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We study the statistical mechanics of two-dimensional surfaces of fixed connectivity embedded in
d dimensions, as exemplified by hard spheres tethered together by strings into a triangular net.
Without self-avoidance, entropy generates elastic interactions at large distances, and the radius of
gyration Rg increases as (InL)Y2, where L is the .inear size of the uncrumpled surface. With self-
avoidance Rg grows as L?, with v =4/(d +2) as obtained from a Flory theory and in good agree-

ment with our Monte Carlo results for d = 3.
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There is presently considerable understanding of
properties of random walks and polymers, obtained
through many experimental and theoretical methods.!
It is therefore natural to generalize the problem from
one-dimensional polymers to two-dimensional (2D)
surfaces, and there are indeed many recent studies of
random surfaces.2-® However, in contrast to polymers,
there is not a single universality class encompassing all
types of surfaces.®> Most studies have focused on ran-
dom surfaces related to high-temperature plaquette ex-
pansions of lattice gauge theories.23 These surfaces
are highly ramified, and closely resemble branched
polymers.2>% But for describing configurations of
surfaces commonly encountered in nature such as
sheets of covalently bonded atoms, or of polymerized
lipid surfaces, a more natural starting point is to con-
sider possible deformations of a fixed network of pla-
quettes,4 or of particles placed at the sites of such a
network. These latter surfaces are characterized by a
fixed internal metric® (e.g., a triangular network), and
to distinguish them from other types of surfaces they
will be referred to as ‘‘tethered,”” or “fixed-
connectivity,”” surfaces. If there are mobile disclina-
tions (i.e., points of fivefold and sevenfold coordina-
tion in a triangular net, or threefold and fivefold coor-
dination in a square net), then the internal structure of
the surface will be ““liquid’*? and it may resemble more
the former random plaquette surfaces.

In this Letter we report some results for surfaces of
fixed connectivity. A simple example of such surfaces
is a collection of hard spheres tethered by strings of
finite extension into a 2D triangular net, embedded in
d-dimensional space. In the absence of self-avoiding
(SA) restrictions, we find that at large distances the
surface behaves elastically, as a result of entropic ef-
fects. The analogous result for polymers follows from
simple random-walk ideas.! For tethered surfaces, we
demonstrate this important result via a simple real-
space rescaling procedure, and by direct numerical
Monte Carlo (MC) simulation. Whereas in the ab-
sence of self-avoidance the radius of gyration Ry
grows with the linear (uncrumpled) size of the surface
L as RZ~InL, for a SA network it increases as
R~ L*® A Flory theory! gives the estimate vg

=4/(d+2), in good agreement with our numerical
simulations of the network embedded in three dimen-
sions (3D). We briefly discuss the static and dynamic
properties of these surfaces, and their applicability to
physical systems.

Consider a system of particles connected to form a
triangular 2D lattice, and embedded in d-dimensional
space (the precise 2D lattice is not important, as long
as the connections between its sites are fixed). Each
particle is labeled by a 2D internal coordinate
x=(x1,x,) with discrete x; and x, denoting its place
on the network. Its actual location in the embedding
space is described by the d~dimensional external coor-
dinate r(x;,x,). The Hamiltonian with pairwise near-
est-neighbor (nn) interactions is
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Since the SA restrictions between distant parts of the
surface are ignored at this stage, Eq. (1) describes a
phantom network. The statistical mechanics associated
with Eq. (1) can be solved exactly for a Gaussian po-
tential ¥ (r)=3Kor>. The mean value of [r(x)
—r(x")]?, for example, grows as (d/@/3K;)In|x
—x’|. Gross* has studied a related model with an elas-
tic energy associated with changes in the areas of ele-
mentary triangles. Since Ré in the latter model also
grows logarithmically the two models appear to be in
the same universality class.

The large-length-scale behavior for other potentials
V(r) is less obvious. For (linear) polymers the Mar-
kovian nature of the chain enables calculation of the
long-wavelength properties.! Unfortunately, surfaces
cannot be solved in a similar manner, and we must
resort to more approximate techniques. One possible
rescaling of the network is via the Migdal-Kadanoff
bond-moving approximation for integrating out the in-
termediate particles.” According to this procedure,
after rescaling of the internal coordinates by a factor
b, the external potential V renormalizes to V’
=D(bD (bV)), where D(V) is the dual potential ob-
tained by a Fourier transformation as

e~ DV K) EJ' dir ek T= V(N
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Any Gaussian potential is invariant under this trans-
formation, indicating a fixed line. We found numeri-
cally that a variety of potentials (including the “‘rigid
rod” potential which forces the neighboring points
to remain at a fixed distance, and the hard-
sphere—and—string potential which will be discussed
later) converge to the Gaussian fixed line under renor-
malization. The number of iterations of the transfor-
mation necessary to approach the Gaussian fixed po-
tential defines a persistence length for the surface,
while the renormalized spring constant K provides a
measure of the large-distance entropy-generated elasti-
city.

