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Polyampholytes are polymers with a random sequence of positive and negative charges along their
backbone. We examine the question of whether such polymers swell or contract due to Coulomb in-
teractions, by Monte Carlo simulations and analytical arguments. We find that the answer depends cru-
cially on whether the polyampholyte is neutral or charged, in turn reflecting its preparation conditions.
If the monomers comprising the chain are assembled together in an organic solvent, the strong Coulomb
forces ensure the neutrality of the resulting polymer. The neutral polymer in any environment then
behaves as a “microelectrolyte” and compactifies to screen the charges. There is no such bias towards
neutrality if the polymer is prepared in a solution where the Coulomb forces are screened. The typical
polyampholyte will then have a net charge due to the random imbalance of positive and negative com-
ponents. Such a net charge is actually sufficient to stretch the chain in an environment with no Coulomb
screening. Even with a net charge, the polyampholyte initially contracts at high temperatures before
stretching at lower temperatures. A perturbative analysis, valid at high temperatures, describes this ini-

tial contraction.

PACS number(s): 36.20.Ey, 64.60.Cn, 82.35.+t, 87.15.By

L INTRODUCTION

A challenging topic of much current interest is the ex-
tent to which the complexity of biological systems can be
mimicked by relatively simple physical models. For ex-
ample, there have been several attempts to unravel the
structure and folding of proteins [1] using concepts from
the statistical mechanics of random systems, such as spin
glasses [2-4]. Typically in these models the macro-
molecule is represented as a linear sequence of monomers
subject to a variety of interactions, which ultimately
determine its overall shape. Such representation reduces
the complicated description of the macromolecule to
several parameters, which simplifies the problem, and en-
ables application of a variety of techniques used in the
statistical mechanics of polymers.

Spatial conformations of homogeneous polymers can
be characterized by the critical exponent v which relates
the root-mean-squared size of the polymer to the number
of monomers, L, via Ry =~aL ¥, where a is a microscopic
dimension. For a flexible polymer in an athermal solvent,
a is equal to the typical diameter of a monomer or to the
distance between neighboring monomers on the chain. In
such a system, and more generally in good solvents, the
repulsive interaction between monomers is mainly steric
(excluded volume) in origin. The resulting exponent v is
universal, depending only on the space dimension d; in
d=3 its value is v=v,=~0.588. In poor solvents the
monomers prefer to be close to each other, resulting in
compact configurations with v=v,=1/d. Changing
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temperature can cause a phase transition between swollen
and compact conformations. At the transition, the so
called 6 point, v=v,=1 [5].

The complexity of inhomogeneous macromolecules
makes them considerably less susceptible to analytical
treatment. One of the simplest examples is a polyampho-
lyte (PA), composed of a random sequence of positive and
negative charges [6]. Even such a chain, further restrict-
ed to short-range (point-contact) interactions and to one
dimension, cannot be solved exactly. Some time ago we
performed a numerical study of this problem [7], which
indicated that the chain is swollen as compared to a regu-
lar random walk, i.e., its exponent v is slightly larger than
1 [8]. The conformation of PA’s with true long-range
Coulomb interactions was considered theoretically by Ed-
wards, King, and Pincus [9] as an example of a “mi-
croelectrolyte,” and later by Qian and Kholodenko [10].
Two recent studies of this problem, however, have led to
opposite conclusions on whether the configuration of a
typical PA is stretched [7] or compact [11]. Resolving
this discrepancy may also be relevant to understanding
recent observations on polyamphilic gels [12], and experi-
ments on dilute PA’s [13].

Motivated by the above, we reexamined conformations
of PA’s and found that their behavior is very sensitive to
the presence of constraints and the choice of ensemble
[14]. A polymer constrained to have zero net charge col-
lapses to a compact configuration upon reducing temper-
ature. On the other hand, if L monomers are randomly
assigned positive or negative charges, £gqq, with equal
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probability, the resulting polymer will typically have a
small overall charge of order g,V'L. Independent of its
sign, this deviation from neutrality is sufficient to stretch
the chain to an extended configuration at low tempera-
tures. The size of the polymer in this case has an unusual
nonmonotonic dependence: it first decreases upon reduc-
ing temperature before becoming extended below a
characteristic point. In an annealed ensemble, the con-
straint of charge neutrality is automatically enforced due
to the lower energy of neutral polymers. By contrast, the
quenched ensemble is dominated by
charge ranging from —-qo\/l_, to +goV L. The experi-
mental preparation conditions will also favor one or the
other type of PA. Suppose that the PA is prepared by
polymerizing a dilute solution containing equal concen-
trations of positive and negative monomers. If the elec-
trostatic interactions are strongly screened by addition of
salt, there is no energetic incentive for overall neutrality.
However, if the Coulomb interactions are not sufficiently
screened, the energetics favor neutral PA’s. (There are
some preliminary results from experiments on dilute solu-
tions of PA’s supporting this picture [13].)

