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Abstract

Spatial conformations of randomly charged polymers (polyampholytes (PAs)) strongly depend
on their total (excess) charge Q. For Q larger (smaller) that some critical value the PA is
expanded (collapsed). The transition between the collapsed and the expanded states is reminiscent
of the Rayley shape instability of a charged drop. The expanded states can be approximately
described using the necklace model, as a chain of interconnected compact globules. Randomness
of the charge sequence along the chain modi�es the simple model creating wide distribution of
sizes of the “beads” of the necklace. A simple mathematical model was proposed to describe
the shape of the necklace. ? 1998 Elsevier Science B.V. All rights reserved.
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The importance of understanding proteins [1] has attracted much attention to the
statistical mechanics of heterogeneous polymers. A particular type of heteropolymers
built with a mixture of positively and negatively charged groups along their backbone
are called polyampholytes (PAs). Proteins are biomolecules formed from amino-acids.
Out of 20 natural amino-acids, three are positively charged (Lys, Arg, His) and two
are negatively charged (Asp, Glu) [2]. A statistical study of the charge distribution
along the sequences of biomolecules [3] indicates that from the point of view of elec-
trostatic interactions the charge sequences in proteins are only weakly (anti-)correlated.
Thus, the proteins can be approximately treated as randomly charged PAs. Experiments
on PAs and polyamphilic gels [ 4 – 8] reveal an extreme sensitivity of their geomet-
ric properties on their overall charge. We will show that the presence of long-range
electrostatic interactions indeed causes a rather unique behavior in such polymers: the
spatial conformations of a single PA with unscreened electrostatic interactions at a low
temperature T strongly depend on its total (excess) charge Q. We will demonstrate
that the geometry of the system can be qualitatively described using simple models.
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We will consider a model PA consisting of N monomers. The charge of the ith
monomer qi=± q0 is assumed to be uncorrelated with the charges of other monomers,
and the charge sequence is quenched. Geometrical properties of polymers can be con-
veniently described by their radius of gyration (root-mean-squared size) Rg [9]. At
high T , the e�ect of electrostatic interactions is small, and Rg is approximately equal
to that of an uncharged polymer. However, upon lowering of T the PA attempts to
take advantage of the presence of two types of charges along its backbone by assuming
spatial conformations in which every charge is predominantly surrounded by charges of
an opposite sign. If the total (excess) charge of the PA is Q ≡ ∑N

i=1 qi, then the aver-
age product of the two charges selected on the sequence 〈qiqj〉 = (Q2 − q20N )=N 2. For
instance, for a neutral PA (Q = 0), we have 〈qiqj〉 = −q20=N , i.e. a slightly attractive
interaction. Although the attraction is very weak (∼1=N ), there are N (N − 1)=2 inter-
acting pairs, leading to a strong overall attraction. Note, that for Q ¿ Qc ≡ q0

√
N ,

the randomly selected pair will (on the average) repel. More formally, it has been
shown [10,11] using 1=T expansion of Rg, that at high temperatures for Q greater
(smaller) than Qc the Rg increases (decreases) with decreasing T . Monte Carlo [12,13]
and exact enumeration [14] studies con�rm that such T -dependence of Rg persists for
all temperatures.
The behavior of neutral PAs can be approximately described using a Debye–H�uckel-

type theory [15,16], which leads to the conclusion that at low T the polymer should
collapse into a dense state with condensation energy Econd ≈ − Nq20=a, where a is
a microscopic distance such as diameter of the monomer. In such a collapsed state,
Rg∼N 1=3. Debye–H�uckel theory is not applicable to the non-neutral PAs. Nevertheless,
the globular low-T state can be used as a starting point in a phenomenological de-
scription of PAs. It is plausible to assume that the energy E of a globular PA can be
expressed as a sum of three terms:

E = −N q
2
0

a
+ S + Q2=Rg : (1)

(In this description we omit the dimensionless prefactors of order unity.) The �rst
term in this equation represents the Debye–H�uckel-type condensation energy, the sec-
ond term is the surface energy (where the surface tension ≈ q20=a3, and the surface
area S ≈ a2N 2=3), while the last term is the electrostatic energy of the globule of radius
Rg≈ aN 1=3. The ability to separate the total energy into three terms in not self-evident
in a random system. An exact enumeration study of all quenches and spatial con-
formations of PAs with N613 con�rmed the accuracy of this assumption [14]: Fig.
1 depicts ground-state energies of all possible quenches of a 13-monomer PA. (The
horizontal axis represents an arbitrary numbering of the quenches.) The energies are
separated into seven bands, corresponding (from bottom to top) to excess charges of
Q = 1; 3; 5; : : : ; 13. Clear separation of the bands and small uctuations within the
bands indicate that the electrostatic energy of the overall charge can be separated
from the rest of formation energy. The correct N -dependence of the �rst two terms in
Eq. (1) was also veri�ed [14].
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Fig. 1. Energies of the ground states [14] of all distinct (i.e. unrelated by symmetry transformations) quenches
(arbitrarily numbered from 1 to 2080) of PAs with N = 13.

