increasing number of monomers
N , the fraction of unknotted loops decreases as
e−N/No . The characteristic size at which knots
appear is surprisingly large: It increases from
several hundred steps in the absence of self–
avoidance, to hundreds of thousands for strongly
SA polymers. Since the value of N used in typ-
ical simulations does not exceed several thou-
sands, for SAL one can assume that the probabil-
ity of an unknotted configuration simply decays
exponentially. The value of No can then be ex-

tracted by noting that for N � No the probabil-
ity of the knotted configurations is PN ≈ N/No.
Janse van Rensburg and Wittington [12] found
No ≈ 1.3× 105 on a face-centered cubic lattice in
a study of SALs withN ≤ 1600. A recent study of
SALs by Yao et al.[1] on a cubic lattice (on which
self-avoiding effects are more pronounced) with
N ≤ 3000 found No ≈ 2.5×105. Our results (ob-
tained using a different approach for generating
SALs) are similar to the latter study, although
we obtain slightly larger probabilities of finding
knots.

2. Loop-generating algorithms

Generating sufficiently large numbers of SALs
has been the main obstacle to the study of statis-
tics of knots in polymers. Static methods for cre-
ating SA polymers one at a time have the ad-
vantage of producing configurations that are in-
dependent of each other. If we do not require the
two ends of a polymer to meet, several methods
generate samples of “properly weighted” configu-
rations: For lattice or for continuum models with
“hard” potentials, this means that every config-
uration has the same weight. In the dimeriza-
tion algorithm[13], an N -step SA walk (SAW) is
created by generating two (N/2)-step SAWs and
attempting to concatenate them. (If the concate-
nated walk is self–intersecting, it is discarded and
the pair creation process is restarted.) The re-
sulting SAWs are properly weighted, i.e. each
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Figure 1. The probability that two N/2–step SAWs

with the same origin terminate at the same point (full

circles), and the probability of their forming a proper

SAL (open circles). (These results were obtained in

our simulations by including a 48–fold symmetry fac-

tor enhancement, as explained in the text.) The ratio

between the latter and the former, i.e. the proba-

bility that the loop formed by the N/2-step pairs is

self–avoiding (diamonds) as a function of N .

has the same weight. While this method is very
efficient[15], it is not well suited for generating
SALs: To produce a properly weighted 2N–step
SAL, we could first generate two N–step SAWs,
assume that they both start at the origin, and
check whether they do not intersect and end at
the same point creating a loop, discarding the pair
if they do not form a proper SAL. However, the
probability of two SAWs in d dimensions acci-
dentally terminating at the same point is propor-
tional to R−d ∼ N−dν , where R2 is the mean
squared end-to-end distance ofN -step SAWs, and
in d = 3 the swelling exponent is ν = 0.588 [16].
Full circles in the Fig. 1 depict this decay with N .
In addition, the probability that two such walks
do not intersect each other decays as N 2(1−γ),
where γ = 1.158 in d = 3[17], as demonstrated by
the diamonds in Fig. 1. Thus, successful forma-
tion of a three-dimensional SAL using this direct
method is proportional to N−2.08, as depicted by
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Figure 2. The solid line depicts the probability dis-

tribution for the end to end distance of a single self-

avoiding walk of length 256. The dashed line corre-

sponds to the “correct ensemble” in which two such

walks accidentally meet at the same position. In

Ref.[18], the former ensemble is used to generate in-

stances of the latter, weighting the resulting config-

urations with the appropriate bias. The full circles

are the distribution of the end-to-midpoint distance

of actual, successfully generated, 512–step SALs in

our dimerization procedure.