The main results of this work have already appeared in
a short communication [14]; here we provide a more de-
tailed description. The rest of the paper is organized as
follows. In Sec. IT we introduce the basic model of poly-
mers subject to unscreened Coulomb interactions, review
the renormalization-group (RG) and numerical analysis
of homogeneously charged polymers, and explain why
the long-range nature of the force can simplify (in certain
cases) its treatment. In Sec. III we introduce a model for
polyampholytes and use dimensional analysis to estimate
the exponent v for the case of uncorrelated charges, as
well as the case of charges with power-law correlations.
The Debye-Hiickel approximation for polyampholytes
with vanishing total charge is described in Sec. IV, and
numerical confirmations of its predictions are presented
in Sec. V. The latter section also provides some technical
details of our Monte Carlo simulations. Section VI de-
scribes the behavior of unconstrained randomly charged
PA’s. At high temperatures T the electrostatic interac-
tions only slightly perturb the behavior of the polymer
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and some insights can be gained by performing 1/T ex-
pansions of R;. These results are presented in Sec. VII.
Finally, in Sec. VIII we discuss some possibilities for fur-
ther progress, and point out several unresolved issues.

II. POLYELECTROLYTES

Polymers carrying easily ionizable groups are quite
common [15]. In a solvent, a (counter) ion becomes
disconnected from the polymer, moving away and leaving
behind a charged group on the chain. The remaining
charged polymer is called a polyelectrolyte. Usually the
counterions remain in the vicinity of the polyelectrolyte,
screening the interactions of charges on the polymer.
However, at strong dilution they gain entropy by moving
around the entire available volume, leaving the homo-
geneously charged polymer in an almost neutral environ-
ment. In such a case, the fixed charges on the polymer
chain are subject to unscreened Coulomb interactions.
The inhomogeneous groups on polyampholyte chains re-
sult in a sequence of positive and negative charges. The
distribution of these charges is not necessarily symmetric
about zero: the average value is controlled by pH and
other properties of the solvent, but can be tuned to zero
at the so-called isoelectric point. As long as there is a
nonzero average, the polymer behaves asymptotically like
the uniformly charged polyelectrolyte described in this
section, but with a reduced monomeric charge. It is the
point of exact compensation which is of greatest interest
to us, and the subject of succeeding sections. We shall re-
strict our treatment only to the case of unscreened in-
teractions.

The minimal statistical-mechanical description of such
polymers must include the entropic elasticity originating
from connectivity, as well as terms representing short-
range (steric) and long-range (electrostatic) interactions.
It is also convenient to adopt a continuum description in
which monomer configurations are described by r(x),
where x is the internal label for the position of a mono-
mer along the chain, and for generality r is assumed to be
a d-dimensional vector. The Hamiltonian for the poly-
mer now takes the form

H_ _K L, |dr
kpT 2fodx[dx

2
1 pL L, ,
+o [ dx [ dx

The first term is the entropic elasticity of the polymer
with a force constant K. This term enforces the connec-
tivity of the chain, and 1/K is approximately equal to the
mean-squared distance a? between neighboring mono-
mers on a flexible chain. The remaining terms in Eq. (1)
represent the two-body interactions composed of a long-
ranged electrostatic component and a short-ranged steric
repulsion. The strength v of the latter is of order of a? in
athermal solvents. The linear charge density ¢(x) is as-
sumed to be fixed (quenched) for a given chain. Many
other terms can in principle be added to Eq. (1), such as a
monopole-dipole interaction,

——t 08 r(x)—r(x")) | . (1)
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where p(x’) is the linear dipole density. Dipole-dipole
and higher-order interactions may also be generated un-
der the RG procedure. However, dipoles and higher
multipoles are not independent variables, as they are all
produced by the same charge distribution.
Homogeneously charged polymers (polyelectrolytes)
are described by a constant g(x)=g,. This case provides
a rare example in that certain aspects of its critical
behavior can be calculated exactly [16]. We first note




that, under the rescalings of the internal coordinate,
x—Ax, and the external coordinate, r-»A'r, the
coefficient of the entropic (first) term, electrostatic term,
and steric term in (1) are scaled by factors of 2K , ky’, and
ky", respectively, where:

yg=2v—1, 3)
Y,=2—(d—2)v, 4)
y,=2—dv. (5)
Now for d>d,=6, one can set yy=0 by choosing

Vv=vy=1. Such a choice of v leaves the entropic term in
Eq. (1) unchanged under rescaling, while the remaining
terms decay (y, <0 and y, <0) to zero. Thus neither ex-
cluded volume interactions nor electrostatic ones are
relevant above six space dimensions. For d <d,, the
electrostatic terms are the most relevant, and we set y, to
zero by choosing v=v,=2/(d —2). The exponent v, is
unity for d =4, and below this dimension the polymer is
fully stretched. In fact, by a full RG treatment, Pfeuty,
Velasco, and de Gennes [16] proved that the above result
from dimensional analysis is in fact exact. This is a
consequence of the trivial renormalization of charge:
When the chain is rescaled by A, the charge of each new
segment is precisely increased by A due to charge conser-
vation. This exact result can also be obtained by noting
that the electrostatic energy of a polymer is of the order
of q%Lz/R: ~2, where R, is the radius of gyration.
Equating this term to kpT gives Ry <L” with v=vj.
Such arguments are ecasily extended to arbitrary D-
dimensional manifolds, e.g., two-dimensional membranes,
embedded in d-dimensional space [17].

