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Abstract. - Connection between discrete and continuum models of polymerized (tethered) 
surfaces has been investigated by applying a transfer matrix method to  a discrete rigid-bond 
triangular lattice, which is allowed to fold on itself along its bonds in a two-dimensional 
embedding space. As its continuum counterpart, the model has an extensive entropy and the 
mean squared distance between two sites of a folded lattice increases logarithmically with the 
linear distance between the sites in the unfolded state. The model lattice with bending rigidity 
remains unfolded at any finite temperature, unlike real polymerized surfaces. 

Properties of polymerized or tethered membranes (surfaces) have been an object of 
numerous recent studies [l-61. We can view the polymerized surfaces as a generalization [l] 
of linear polymers [7]. This analogy has been used [3] to investigate the properties of self- 
avoiding tethered surfaces. However, unlike in the linear polymers, the long length-scale 
behavior of tethered surfaces strongly depends on the details of the Hamiltonian. In 
particular, very rigid surfaces exhibit a nontrivial [6] flat one. As the rigidity of a surface 
changes it undergoes a second-order phase transition [l, 4,5] from a crumpled (linear- 
polymerlike) phase to a flat phase. Neither the flat phase nor the crumpling transition has an 
analogy in linear polymers. 

The theoretical treatment of long length-scale properties of linear polymers rests on a 
fkm foundation, since in the absence of self-avoiding (excluded volume, steric) interactions 
their properties can be calculated exactly. In particular, it can be shown that the end-to-end 
distance (both in continuum and on a discrete lattice) of a long polymer described by any 
local Hamiltonian obeys the Gaussian probability distribution. Thus on sufficiently long 
length-scales the polymer can be described by an effective Hamiltonian H I =  
= KkB T$dx(dr/dx)2, where r is the position of a monomer in the d-dimensional embedding 
space, while x is the i n t e m l  coordinate (label) of a monomer. 

A straightforward generalization of H I  assumes that a t  long length-scale two-dimensional 
(2d) polymerized membranes without self-avoiding interactions will be described by 
H 2  = KkB T$d2x(Vr)2, where x is the internal coordinate of a monomer, i.e. its position in the 
2d network, while (Vr)2 (W&1)2 + ( W ~ X ~ ) ~ .  This expression has indeed been confirmed 
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by Monte Carlo simulations and by an approximate Migdal-Kadanoff renormalization group 
treatments for a 2d network embedded in a continuous three-dimensional space for several 
types of intermonomer potentials [l], and has been used as a starting point in the theoretical 
treatment of self-avoiding membranes [3]. The validity of H2 also has been demonstrated in 
the limit of the infinite embedding dimension for quite a large class of models [8]. Obviously 
this cannot be a general result for an arbitrary microscopic Hamiltonian in an arbitrary 
embedding space dimension, because the mere presence of the crumpling transition and of 
the flat phase indicates that the longh length-scale limit does depends on the details of the 
microscopic Hamiltonian. One may also question the equivalence of discrete and continuum 
models, and wonder whether a situation resembling roughening transition in solid 
interfacesf91 may also be present in tethered surfaces. Actually, one can easily find a 
discrete example of a different behavior [4]: consider a two-dimensional square lattice 
embedded in two dimensions and free to fold on itself along its bonds. The folds of the lattice 
can be only along infinite straight lines, thus, configurations of such a lattice can essentially 
be represented by an external product of two one-dimensional random walks. The number of 
distinct folded configurations of a finite L x L lattice is 4L, meaning that the entropy of the 
system increases as its linear size and therefore the entropy per unit area vanishes as 
L + CQ. The mean-squared distance ( r 2 )  between two points of the lattice increases linearly 
with the internal separation w between the points, as opposed to the prediction (r ')  - In w 
following from the continuum Hamiltonian H2.  If one introduces a bending rigidity by 
assigning energy x per unit length of a fold, one can easily see that the lattice remains flat at 
any finite temperature T, because the energetic cost of a single fold xL cannot be offset by 
the gain in the entropy. One may wonder, whether such a pathological behavior of a square 
lattice characterizes all discrete systems. 

We consider all possible foldings of a w x  L parallelogram excised from a triangular 
lattice in the limit L+ CQ. Figure la)  depicts such a lattice before the folding, while fig. l b )  
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Fig. 1. - Triangular lattice in a) unfolded and b) folded states (see text). 

shows the same lattice in the folded state. Each site of the lattice is identified by a number. 
Each permitted folding, which maintains the correct distances between the neighboring 
sites, is assumed to have the same weight. Two Configurations are identical if the positions 
of all corresponding sites coincide. (We disregard the differences caused by a uniform 
translation, rotation or inversion of the entire lattice.) Our definition of the identical 
configurations does not distinguish between the different manners of folding which lead to 
the same final state. The bold lines in fig. la) indicate the positions of the folds required to 
create the configuration in fig. lb). The a + *  and ((-)) signs indicate the <<up>> or <<down)) 
orientation of the triangles in the folded configuration. While the signs in fig. la) resemble 
Ising variables, the set of all possible configurations, obviously, cannot be obtained by 
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applying a local construction rule to those variables. On the other hand, we may consider six 
bonds entering a particular site (e.g. site 5 in fig. la)): each bond can be either folded or not. 
However, one can easily verify, that out of 64 possible surroundings of such a site only 11 
local environments are permitted. Thus one may attempt to construct the configurations 
using 11-state .Potts variables>> assigned to the sites. Unfortunately, even such a 
description requires a nonlocal rule, although the nonlocality is much more subtle, than in 
the dsing-like>> description. (Details will be given elsewhere[lO].) It seems that the 
nonlocality is inherent in this problem, and the only reasonable (but extremely inconvenient) 
description of a configuration consists of an explicit list of all folds which have been made. 