open circles in Fig. 1.
To circumvent the problem of the rarity of cases

where two SAWs starting from the origin termi-
nate at the same point, Chen suggested [18] ac-
cumulating lists of SAWs. Whenever two SAWs
in the list have the same end-to-end distance,
they are rotated to make their endpoints coin-
cide, thus producing a loop. Keeping the informa-
tion on large numbers of SAWs is computationally
memory–intensive, and this factor prevents appli-
cation of the method for very long polymers. A
more serious concern is that the ensemble of gen-
erated loops is biased: The solid line in Fig. 2
depicts the probability distribution of the end-to-
end distance r for 256-step SAWs; the dashed line
corresponds to the subset of cases where a pair of
SAWs has the same end–point. The latter is the
correct ensemble for loops, while the former is the
ensemble produced when accumulated SAWs are
rotated and linked. This distinction in weight
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(bias) is well-known, and is properly corrected
in Chen’s algorithm. However, as in all bias-
corrected methods, while the expectation value
of a desired quantity is correctly reproduced, the
variance of this quantity increases with system
size. Essentially, bias–corrected methods attempt
to reconstruct one distribution from a tail of an-
other distribution; the distributions moving fur-
ther apart with size. Fortunately, as can be seen
from Fig. 2, for moderate values of N the distri-
butions are not very different, and good results
were obtained in Refs. [10, 11] by this method.
Large memory requirements limit the use of the
method to chains of moderate length.

Dynamic algorithms rely on Monte Carlo (MC)
methods in which the shape of a polymer chain
changes with time as a result of a possible set of
deformations. In the pivot algorithm, a segment
of the chain is chosen randomly, and one of several
symmetry operations (such as rotations around
pivot point(s)) is performed on it. This method
was originally developed for linear polymers[14],
and has proven to be extremely efficient in this
context[15]. Since a randomly chosen segment is
typically a significant portion of the entire chain,
there is fast equilibration of large-scale properties
such as the radius of gyration. The algorithm
was successfully adapted to loops [19], and used
to study knots [12]. Even higher efficiency was
achieved by allowing fluctuations of the length of
the polymer [20]. As in all MC methods, cor-
rect weights of configurations are assured in suf-
ficiently long simulations. In practice, however,
the configurations may be correlated. In partic-
ular, the correlation times for the persistence of
a specific knot may significantly differ from the
correlation times of large-scale geometrical fea-
tures. Cognizant of this difficulty, Yao et al. [1]
sampled the system at time intervals significantly
exceeding the decay time of geometrical correla-
tions, and verified that the times of appearance of
knots behave like in a Poisson process. Our study
provides an independent confirmation of the re-
sults obtained by the pivot method.

In this work we employ a direct unbiased ap-
proach to generating (2N)–step SALs. We first
use successive dimerizations to generate two N–
step SAWs, and then check whether (if starting
from the same origin) they form a SAL. As dis-
cussed before, the probability of successful pair-
ing of two SAWs decays as ∼ N−2.08; this in-
cludes the rejection probability that two segments

of a formed loop intersect. We find that the
latter probability has only a weak dependence
on the size of the loop. Indeed, the distribu-
tion of the distance between the origin and the
128th monomer in 256–step SALs, depicted by
full circles in Fig. 2, practically coincides with the
probability distribution (dashed line) of generat-
ing loops from two SAW segments, irrespective of
their mutual intersections.

The small probability of two SAWs forming a
loop can be enhanced 48-fold, by taking advan-
tage of symmetries of the lattice to consider only
SAWs whose end–point coordinates ~r = (x, y, z)
satisfy the relations x ≥ y ≥ z ≥ 0. This is
achieved by generating a regular N -step SAW,
and then performing the following transforma-
tions: If the coordinate x of the end–point is neg-
ative, the walk is reflected with respect to y − z
plane; and similarly for the other end–point co-
ordinates. If the end–point has x < y then x and
y coordinates are interchanged along the whole
walk; with corresponding interchanges for other
pairs of axes. As a result of these transformations,
we reduce the space in which the end–point can
be located by a factor of 48, and thus increase the
probability of forming a loop. In continuum, such
reduction of space does not introduce any bias,
since each SAW in the allowed subspace corre-
sponds to 48 SAWs in the original space. This is,
however, not true for SAWs ending on the bound-
aries of the allowed subspace; e.g. there are only
24 SAWs with x = y > z > 0, and consequently
loops created by SAWs ending at such points are
under–represented by a factor of 2. In contin-
uum, configurations with x = y have zero mea-
sure, but on discrete lattices a finite fraction of
loops have this property, thus, creating a slightly
biased sample. Since this is a boundary effect, it
decreases with the inverse linear size of the space
considered, i.e. it will be proportional to 1/R.

3. Results and discussion

The direct method is quite efficient for gener-
ating small loops. The minimal (trefoil) knot on
a cubic lattice consists of 24 steps[21], and the
probability of its occurrence is extremely small.
For N = 64, we had to examine 510 million pairs
of 32–step SAWs in order to find 1.4 million SALs,
out of which 27 formed a trefoil knot of the type
depicted in Fig. 3. At this point the probability to
have a knot is 0.000022± 0.000004. We used the
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Figure 3. A trefoil knot in a 64–step SAL on a cubic

lattice.