Although the Coulomb interaction itself does not re-
normalize under RG, it does modify the shorter-range in-
teractions. Fortunately, all higher-order multipole in-
teractions are irrelevant, and do not change the final re-
sult. For example, the monopole-monopole term in Eq.
(2) has a bare scaling dimension of y 4=2—(d—1)v,
which is negative for v=v,. It is interesting to note that
the exact behavior of the monopole-dipole term depends
on the details of the RG transformation, since the value
of a dipolar moment in a non-neutral system is dependent
upon the choice of the reference point for its measure-
ment. If we choose the centers of mass of subchains of A
monomers as new coordinates, and integrate out the
remaining A—1 degrees of freedom, then the dipoles
remain identically zero. Thus both monopole-dipole and
dipole-dipole interactions are completely absent from the
rescaled Hamiltonian, and are absorbed into the rescaled
monopole-monopole energy.

There is also an approximate Flory- type approach to
the problem of homogeneously charged polymers,
developed by de Gennes et al. [18] slightly before the RG
analysis. In the spirit of the Flory approximation [5], this
approach equates the free energy of a noninteracting po-
lymer, KR /L, with a mean-field estimate of its electro-
static energy, qoLz/R" 2, In terms of the rescaling ex-
ponents defined in Eqgs. (3) and (4), this corresponds to
setting yx =Yg, leading to a Flory estimate, v=vpg, =3/d.
This expression reproduces the correct upper critical di-

{g(x)}
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mension of d=6, where v= 2 -However, it predicts a
nontrivial value of v down to d =3, where it becomes uni-
ty. These results are clearly distinct from the predictions
of RG. Early Monte Carlo simulations of charged poly-
mers appeared to support the Flory approximation [19],
but more recent simulations [20] have confirmed the va-
lidity of the RG analysis. The failure of the earlier simu-
lation [19] to recover the RG result can probably be attri-
buted to extremely slow crossover caused by long-range
forces: approach to the asymptotlc behav1or depends on
the ratio of the two energies k5T and g3 /a. If the tem-
perature is too high, short polyelectrolytes resemble un-
charged polymers. The effective value of the exponent v
is smaller than v,, and slowly increases with increasing
L. While we do not know in advance what ratio of ener-
gies ensures the fastest approach to the asymptotic value
of v, it is reasonable to set it to unity.

HI. POLYAMPHOLYTES

In a polyampholyte (PA), both positive and negative
charged groups exist on the chain backbone. They can
still be described by the Hamiltonian in Eq. (1), but un-
like the case of the uniform polyelectrolyte, g (x) is not a
constant. In the simplest model the charges along the
chain are uncorrelated, in which case in the continuum
limit, {g(x)g(x')}=g¢%8(x —x"), where { -} denotes
the average over quenched configurations of charges.
[We concentrate on chains at the isoelectric point, where
=0.] In this section we shall describe some
analytical properties of this model, and also introduce a
numerical model used to simulate the problem.

We first apply scaling arguments similar to those of the
previous section to randomly charged polymers [7]. Due
to the averaging of independent charges, the random
product g(x)g(x’) in Eq. (1) contributes an additional
factor of A ™! to the rescaling of the electrostatic term.
(The sum of A random charges increases as V'A rather
than A for uniform charges.) This changes the dimension
of the electrostatic term in Eq. (4) to

yo=1—(d—2)v. (6)

Applying arguments similar to those used for homogene-
ous polymers, either by setting y, to zero, or by estimat-
ing the total charge of the polymer as qo\/f and equat-
ing the resulting electrostatic energy g3L /Rg 2 t0 kpT,
we find the exponent

=v,=1/(d—2). %)

This result should be valid for 3 <d <4. For d =3 the
polymer is stretched (v=1). Note that the scaling
analysis shows that the electrostatic interactions are ir-
relevant for d >4. We should add that the latter con-
clusion is valid only within the subspace of configurations
which do not differ significantly from a Gaussian chain.
It does not exclude the possibility of a phase transition to
equilibrium configurations to a very different nature. As
in the case of polyelectrolytes, Flory-type arguments are
not expected to produce a reliable estimate of v. Never-

theless, for completeness we note that equating y, to yx
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leads to an exponent v=wvp =2/d, for dimensions
2<d <4,

However, closer examination suggests that the shape of
the polymer is quite sensitive to the actual distribution of
randomness. The swelling exponent obtained by setting
Eq. (6) to zero relies on the independence of charges, and
the resulting net charge of a typical realization. On the
other hand, if the net charge of the chain is zero it is like-
ly to contract [11]. (If we mentally divide a neutral PA
into two halves, they will have opposite total charges and
attract each other, resulting in a contraction in size.) We
may consider more general charge distributions in which
the random charges are correlated such that their sum Q
increases faster (or slower) than V'L, i.e.,