Going beyond the approximate rescaling of the po-
tential, the asymptotic Gaussian behavior was con-
firmed numerically for a system of hard spheres of
unit diameter connected by strings of maximal extent
V3 lice,, V(r)=0 for 1 < r <+/3, and o otherwisel,
embedded in 3D. This surface model closely resem-
bles the standard models used to simulate linear poly-
mers.!? Since our potentials do not introduce an ener-
gy scale into the problem, the results are independent
of temperature, and the free energy is solely due to
entropy effects. Such potentials may be expected to
generate small persistence lengths, and thus reduce
the crossover effects. The configuration space is sam-
pled by use of the MC (or *‘Brownian dynamics’”)
method!!: During a “‘basic time step’® we attempt to
update the position of each atom by adding a vector of
length s with randomly chosen direction to its current
position. The move is accepted only if the new posi-
tion of the atom is allowed by the potentials. We use
s=0.2, for which about half of the attempted moves
are accepted. We perform the MC simulations for
L x I parallelograms (in lattice units) with free edges,
cut out of a triangular lattice with L ranging from 2 to
16 for phantom surfaces, and from 2 to 11 for SA sur-
faces (see later). Because the MC procedure generates
a highly correlated sequence of configurations, the ac-
tual sampling of configurations is made only every
o=L?%s? time steps, and the total length of each
simulation is 1007y. The time 7¢ is proportional to the
Rouse relaxation time (see Sect. VI in Ref. 1), during
which the free surface ‘“‘forgets’ its initial configura-
tion. Thus, for phantom surfaces we sampled com-
pletely independent configurations. The average R2
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FIG. 1. Semilogarithmic plot of RZ of the free surface

(open circles) and of Ky (solid circles) vs L.

of such a surface is depicted in Fig. 1 as a function of
its linear size L. The initial slope of the graph is some-
what large, because the hard-core repulsion between
the nn’s still has a noticeable effect on the overall
behavior. Eventually, the curve approaches a simple
logarithmic behavior as in the Gaussian model. Figure
1 also depicts the ratio between the measured RZ and
that of a Gaussian surface of the same size with
Ko=1. This ratio approaches a constant, confirming
our expectation, with effective force constant Kj
==(0.63. The approximate rescaling procedure outlined
in the previous paragraph gave Kz =0.7, and a per-
sistence length of about 8 for this potential, both in
agreement with the MC results in Fig. 1. Higher-order
interactions, such as those embodied in bending ener-
gies,'2 complicate both the rescaling calculation and
the numerical simulations. On the basis of universali-
ty, however, we expect these factors to only modify
the persistence length and the force constant, but not
to alter the essential appearance of entropy-generated
harmonic forces at sufficiently large distances in phan-
tom fixed-connectivity surfaces.

Our next step is to consider more tangible surfaces,
with self-avoidance. We first attempt a continuum
description of the problem, by generalizing the Ed-
wards model'® for polymers. The partition function Z
is obtained by summing over all configurations of the
surface r(x) (the 2D internal coordinate x is now con-
tinuous), as

(2

where (Vr)2=(9r/dx;)2+ (81/9x,)? represents the continuum version of the Gaussian potential. The elastic
coefficient K results from the previously described coarse graining, while the interaction v measures the “‘excluded

volume”’ as in the case of polymers.!

We can carry out a perturbation expansion in v 14 about the phantom surface.

To the lowest order, the mean value of the squared distance between two points x and x’ separated by L along the

internal coordinates is given by

(Ir(x) —r(x)1?) = d“‘L
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Up to an unimportant coefficient the cutoff length L’
is equal to L. The distance increases with v as expect-
ed, but the perturbation term diverges for large
L'~ L. By contrast, for polymers a similar expansion
is well behaved above d=4,"1* allowing a systematic
expansion in e=4—d Equation (3) suggests that
self-avoidance can only be neglected for elastic sur-
faces when d = oo, in agreement with the observation
of Gross?* that the Hausdorff dimension of the nonin-
teracting surface is infinite.

Divergent perturbation theory implies a nontrivial
scaling that can be studied by a Flory-type approxima-
tion.! Consider a surface of internal size L, occupying
a region Rg; in d-dimensional space. The entropic en-
ergy according to Eq. (2) scales (up to logarithmic
corrections) as —;-KRGZ, while the self-repulsion energy
scales as vL%/ R¢. Balancing the two energies we find
R~ (u/K)V @D LVF with ve=4/(d+2). (For a
related calculation see Ref. 5.) In any case, we expect
that the exponent v is bounded from below by 2/d
(maximally compact surface), and from above by 1
(maximally stretched surface).