Alexander polynomial[22, 23] (at the value of its
argument equal to -1) to determine the presence
and type of a knot. Since almost all observed
knots were trefoils, and very few more compli-
cated knots were encountered, this invariant suf-
ficed for our purposes. The limiting factor in our
simulations was computer time, and we could not
go beyond N = 2048, for which several months
of CPU time were necessary to reach sufficient
accuracy. Already at N = 1024, the probabil-
ity to form SALs dropped to 10−5, even after the
48–fold enhancement of the sampling, and it is
obvious that this algorithm is significantly slower
than pivoting or biased sampling methods. While
the correction to bias in sampling symmetric con-
figurations was important for N = 64, it became
negligible for N ∼ 1000.

Fig. 4 depicts our results for the probability pN
of having a knot in a SAL of length N . The cur-
vature in the results for this range of values of
N prevents a reliable extraction of No by a lin-
ear fit. Our last three ponts are slightly higher
that the similar points in the results of Yao et
al.[1]. In particular, result of Yao et al. is by
1.7 standard deviations lower than our last point.
Statistically, this can occur with probability 0.1.
If we take into account also discrepancies between
lower points the assumption that these are acci-
dental (statistical) differences becomes even less
likely. We also note that out of the 59 knots de-
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Figure 4. Full circles depict the probability that

an N -step SAL forms a knot. Error bars indicate

one standard deviation. For comparison, open circles

show the results of Ref. [1].

tected for N = 512, only two were not trefoils,
consistent with the results of Ref. [1].

In conclusion, we used the most direct method
for generating an unbiased ensemble of SALs on
a cubic lattice (up to symmetry factors). The
method does not require large memory, but is
very time consuming. While quite efficient for
small and moderate sized SALs, it is limited to
loops of few thosand steps, at which the probabil-
ity of forming a knot is around one percent. While
the efficiency of the method is significantly lower
than pivot algorithms, for small and moderate Ns
it can be used verify the results of other meth-
ods. Our results slightly deviate from those of
Ref. [1]. In order to understand the origin of the
differences larger samples, and largerN should be
used, when faster computers become available.

4. Acknowledgements

This work was supported by US-Israel Bina-
tional Science Foundation (grant 1999-007), and
by the National Science Foundation (grant DMR-
01-18213).

References

[1] A. Yao, H. Marsuda, H. Tsukahara, M. K. Shi-
mamura, and T. Deguchi, J. Phys. A 34, 7563
(2001).

4



Knot Probability for Self-Avoiding Loops on a Cubic Lattice

[2] K. Mislow, Introduction to Stereochemistry, Ben-
jamin, New York (1965); G. Schill, Catenanes,
Rotaxanes, and Knots, Academic, New York
(1971); D. M. Walba, Tetrahedron 41, 3161
(1985); Catenanes, Rotaxanes and Knots, edited
by J.-P. Sauvage and C. Dietrich-Buchecker,
VCH, Weilheim (1999).

[3] H. L. Frisch and E. Wassermann, J. Am. Chem.
Soc. 83, 3789 (1961); M. Delbrück, in Mathe-
matical Problems in Biological Sciences (Proc.
Symp. Appl. Math. 14, 55 (1962)), edited by R.
E. Bellman.

[4] B. Alberts, K. Roberts, D. Bray, J. Lewis, M.
Raff and J. D. Watson, The Molecular Biology
of the Cell (Garland, New York, 1994).

[5] V. V. Rybenkov N. R. Cozazarelli, A. V. Vol-
ogodskii, Proc. Natl. Acad. Sci. USA 90, 5307
(1993); S. Y. Shaw and J. C. Wang, Science 260,
533 (1993).

[6] W. R. Taylor, Nature 406, 916 (2000); R.
Takusagawa and K. Kamitori, J. Am. Chem.
Soc. 118, 8945 (1996).

[7] D. W. Sumners and S. G. Whittington, J. Phys.
A 21, 1689 (1988); N. Pippenger, Discrete Appl.
Math. 25, 273 (1989); Y. Diao, N. Pippenger and
D. W. Sumners, J. Knot Theory Ramifications
3, 419 (1994).
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