(0Y=[[faxdx'{aigx}~ALx . @

The exponent =1 corresponds to uncorrelated charges,
while u=2 describes homogeneously charged polymers.
Such a dependence of the total charge can be achieved if
for large separations |x—x’| the quenched average
behaves as

g} = BB g0 prpu—2 ©)
2

[This is true only for > 1. For p <1, the integral in Eq.
(8) depends on the behavior of {g(x)g(x’)} at short sepa-
rations. The condition u=0 for neutral PA’s is achieved
by making {g(x)q(x’)} dependent on L.] Such long-
ranged correlations have indeed been observed in the nu-
cleotide sequences of DNA [21]. The dimensional argu-
ment is now modified since under rescaling of x by A, the
product g(x)q(x’) contributes a factor A*~2, Conse-
quently, the electrostatic interaction term is rescaled with
exponent y,'=p—(d —2)v, leading to the value of

v=v,=p/(d~2) . (10)

This result should be valid for u+2<d <2u+2. For
1=p =<2, it interpolates between the exponents for un-
correlated PA’s and homogeneously charged polyelectro-
lytes. For p<1, the explicit dependence of {g(x)g(x’)}
on L casts doubts on the validity of Eq. (10). Also,
excluded-volume interactions will become relevant for
sufficiently small 4. The p=0 case of a neutral PA is dis-
cussed in more detail in the next section.

IV. DEBYE-HUCKEL THEORY

It was noted by Edwards, King, and Pincus [9] that a
polymer confined to a volume much smaller than its nat-
ural radius, so as to have a uniform density, can be ap-
proximately treated as a liquid. In particular, they sug-
gested that a PA behaves as a regular (micro)electrolyte.
Elaborating those arguments, Higgs and Joanny [11] as-
sume that the polymer collapses to a state with a radius
of gyration R, significantly smaller than its value in the
absence of the charges. The typical size is found by
minimizing a Debye-Hiickel (DH) approximation to the
free energy of a PA. The final result indeed corresponds
to a collapsed state, and hence the treatment is internally
consistent.

The collapse is assumed to result from an attractive in-

teraction due to the screening of the long-range electro-
static forces. The screening length r, in a liquid or gas
with two types of charges (electrolyte) is related to their
density c. This scale can be found by equating the typical
electrostatic interaction energy within a volume rZ to the
thermal energy kT, i.e., (crf)g3 /ré 2=k, T, leading to
r.=~V kgT /cq}. At shorter length scales the charges do
not rearrange, since the possible gain in electrostatic en-
ergy is outweighed by the loss of entropy. However, at
length scales of order r, groups of atoms can rearrange
their positions in such a way that positively charged re-
gions are surrounded mainly by negatively charged ones,
and vice versa. The magnitude of the resulting attractive
free energy is then estimated from the Debye-Hiickel
theory [22] of electrolytic solutions as

Fez—kBT;I%z—q’éLd/ZR:u_d)/z(kBT)l_d/z . (11)

e

The second equality is obtained using a monomer of den-
sity c~L /¥, and a polymer volume of VzR;. (Here,
and in other expressions, we omit dimensionless con-
stants of order unity.)

It is important to note that the strict neutrality condi-
tion is an essential ingredient of DH theory. The formal
derivation begins with the free energy of the uncharged
gas, and attempts to evaluate the corrections caused by
the Coulomb energy. It is assumed that the mere intro-
duction of charges without the change of positions of
particles does not change the energy. This is true only if
the gas is completely neutral. The gain described by Eq.
(11) is a consequence of adjustments to positions of parti-
cles, which also lead to screening. This attraction
reduces the polymer size until the pressure from
excluded-volume interactions prevents further collapse.

The excluded-volume contribution to the free energy
can be estimated [11] as follows. The osmotic pressure I
of a single polymer embedded in an arbitrary volume V
has the scaling form [23] II=(kyzTc /L )f(c /c*), where ¢
is the number density of monomers, while f is a scaling
function. (This is essentially the ideal gas law, i.e., the
pressure is proportional to kz T multiplied by the density
of molecules ¢ /L.) The critical concentration ¢ * is such
that the polgmer occupies the entire volume V¥, i.e.,
c*~L /(a®L""), where the exponent v, applies to a reg-
ular self-avoiding polymer without any additional in-
teractions. At small concentrations (c <<c*) f is a con-
stant, reproducing the ideal gas law. At large concentra-
tions the pressure must be a function of ¢ only, indepen-
dent of L. This is achieved by df (x)~x™ with

. ve/(dvy—1)
m=1/(dvy—1), leading to I=kzTc ° ° . From
this expression for II we can immediately evaluate the
free energy as

dNdvy=1)  dvy/dvy—1)

F,~kyTa I R 4D

. (12)

This result can also be obtained by the “blob” picture
suggested by de Gennes [5]. A polymer confined to a re-
stricted volume forms I .-monomer “blobs”, each behav-
ing as an unconfined self-avoiding polymer. The “blobs”
are then packed compactly in a homogeneous structure.




