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Topological entanglements play an important role in the physical properties, such as viscosity, of
macromolecular structures. We investigate the likelihood of the appearance of entanglements in the
bond percolation problem. We show that below the percolation threshold p, (but extremely close to
it) there exists an entanglement threshold p,. Between p, and p,, there exists an infinite spanning
group of interlocked (linked) clusters. Thus, in a strong gelation process, the sol-gel transition ap-
pears at p, rather than at p,. We define the problem and discuss the possible approaches to its reso-

lution. We apply the Monte Carlo renormalization-group approach to find the distance between the

thresholds, and investigate some numencal characteristics of the entangled clusters. The achieved

numerical resolution of p, —p, =~2.3X10~7
configurations.

1. INTRODUCTION

An important problem of the statistical mechanics of
macromolecules is how to account for topological entan-
glements. At experimentally relevant temperatures, most
of the polymers are unbreakable, and, therefore, two seg-
ments of the same or different polymers are prevented
from crossing each other during their motion in a sol-
vent. In its simplest form the effect of entanglements can
be demonstrated by the physics of a solution of ring poly-
mers, which behaves differently from a solution of linear
polymers of the same length, since a pair of such rings
created separately is prevented from interpenetrating by
topological constraints, while a pair of rings which have
been created in an interlocked (linked) state cannot be
separated without breaking up the macromolecules. To-
pologically interlocked rings, denoted “catenanes” in the
chemical literature, are common in many polymerlc ma-
terials."? Even for a single-ring molecule, the topological
entanglements play an important role since the phase
space of all possible configurations splits into several sub-
spaces, each corresponding to a different knot type. A
molecule in a particular knotted state cannot access
configurations corresponding to a different knot. Clearly,
the constraints strongly influence both the static and dy-

namic properties of polymers. One should, however,

clearly separate the topological entanglements, affecting
the equilibrium thermodynamics, from the dynamical
“entanglement constraints,”* which slow down the relax-
ation processes in polymers even in the absence of true
topological entanglements.

The problem of entang]ements was first clearly formu-
lated by Delbriik* and since received a considerable at-
tention. Usually, calculation of thermodynamic func-
tions involves integrations over all possible states of a sys-
tem, which disregards the fact that the phase space may
be split into several mutually inaccessible regions. Since

required averagmg over an exiremely large numbers of

the correct physics of the system must take into account

the fact that the initial conditions limit the accessible
phase space, one must supplement the purely Hamiltoni-
an description of the problem, by constraints which
would impose that limit.”> Usually, macromolecular sys-
tems fluctuate very strongly, and their behavior is pri-
marily determined by their connectivity and the excluded
volume (or steric) interactions. Thus, their properties are
determined by the available phase space, i.e., by the en-
tropy S. In particular, the elasticity of rubbers and gels
is, predominantly, of entropic origin.® Since the intro-
duction of topological constraints severely reduces S, it
has a ma ’}or effect on the properties of entropy-dominated
systems.” Attempts to incorporate the topological entan-
glements into the theory of rubber elasticity were
pioneered by Deam and Edwards,® and, by a somewhat
different approach, by Graesley and Pearson.” More re-
cently, Iwata developed a formalism'® which can be con-
~ veniently applied to regular (periodic) networks. Even in
such simple systems, the treatment involves numerous
approximations. The randomness of the crosslinking in
dense systems can be accounted for by means of the repli-
ca method.!1?
In the gel-formation process’” a solution of short
chains (sol) is chemically crosslinked to form clusters of

13

increasing size. The increase in the concentration p of
crosslinks leads to increased viscosity 9. At a certain
concentration p, (gelation threshold) the viscosity
diverges, and the system starts behaving as a solid (gel).
Just below p,, the viscosity n~(p, —p)™°. Above Pg> the
(entropic) elastic stiffness increases w1th increasing p.
Close to the threshold, the shear modulus u can be de-
scribed by a power law (p —p, ). The gelatlon process
can be modeled by a percolation problem,'* in which p is
the fraction of present bonds or sites on a regular lattice.
While such modeling over51mp11ﬁes the actual geometry
of the growing clusters,” it is frequently used due to the
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conceptual simplicity representing the generic disordered
system. The gelation threshold p, is usually identified
with the percolation threshold p,., at which an infinite
cluster (or a single macromolecule spanning the entire
solid) appears. Such an approach envisions a gel just
above p, as an infinite cluster and many finite clusters, as
depicted in Fig. 1(a). Physical characteristics of the tran-
sition, such as the entropic elasticity of the gel,'® are usu-
ally analyzed under this assumption.