If the volume of the globule remains constant, i.e. the �rst term in Eq. (1) does
not change, then the optimal shape of the globule can be obtained by minimizing the
sum of surface and electrostatic energies. Note, that for spherical shape both terms
are proportional to N 2=3. The problem is analogous with the well-known problem of
a charged liquid drop [17,18] and with charged-drop model of the atomic nucleus
[ 19 – 21]. (The former case treats a conducting drop, while the latter case corresponds
to a uniformly charged drop.) For a drop with volume V = 4

3�R
3, one can de�ne a

dimensionless parameter

� ≡ Q2

16�R3
=

Q2√
12V

≡ Q2

Q2R
; (2)

which determines the shape of the drop. The Rayleigh charge QR≡12V ≈ q0
√
N

coincides with Qc. It can be shown [14] that the elongated (spheroidal) shape of a
conducting drop has lower energy than the spherical shape for �¿0:899. Although
spheroidal shape has lower energy, it is not the absolute energy minimum. A drop can
further lower its energy by splitting into several equal drops. In particular, a uniformly
charged drop will split into two drops for �¿0:3. A polyampholyte with excess charge
Q can imitate such a splitting by forming a necklace of several charged globules
connected by narrow necks. If the total length of such conformation is h (ha2.R3);
then the splitting will reduce the electrostatic energy to Q2=h. However, creation of
the necks connecting the globules will increase the surface energy by ah. Optimizing
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the total energy we �nd: h∼Q. This picture has been independently con�rmed by
MC simulations [22] of homogeneous weakly charged polymers. Since such polymers
do not condense into globular shape, and attractive short-range interaction has been
added to ensure the condensation. Formation of necklace has been observed with in-
creasing Q.
Unlike the homogeneous case, in PAs the condensation energy is created by all the

(positive and negative) charges of the sequence. However, the main di�erence between
the PA and the homogeneously charged polymer is the randomness. Splitting a random
sequence of charges into two equal parts will not split the total excess charge into
half: on the contrary, the excess charges of two subchains can have either the same or
opposite signs. Monte Carlo studies indicate [12,13] that low-T con�gurations consist
of few almost neutral globules connected by charged necks, or even of a single almost
neutral globule with charged tails sticking out of it. It is not clear whether there is
just one well-de�ned low-T conformation, or several conformations of very di�erent
shapes with similar energies [23].
While the exact treatment of electrostatic interactions is not possible, we can pose

a simpli�ed problem which captures some essential features of this necklace model,
e.g., we may ask what the typical size L of the largest neutral (or weakly charged)
segment in a random sequence of N charges will be. In order to answer this question,
we investigated [24,25] the size distribution of the largest Q-segments (segments with
a total charge Q) in such N -mers. This problem can be mapped to a one-dimensional
random walk (RW): the sequence of charges {qi = ±1}, is mapped into a sequence of
unit steps in the positive or negative directions along an axis. The sequence of charges
with vanishing total charge now corresponds to a RW which returns to the origin after
N steps, while a neutral segment inside the sequence of charges corresponds to a loop
inside the RW. Similarly, a segment with charge Q corresponds to a segment (in the
corresponding RW) whose end is displaced by Q units from its beginning.
In the large N limit, the problem can be described in terms of a probability density

p(‘; q), where ‘ ≡ L=N and q ≡ Q=√N are the reduced length and charge, respectively.
This probability density was investigated using Monte Carlo and exact enumeration
methods, as well as by analytical arguments [24,25]. Fig. 2 depicts the dependence of
p on both its variables. It has been shown that the function p(‘; 0) has an essential
singularity in the ‘→0 limit, and diverges as 1=√(1− ‘) in the limit ‘→1. For our
purposes, it is important to note that the typical neutral segment in a random sequence
is very large (L≈ 3

4N ): Thus, it is not surprising that the low-energy states of a random
quench frequently look like one large weakly charged globule with sticking out charged
tails.
The problem of largest Q-segment is closely related to the problem of self-avoiding

walks (SAWs). While the physical problem of charged PAs naturally creates a one-
dimensional RW, we can generalize the problem to a d-dimensional walk. Now the
elementary charges become vectors, and we are looking for the longest segment which
produces a prescribed displacement. (If the prescribed displacement vanishes, then we
are looking for the longest loop.) Not surprisingly, the problem becomes trivial for
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Fig. 2. Probability density of largest Q-segments as a function of reduced charge q and reduced length ‘.
The results have been obtained from MC simulations [24,25].

d ¿ 4, where p(‘; 0) = �(‘), i.e. the largest loops have negligible length compared
with the length of the walk. However, for d¡4, the function p has a non-trivial
shape which has been calculated using Monte Carlo methods [24,25]. The probability
density p(‘; 0) can be derived from the partition function of a modi�ed SAW in which
self-avoiding interactions are operating only between monomers separated by distance
(measured along the walk) larger than ‘N . This problem could be treated using the
standard renormalization group methods.
The largest Q-segment problem signi�cantly oversimpli�es the actual problem of

PA. Nevertheless, its results capture some qualitative features of the low-temperature
conformations. Slightly, better results can be obtained by considering problems of sev-
eral segments (e.g. searching for two separate neutral segments with the largest sum of
lengths) in the same random sequence with simpli�ed surface energies (which depend
only on the length of a segment) and simpli�ed Coulomb interactions (which depend
only on overall charges and distances between the segments). Preliminary results show
an improved agreement with the results observed in the numerical studies of PAs.
While such simple models increase our understanding of the ground states of PAs,
we do not expect them to resolve such questions as the scaling relation between the
quench-averaged Rg and N . The typical excess charge created by a random sequence
is of the order of QR, i.e. the averaging over an ensemble of quenches is performed
exactly at the point where Rg depends very strongly on Q, and therefore the resulting
average may depend on minute details of the statistics.
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