The number of the monomers, /., in each blob is there-
fore determined from R:z(al YL /1,). By attributing
kpT of free energy to each blob, we recover the result in

Eg. (12).
Minimization of the total free energy F,+F, with
respect to R, leads to the radius of gyration,

—_ a
Ry ~aL'? -’5‘-’@2‘1—2 , (13)
90
with
dvy—1
A2l 4

The exponent 1/d confirms that the polymer is indeed
compact. However, the term “compact” refers to a
homogeneous density, and does not imply a densely
packed configuration. Indeed, Eq. (13) shows that the
maximum monomeric density is only achieved at a tem-
perature of kzT~q%/a® 2, below which Eq. (13) is no
longer valid. The density decreases as the polymer ex-
pands at higher temperatures, until the DH approxima-
tion fails. An upper bound to this temperature is ob-
tained by setting R, in Eq. (13) to the size of the un-
charged chain. Equation (13) was obtained for general
space dimensions d. However, the exponent « for the T
dependence of R, diverges at d =4 and is negative for
d > 4. This happens because for d > 4 the electrostatic in-
teractions of remote parts of a swollen polymer become
negligible and the entire picture of a gradually contract-
ing polymer is no longer valid. However, this does not
imply that a collapsed state of the polymer does not exist:
at very low temperatures there may be a folded state
resembling a random ionic crystal. As temperature is in-
creased the ‘“crystal” can “melt” into a configuration
resembling the uncharged polymer. Thus the gradual
crossover is replaced by a first-order phase transition.
Obviously, the above calculations are not applicable to
such a situation.

For future reference we rederive the temperature
dependence of R, in d =3 using scaling arguments. Typ-
ical electrostatic energies for the polymer scale as
qiL /R,. This is obtained, for example, as the interaction
between two halves of the chain each having a nonbal-
anced total charge of order of qo\/f, while typical dis-
tances are of the order of R,. At high temperatures, in-
teractions are not important and R, =aL ", where a is a
typical microscopic length. For a neutral self-avoiding
chain in d =3, v,=0.588. Electrostatic interactions be-
come important when g3L /Rg=kpT, ie., at a tempera-
ture To=g3L /(kR,)~[q3L /(akg)IL . The temper-
ature variations of R, should depend on the dimension-
less variable z=T/T,. We can thus set Rg=aLv°G(z),
with

const, for z>>1;
G(z)= ] o

z%, forz<<1. (15)

The exponent ¢ depends on the state of the PA at low
temperatures. The assumption that at low temperatures
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the polymer is compact [11], i.e., R, <L 173 in d =3, then
implies a=(vo—%)/(1—v,). The same argument can be
repeated in general space dimensions d leading to the
value of a given by Eq. (14). While this derivation seems
to be more “robust” than the results obtained from
minimization of the total free energy, we should keep in
mind that both approaches essentially use the scaling (or
the “blob”) picture for estimates of the free energy.

V. NUMERICAL RESULTS

Since analytical results for the behavior of PA’s are in-
conclusive, we rely heavily on the Monte Carlo (MC)
simulations discussed in this section. We use a relatively
simple numerical scheme, and confine our analysis to
chains of L =4, 8, 16, 32, and 64 monomers. The mono-
mer positions are discretized to a cubic lattice (d =3), and
the polymer connectivity implemented by restricting the
maximal distance between neighbors to 4. Such nearest-
neighbor “square-well” potentials have been previously
used in continuum simulations of tethered surfaces [24]
and discrete simulations of linear polymers [25]. The
excluded-volume interaction is implemented by not al-
lowing two monomers to come any closer than V2
lattice constants. The electrostatic interaction U
=3¢ U;lr;—1;)) is included by assigning energy
Uy(r)=c'q;q;/V c+r* to every pair (i,j) of charges at
a distance r from each other. We set ¢=2, ¢'=4, and
g;==1 dependent on the quench. In future discussions
of numerical results the lattice constant is used as the
unit of length, while the choice of the electrostatic energy
U(r) sets the energy and temperature scales. All the re-
ported results refer to such dimensionless quantities. We
shall discuss neutral and randomly charged PA’s sepa-
rately.

A. Neutral polyampholytes

Random PA’s with zero total charge were constructed
by randomly assigning a charge of +1 to half of the
monomers and — 1 to the rest. The use of relatively short
chains enabled us to achieve good equilibration, although
we partially sacrificed accurate quantitative knowledge of
the asymptotic behavior. A single MC time step is
defined as the simulation time during which an attempt is
made to move every monomer by a single lattice spacing
in a randomly chosen direction, and the resulting
configuration accepted or rejected according to its
Boltzmann weight. It should be noted that due to the
long-range nature of the interaction, an attempt to move
a single atom involves recalculation of its interactions
with all the surrounding atoms, and therefore the CPU
time per single MC time step increases as L2 For each
quenched configuration of {g;} the PA is equilibrated
first at a temperature T >> T, and then cooled through a
sequence of lower temperatures, by reducing T by a fac-
tor of 2 each time, over a range of three decades. At each
T, 2500X L MC time steps are performed. The high-
temperature equilibration time 7 can be estimated as the
time it takes the polymer to diffuse its own radius of gyra-