However, the viscosity of a solution of macromolecules
may be infinite (while the shear modulus may be finite)
even in the absence of a single molecule spanning the en-
tire system, since it suffices to have a spanning group of
interlocked (linked) molecules to produce that effect.
Such behavior would appear in the “Olympic state” of a
system of interlocked ring molecules, suggested by de
Gennes.?* Such a system, depicted in Fig. 1(b), can be
created artlﬁmally However, much more interesting is to
find out whether the entanglements are frequent in com-
pletely random systems. If this is true, the gelation
threshold p, will be smaller than p,, and the geometry of
the gel Just above Pg will be represented by Fig. 1(c).

In this work we investigate the role played by entangle-
ments in random systems by analyzing a standard three-
dimensional percolation problem. We set aside the ques-
tion of elasticity, and focus our attention on the geometri-
cal and topological aspects of the problem. We show that
below the usual percolation threshold p,, there exists a
distinct entanglement threshold p,, which should be
identified with p, of the gelation process. Some of our re-
sults have already been published.!” In this paper, we
both present the previously published results, which have
been improved by an increased statistics, as well as in-
clude new information related to the geometrical features
of entangled clusters, and shortly overview the possible
approaches to the problem and provide details of our
method of calculation. Section II defines the problem
and overviews the available theoretical tools for its treat-
meht. Section III describes the finite-size scaling ap-
proach to the problem, as well as presents the details of
the numerical algorithm, and discusses the problems and
prospects of larger scale simulations. In Sec. IV we
present the results of the numerical simulations: We
show that Ap,=p.—p, does not vanish, and describe
some quantitative characteristics of entangled clusters.
Finally in Sec. V, we discuss the possible theoretical ex-
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FIG. 1. Schematic drawing of several solid systems having
finite entropic elastic constants: (a) system with a percolating
(infinite) cluster; (b) infinite cluster of entangled (yet not con-
nected) ring polymers; (c) random system with an infinite cluster

formed by entangled finite macromolecules.
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tensions of the work, as well as applicability of the results
to experimental systems.

II. ENTANGLEMENTS IN RANDOM SYSTEMS-—
CONCEPTS AND APPROACHES

The main object of the mathematical theories of topo-
logical entanglements is the developing of mathematical
methods for link and knot detection and discrimination.
While the existence of knots is an intuitively obvious fact,
the rigorous proofs of existence and effective methods of
knot detection date back only to 1920s, while the investi-
gation of the influence of entanglements on the physical
properties of the systems started in the 1960s. In a gen-
eral space dimension d one can distinguish many types of
topological entanglements. We will be concerned with
the case of two or more entangled loops (link), such as de-
picted in Figs. 1(b)-1(e). Such entanglement of linear ob-
jects is possible only in d =3. However, one may also
consider more general kinds of entanglements, such as a
closed loop surrounding a point in d =2, or a surface en-
capsulating a point in d =3, or entanglements between a
line and a surface in d =4. Some properties of entangle-
ments of higher-dimensional manifolds have been investi-
gated by Duplantier.® Since we are interested in the be-
havior of macromolecular structures, we shall remain in
the realm of entanglements between linear objects.

There exist numerous methods of link detection: The
simplest approach detects the presence of a topological
link between two loops /, and /, by calculating the
Gaussian invariant:!®

(dryXdr,)(r;—r1,)
L= 1§1,§12 e 2.1

e, =, .