To test these predictions, the MC simulations were
repeated with SA restrictions (centers of two spheres
cannot come closer than their diameter). The maxi-
mal string extension of /3 ensures complete impene-

FIG. 2. Shape of the SA surface for L =11. For clarity,
the sizes of the atoms were taken to be 31- of the actual range
of the hard-core potential. Bonds indicate the nn atoms
between which the string potential acts. Bonds located at the
boundary of the parallelogram and the corner atoms are
shown in black.

trability of the surface. A typical configuration gen-
erated by the simulation is plotted in Fig. 2. To study
the scaling properties of these surfaces, the mean
squared radius of gyration (Fig. 3, inset) and the
Fourier transform of the two-point correlation func-
tion S (k) were examined. The structure factor

S(k,L) =7(1/L2) 2 (eik-[r(x)—r(x')]>

’
X, X

satisfies the scaling form S(k,L)=S(kRg)
= S(kL¥).1! Indeed, as indicated in Fig. 3, the mea-
sured S(k,L) for different values of L all collapse into
a single function, when plotted against the scaling vari-
able ¢ = kL" with v =0.83 +0.03. For intermediate g
the scaling function S(g) behaves as ¢~ %”, and from
the slope in Fig. 3 we estimate v=0.77 £0.03. Note
that the data for L =4 in Fig. 3 suggest that the per-
sistence length in the SA surface is actually smaller
than in the phantom case (Fig. 1). To check the va-
lidity and the accuracy of the procedure, we repeated
the MC calculation for a single chain of atoms (regular
polymer). The results of that simulation are also de-
picted in the inset of Fig. 3. For the polymer we ob-
tain v =0.64, which overestimates the known value of
v, but is reasonable in view of the short chains con-
sidered. For SA surfaces our overall estimate is a
value of v=0.80 3:0.05, where the error bars indicate
our subjective assessment of the possible systematic
errors. This result is in good agreement with the value
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FIG. 3. Logarithmic plot of the structure factor S as a
function of g =kL*, with v=0.83. (Some overlapping data
points have been omitted for clarity.) Inset: logarithmic
plot of RZ of the SA surface (solid circles) vs L. Symbol
sizes are equal to the standard deviation of the RZ. Analo-
gous results for a linear chain are also shown (open circles).
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of vF=%, thus confirming the accuracy of the Flory
approximation and the validity of Eq. (2).

As pointed out earlier, for phantom surfaces the
Rouse relaxation time 7g (L) increases as L2 The SA
restrictions considerably increase 7, and the indepen-
dence of the configurations generated by MC simula-
tions had to be checked directly by calculation of vari-
ous autocorrelation functions (cf. Ref. 11). As in
polymers, the relaxation time is bounded by the *‘rep-
tation” time rrep(L), for the surface to escape from a
confining cage, that grows as L* (this is just an upper
bound, and ‘“‘reptation” is probably not a relaxation
mechanism for surfaces). One expects that the relaxa-
tion time is now (cf. Ref. 1) 7(L) ~ R ~ L*? and for

intermediate times ¢ << 7(L), a typical particle dis-

placement {[r(x,7) —r(x,0)1%) grows algebraically as
z The exponent z depends on the dynamics im-
posed on the system. In the Brownian dynamics used
for MC simulations z=2+2/v, while in a fluid, the
hydrodynamical interactions result in z = 3.

Laboratory examples of surfaces discussed in this
Letter are provided by 2D polymer networks (2D
gels!). Some lipid molecules polymerize into sheets
with multiple crosslinks upon exposure to ultraviolet
radiation.'> A bilayer of this kind with the polar head
groups facing out would presumably enter an aqueous
solvent and provide another example of the surfaces
studied here. Light-scattering experiments from dilute
solutions would yield direct information on the ex-
ponent v and the dynamical fluctuations of individual
surfaces. In dense solutions surfaces do not inter-
penetrate and (unlike regular polymers) are far from
ideal. The situation is somewhat like a dense polymer
melt in two dimensions. Our results may also be
relevant to 2D network glasses, like As,S; or B,0;.16
Just above the glass transition, the liquid presumably
consists of many crumpled sheets of covalently bonded
molecules. Understanding the statistical mechanics of
an isolated sheet is a first step towards dealing with
this problem. The large increase in volume (about
30%) of molten B,O; relative to its crystalline form
may be related to the swelling of an isolated surface
discussed here.!” We also carried out a ““table-top ex-
periment’ by actually irreversibly crumpling sheets of
foil. By this rather ill-defined procedure we again
measured an exponent v = 0.8.

Our previous results naturally imply that a straight
line of length ! drawn on the fully extended surface
will occupy a volume of size /¥5. A SA walk on the
extended surface occupies a region of size /¥%. Upon
crumpling, the walk will extend over a size (//4)¥
~ P/d+D) which, remarkably, coincides with the Flo-
ry prediction for polymers in d dimensions (d <4)!
Also, for a strip of width w and length /, we may ob-
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serve a crossover from SA polymers to tethered sur-
faces, for which Flory theory predicts (for d =<4 and
w <) a scaling form Rg~ (wP)V@+2)  More de-
tails of our results will appear in future communica-
tions.
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