' Y, '
tion, R, ~L 0 leading to r~L?*1 Thus even for the
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longest chains our equilibration time exceeds 7 by a fac-
tor of 20. We also expect to have good equilibration at
lower temperatures, except possibly at almost vanishing
temperatures where the polymer freezes into a minimal-
energy configuration. This sequence is repeated for
different quenches (twenty quenches for L=4,8,16, ten
quenches for L =32, and five quenches for the longest
chain). All the following results were obtained by averag-
ing over the quenches. ‘

Figure 1 depicts the geometrical shape of a 64-
monomer polymer at five different temperatures. The es-
timated crossover temperature for a polymer of this
length is Ty~2.7. Indeed, for T > T, the shapes are in-
distinguishable from regular self-avoiding polymers,
while at T=2.5 we see the beginning of a contraction.
At T=0.05 the density of monomers reaches its maximal
value and further decrease in T freezes the system. These
pictures qualitatively confirm the predictions of the pre-
vious section.

The temperature and L dependence of the electrostatic
energy of a PA can be calculated by substituting the
value of R, given by Eq. (13) into Eq. (11). (Up to a nu-
merical prefactor, the electrostatic part of the energy is
equal to the free energy.) Alternatively, we note that in
the scaling regime To>>T>>T,, =q3/(kza®~?), the
electrostatic energy behaves as E, < —kpT(To/T)*. At
the upper limit the energy becomes equal to k5 T, while at
the lower temperature the monomer density reaches its
maximal possible value; the screening length becomes
equal to intermonomer separation, and E,~ —kzTL.
To ensure such behavior we must choose -w
=1/[1—(d —2]. The electrostatic energy per mono-

®T=25

(d) T=0.005 o () T=03

FIG. 1. Neutral 64-monomer polyampholyte at (a) T=20, (b)
T'=2.5,(c) T=0.3, and (d) T=0.005.

mer is independent of both T and L for T<T,,. It
remains independent of L for T,, <T <T,, but decays
with temperature as T~“ ! (as 774 in d =3). Actual-
ly, the size of the scaling region T,/T,, =L!=\d~2W jg
smaller than a single decade even for the longest poly-
mers in our simulations. Figure 2 is a semilogarithmic
plot of the electrostatic energy as a function of T for
different values of L. There appears to be a partial col-
lapse of data for intermediate temperatures within a
somewhat larger range (up to two decades for L =64)
than expected. At T <T,, all graphs asymptotically ap-
proach the same energy of =~ —0.5k,T,,, consistent with
the definition of T,,. However, the absolute values of en-
ergies in the high-temperature limit are larger than ex-
pected, and consequently the behavior in the intermedi-
ate range is not a simple power law.

The temperature dependences of R, for different values
of L are presented in Fig. 3. In accordance with the ex-
pected data collapse we have employed a scaling form
Rg/L,V=G(T“/LB/2), using the exponents v and a as
fitting parameters [B=2a(1—+v)]. The best fit is obtained
for v=0.55 and ¢=0.40, with uncertainties of about
£0.02. It is immediately obvious from Fig. 3 that the
neutral PA indeed collapses at low temperatures as pre-
dicted by Higgs and Joanny [11]. While the data collapse
is quite reasonable, we note several deviations from the
expected behavior: v is smaller than its known value of
about 0.588. This result is not particularly surprising for
relatively short chains with a moderate excluded-volume
interaction, due to the crossover between Gaussian and

self-avoiding behaviors. At the low-temperature extreme,

the exponent @ =0.40 corresponds to a “collapsed” state
in which R3~L°‘37. It is again quite likely that the ex-
ponent of 0.37 (instead of 1) is also a result of crossover.
This deviation is consistent with the very slight depen-
dence of the energy per atom on L mentioned in the pre-
vious paragraph.

B. Randomly charged polyampholytes

The overall neutrality of a PA is an important condi-
tion for the validity of the DH approximation, and conse-
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FIG. 2. Semilogarithmic plot of the electrostatic energy per
atom versus temperature (in dimensionless units, see text). [,
A, @, W, and A correspond to L =64, 32, 16, 8, and 4 respec-
tively.
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FIG. 3. Scaled R: is plotted against scaled temperature T for
polymers that are overall neutral. Distances are measured in
lattice constants while the temperature is in units of electrostat-
ic energy divided by k5. (The symbols have the same meaning
as in Fig. 2.) The straight line indicates the expected slope for
compact conformations.

quently for its low-temperature collapse. In the absence
of such a constraint, the dimensional analysis of Sec. III
predicts the PA to be swollen with v=v,=1 in d=3.
Here we present numerical evidence supporting such
behavior. The model and MC procedure are identical to
those described above. The only difference is in the
choice of quenched configurations: each monomer is ran-
domly assigned a charge of +1 or —1 independently of
other monomers. Thus, typical quenches for L =64 re-
sult in total charges in the range of 5 to 10 (of either
sign).