We resorted to a thermodynamic transfer matrix method (see, e.g., ref. [lll) to 
investigate the properties of lattice foldings. This method permits an exact solution of an 
infinite strip of a finite width w. By comparing the results obtained for various values of w 
we extract the results for an infinite triangular lattice. The folded configuration can be 
described as follows: consider a set of all parallel lines in the original lattice, such as the line 
joining sites 1-2-3, line 4-5-6 and line 7-8-9. The configuration can be described by giving the 
shape of each of these lines in the folded states, as well as their relative positions and 
orientations. The shape of a single line can be described by listing the ~~twns>> it makes in the 
folded state. A pair of neighboring bonds can either be parallel or form a f 2x13 angle. The 
shape of a line of length w is given by w - 1 numbers describing the relative orientations of 
bond pairs. The relative position and orientation of two neighboring lines is determined by 
the (up or down) orientation of two triangles situated between the first bonds of the lines. 
E.g.,  the relative position and orientation of lines 1-2-3 and 4-5-6 in fig. 1 is given by the 
orientation of the triangles 1-2-4 and 2-5-4. Each line can be in 4 3w-1 states, and the folded 
configuration is described by a list of all states. Transfer matrix element F$ is 1 if the two 
neighboring lines are permitted to be in the states a and p ,  and vanishes otherwise. Whether 
or not T Y  = 1 can be determined by a direct examination of the two lines [lo]. A folded 
configuration consisting of the lines in states a1a2as... aL is permitted only if 

of this product over all values of all ai. Thus NP) is essentially a sum of all elements of a 
matrix obtained by multiplying L - 1 matrices T(W). If the largest eigenvalue A(w) of T(w) is 
not degenerate (as indeed is the case [lo]), then, for a very large L, the result will be solely 
governed by that eigenvalue: NP) - AL. Thus the total number of states in an infinite strip of 
width w is determined by A. We found the largest eigenvalues of T(W) for strip widths 
w = 2,3, . . . , 7 .  (The matrices have several symmetry properties which can be used to reduce 
the size of the matrix which actually needs to be diagonalized [lo].) Figure 2 depicts the w- 

T(U” T ( W )  ns8 ... .Ti&L = 1. The total number of permitted states NLw) is obtained by summation 
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Fig. 2. - Largest eigenvalue h of the transfer matrix vs. the width w of the infinite strip. 
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dependence of A on a semilogarithmic scale. If the entropy of the lattice is extensive we 
expect NLw) - exp [ywL] = q2wL, with exp [yw] = A. From fig. 2 we find y = 0.386 f 0.002, i . e .  
each triangle in a large lattice can .on the average. be in q = 1.21 states. Thus, the number 
of states increase exponentially with area as one would expect in a continuum system, and as 
opposed to the result of a square lattice where y = 0. 

One may apply a similar method to determine the mean square width ( r2 )  of the infinite 
strip. If the squared end-to-end distance of a line (across the strip) in the state CI is r:, then, 
for a very large L, the ensemble average ( r 2 )  = 6,rtv,, where v and .ir are the (bi- 

normalized) left and right eigenvectors of T@) corresponding to the largest eigenvalue A,. 
We calculated ( r 2 )  for 2 < w < 7 and found a logarithmic dependence ( r 2 )  = B lnw, with 
B = 0.6. This result is, again, consistent with the prediction of the continuum Hamiltonian 
H2. 

So far the results of the discrete model were consistent with our expectations for the 
behavior of a polymerized membrane. However, an introduction of bending energy 
proportional to the total number of folded bonds, produces a situation, which is different 
from the regular case of rigid membranes: the lattice remains <<flat., i . e .  unfolded, at any 
finite temperature. Like in the case of a square lattice, the lowest-energy excitations (folds) 
require energy proportional to the linear dimensions of the system, and that cost cannot be 
offset by entropy. Unlike the square lattice, in already folded configurations it is possible to 
create excitations, whose energy is independent of the lattice size. However, the 
temperature T, at  which such excitations become important increases with the system 
size [lo]. Thus, we expect the infinite lattice to remain unfolded at any finite T. This result 
does not necessarily contradict the predictions regarding the finite-T crumpling 
transition [l] in polymerized membranes because: a) the bending rigidity of membranes in 
continuous spaces was .Heisenberg-like., i .e .  it was proportional to the continuously 
varying scalar product between the neighboring normals to the surface [2], while the model 
considered in this work has an <<Ising-like. bending energy; b)  the transition temperature of 
a continuous membrane is expected to increase [4,6] with increasing in-plane elastic 
constants, whereas our model might be thought of (at least, approximately [lo]) as having 
an infinite in-plane stiffness, leading to an infinite transition temperature. 

In this work we considered the statistical mechanics of a simple discrete model of a 
polymerized membrane, when our goal was both to understand the physics underlying the 
continuum surfaces and to inquire whether one can define a model which can be used in 
numerical investigations of such surfaces. We conclude that triangular lattice possesses only 
part of the properties expected of continuum systems. It is conceivable that the finite 
crumpling transition temperature is <<restored. in the rigid-bond model in the continuous 
three-dimensional space with <<Heisenberg-like. bending rigidity. However, the results of 
numerical methods in a discretized space will have only a limited applicability to real 
systems. 
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