Figure 4 depicts the spatial configurations of such a

(a)T=20 b)T=25

(d) T = 0.005

() T=03

FIG. 4. Same as Fig. 1, but for polyampholytes without the

constraint of overall charge neutrality.

1389

_64-monomer PA. The Coulomb interactions become im-

portant at the same value of T as for the neutral PA in
Fig. 1. The high-temperature configurations are again in-
distinguishable from self-avoiding polymers. As the tem-
perature is decreased towards T, the polymer slightly
contracts, and then expands upon further decrease of T.
It reaches its final state at T=7T,, and “freezes” into a
particular configuration. Several comments should be
made regarding the shape of low-temperature
configurations: (a) These configurations are by no means

. straight lines, although they are “stretched.” They have

some segments folded into double lines in which mono-
mers of opposite charges form permanent pairs. We have
also observed low-temperature configurations that are
branched. In some cases we see almost straight lines con-
taining small “globules” of many monomers forming al-
most compact structures. (A menagerie of these
configurations is included in Fig. 5.) (b) A particular
quench of charges seems to have many low-energy states
with almost identical energies: repeated heating and
cooling sometimes results in quite different “ground
states.” Since for T < T,, the system freezes, there is no
practical way to find the true ground state. The glassy
behavior of many nearly degenerate ground states is nat-
urally a problem if such random chains are to be regard-
ed as model proteins.

Figure 6 depicts the temperature dependence of R, on
a logarithmic scale. We attempted to apply the same
method of data collapse used in Fig. 3. However, we
could not collapse the curves over the whole temperature
interval. Only the exponent v has been used to collapse

Q=48

Q=48

&

Q=-4 Q=-2

FIG. 5. Some low-temperature configurations obtained for
randomly charged polymers of L =64, The nct charge of cach

configuration is indicated by Q.
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FIG. 6. Same as Fig. 3, for randomly charged polyampho-
lytes without the overall neutrality constraint.

the high-temperature data, and the best fit is obtained for
v=0.57. As temperature decreases below T, the radii
first contract and then expand again. Actual pictures of
polymer configurations indicate the following process.
At T somewhat smaller than T, positive and negative
charges start to pair up, thereby reducing the chain size.
At lower temperatures the “excess charges” can only
reduce their energy by stretching the entire chain. Thus
at the lowest temperatures the chain “unfolds” as depict-
ed in Fig. 4.

Although the low-temperature configurations are
“stretched,” the absolute values of R, at T<T, inFig. 5
are rather small due to branching, globules, and double
strands. For L <16 the low-temperature values of R, are
seven smaller than their values at 7> T,. Only for the
L =64 chain do we see a significant increase in R,. On
average, at very low temperatures R, indeed becomes
proportional to L as predicted earlier [7]. Figure 7 de-
picts the L dependence of R, at very low temperatures.
The results are consistent with the exponent v=1, which
corresponds to the stretched case. A visually compelling
illustration of the importance of neutrality is presented in
Fig. 8 which depicts the compact configuration of a neu-
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FIG. 7. Logarithmic plot of R? at T << T, as a function of L
for unconstrained polyampholytes. The straight line indicates
the expected slope for stretched configurations with v=1.

FIG. 8. The low-temperature configurations of a neutral PA,
and its two halves.

tral polyampholyte, and the stretched conformations ob-
tained by breaking the same polymer in half (the two
halves typically have opposite nonvanishing charges).

V1. HIGH-TEMPERATURE PROPERTIES
OF POLYAMPHOLYTES

In the previous section we demonstrated the extreme
differences between randomly charged and neutral PA’s
at low temperatures. It is possible to carry out a pertur-
bative analysis that is valid at high temperatures. We
shall see that there are differences between the two types
of PA even in this limit. The difference in this case origi-
nates from the charge-charge correlation function. Since
the number of charges grows as L, the naive expectation
is that imposing the one constraint of neutrality should
not affect the asymptotic behavior of these correlations.

_ Indeed, if we randomly scatter exactly L /2 charges —gq,

""'and "L7/2 charges g, on L monomers, we expect

{9:9,}=q3(L8,;—1)/(L—1), where i and j are the
discrete indices for monomers. The additional correla-

- tions due to the neutrality constraint decay as 1/L. They

are, however, sufficiently important to modify the high-

~temperature behavior.

We start with the Hamiltonian in Eq. (1) with v =0,
treating the first integral (denoted 74,/ky T) as the unper-
turbed Hamiltonian, and the electrostatic interactions
(denoted V/kpT) as a perturbation. Only the electrostat-

... ¢ part of the Hamiltonian includes the effects of random-

ness, and, therefore, expansion in this term permits direct
calculation of thermal { - - - ) and quenched { - - - } aver-
ages. The lowest-order terms in the expansion of the
averaged end-to-end distance R (L)%= [r(L)—7(0)|? have
the following form
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where ( - - - ), represents a thermal average with the un-

perturbed Hamiltonian %, Note that the terms in this
expansion are organized in powers of 1/T. The result in
three dimensions to order of 1/T is

2 =£ 1oLt Mo —ye?|172
(R =<2 1+VE /2w [ [ dx dx’lx—x'|

17

Note that the corrections to the size of the polymer at
this order are most sensitive to the charge correlations
along the chain at short distances. As long as the charges
are positively correlated the net effect is a repulsion. For
example, correlations such as Eq. (9) (u>1) give

—-3/2
1/——“—,u(,u—l) AL*
1+ K/2'JT( 2_%) 3%, T

2y 3L
{R(L)*) z (18)

Some anticorrelation is necessary to achieve a net charge
that scales with u<1. For example, if the polymer is
constrained to be neutral, {g(x)g(x’)}=—gq3/L for
xFx'. Such anticorrelations lead to a reduction in size,
and for the neutral PA

3L |, _8v3 To
K

45V T

where T3=LKq¢ /3k}. This result is consistent with the
observed collapse of neutral PA’s, although the mecha-
nism is distinct from DH.

For uncorrelated random charges there is no first-order
correction to the end-to-end distance, and a second-order
calculation is necessary to find any effect. We performed
such a calculation, and obtained the result

1_1

2w

This correction again reduces the size of the PA at high
temperatures, in agreement with the numerical results.
However, we note that whereas the reduction in size of
the neutral polymer starts at order of 1/T, that of the un-
constrained polymer begins at order of 1/ T?. Clearly the
higher-order terms in the latter case must be of opposite
sign and lead to the eventual stretching of the polymer.
This suggests that reorganizing the perturbative results

into a rigorous RG may be difficult for this problem.

(R(L)2>neutral= ’ (19)

T
(R(L)2>random=37§— =

1—
T

2
] . (20)
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Such a RG has been attempted for the case where the in-
teractions due to random charges are short ranged [26].

VIL. DISCUSSION

Finally we point out the delicate role played by the
choice of ensemble in this problem. Higgs and Joanny
[11] examine the behavior of unconstrained PA’s in an
annealed approximation, and again find collapsed states.
In most cases the annealed approximation gives results
that are qualitatively, if not quantitatively, similar to the
quenched system. However, in this case the quenched
polymers are stretched while the annealed ensemble
yields compact states. This is because the annealing pro-
cedure automatically selects out neutral polymers due to
their much more favorable electrostatic energy. Typical
members of the quenched ensemble are given negligible
weight due to the Coulomb energy of their excess charge.
As stated earlier these considerations are relevant to the
preparation conditions for the PA. In an organic envi-
ronment the monomers would tend to form neutral PA’s,
while in an ionic solvent the screening of charges favors
PA’s with a typical excess charge. These results will
hopefully be tested by ongoing experiments [13].

Naturally in experiments it is hard to tune to precisely
the isoelectric point. We can imagine that as pH or other
solution property is changed the averaged charge on the
monomer changes sign. The size of a particular PA will
change with this parameter and is a minimum at the
point when its net charge is zero. For a solution of neu-
tral PA’s the transition point is sharp and all polymers in
the solution have roughly the same size. On the other
hand, for a solution of randomly charged PA’s the neu-
trality condition is reached at different points for
different polymers. In the vicinity of the isoelectric point
the size distribution of polymers is wide. The width of
the transition region scales as L ~'/? and vanishes as
L—>o».

Due to the limited number of quenched configurations,
we cannot make detailed studies of the distribution of R;
in low-temperature configurations in the case of uncon-
strained randomness. The complete ensemble of all
quenches contains also neutral and almost neutral
configurations which are, presumably, collapsed. These
configurations, however, have a negligible probability for
large L. Even for unconstrained PA’s the nature of the
probability distribution for R? is not obvious. If the
width of the distribution is significantly narrower than its
mean, then almost all configurations are stretched. Alter-

natively, the distribution may be broad, and centered on
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small values of Rgz, in which case the exponent v is unity
only because the sample contains a finite portion of
stretched configuration. The latter scenario is more like-
ly in d=3 which is a “borderline” dimension above
which v<1. A quantitative answer to this question re-
quires simulations of a few thousand realizations of
chains at least as long as those considered here.

Our study was restricted to the behavior of an isolated
PA, and therefore applies to the experimental case of
very dilute solutions. Interesting effects may be observed
as the concentration of the solution increases. While a
single PA can have an unconstrained charge distribution,
and therefore prefer to be stretched, in solution it is likely
to pair with another PA of opposite charge, thus reduc-
ing energy, while losing translational entropy. At
sufficiently high concentrations such pairings may lead to
phase separation into a collapsed state.

The arguments in this paper rely heavily on the long-
range nature of the interactions. However, problems of
this type are also present with only short-range interac-

tions. Recently we repeated the simulations of polymers
in d=1 with random contact interactions [7], with the
constraint of overall neutrality, and obtained strong devi-
ations from the previously published results for uncon-
strained polymers. It is not yet clear whether this is a
finite-size effect, or whether global constraints can indeed
modify the behavior of polymers with short-range in-
teractions. Recent results on a directed version of the
problem also observe a dependence on net charge for
short-range interaction [27], favoring the latter possibili-
ty.
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