If the (integer) result of this double integration does not
vanish, the loops are linked. .L,, measures the number of
times one loop crosses through the other: It vanishes for
the nonentangled configuration depicted in Fig. 2(a) and
is equal to 1 (the sign depends on the choice of direc-
tion of integration) for a simple entanglement of two
loops depicted in Fig. 2(b) and is equal to £2 for a more
complicated entanglement depicted in Fig. 2(c). The sim-
plicity of the invariant (2.1) leads to its extensive use in
the analytical treatment of the entanglement prob-
lem.”?2! The numerical evaluation of .£,;, does not in-
volve a calculation of continuous line integrals, since it
can be reduced to intersection countin§ on the projec-
tions of the loops on an arbitrary plane, 2 and, therefore,
can be efficiently used in numerical simulations. '
Unfortunately, .L, does not discriminate well between
different kinds of links. In particular, there exist entan-
gled (linked) configurations, such as depicted in Fig. 2(d),
for which .L , vanishes.”? It also cannot be used to inves-
tigate self-entanglements of a single loop (knot).2* A
significantly better resolution of knots and links can be
obtained by the use of Alexander polynomials.25 "Howev-
er, the construction of those polynomials is defined algo-
rithmically, thus preventing their use in analytical treat-
ments, and restricting their application to numerical in-
vestigations.”>?* Alexander polynomials are unable to

resolve several dlﬁ"erent (very complicated) knots and
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FIG. 2. Examples of linked loops: (a) trivial, unlinked case
with £ =0; (b) simple link with .L=1; (c) simple link with L=2; _
(d) nontrivial link with £ =0; () triplet of entangled rings (Bor-
romean rings) which are not pairwise entangled.

links.”® However, from the practical point of view they
are sufficiently discriminative for most problems. Re-
cently, even more powerful invariants have been found,?’
however, they had not yet been implemented in the calcu-
lation of the properties of physical systems.

In a regular percolation problem a pair of bonds be-
longs to the same connectivity cluster if there is a continu-
ous path of present bonds connecting them. If the proba-
bility p for bonds to be present exceeds the threshold
value p,, an infinite connectivity cluster is present in the
system. We will say that two bonds belong to the same
entanglement cluster if they either belong to the same
connectivity cluster, or belong to different connectivity
clusters which cannot be separated without violating the
topological constraints. One should keep in mind that
entanglement is a global property, which cannot be
detected by a simple inspection of the local environment
of each bond. Moreover, one mlght have a situation,
resemblmg Borromean rings, where a trlplet of connec-
viewed separately, is not entangled [see Fig. 2(e)]. Our
primary goal is to find the entanglement threshold p,,
above which there exists an infinite entanglement cluster.
From the definitions it is clear that p, <p_; the main pur-
pose of our work was the establishment of the strict in-
equality p, <p.. Near the threshold, the behavior of the

system should be described by a set of critical exponents

analogous to the regular percolation problem: The root-
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system: If the bonds do not percolate in, say, the vertical
direction, one can find a collection of plaquettes forming
an orientable surface separating the system into upper
and lower parts. Thus the threshold g, signifies the ap-
pearance of an infinite orientable surface in the system.
This surface will not, in general, be simply connected.
Moreover, if p, <p,, then in the range ¢, <gq <g,=1-p,
all infinite surfaces will have handles. The threshold ¢,
will therefore signify the appearance of the first infinite
simply connected surface.

As in the regular percolation, one may try a variety of
approaches to the problem in question. However, one
quickly discovers that certain techniques used in regular
_ percolation are almost useless in the entanglement prob-
—lem. For example, series expansions® can hardly be used
for these purposes: The smallest possible pair of entan-
gled clusters in a three-dimensional bond percolation
problem on a cubic lattice consists of two square loops of
_size 2X2. Since the number of bonds in such a
conﬁguratwn is 16, the differences between the regular
and entanglement percolations in the low-concentratlon )4
expansions will appear at the order p'. (In the site per-
colation on the same lattice the dlﬁ'erences will appear at
the order p3%) One can hardly imagine using e-
expansion-type techniques (for determination of the criti-
cal exponents), since it is not clear what is the proper
generalization of the problem to an arbitrary space
dimensionality, and because a satisfactory treatment
should involve constraints (such as Alexander polynomi-
als) which have no convenient representation. So, at this
early stage of the investigation of entanglements, we are
left with the possibility of the numerical investigation,
which, as we shall see in the following sections, is by itself
on the “borderline” of what can been done with today’s
computing means.

III. THE NUMERICAL PROCEDURE

The quantitative analysis of the problem relies on the
finite-size scaling, or large-cell Monte Carlo renormal-
ization-group®® method: In the case of a regular percola-
tion problem we define a contact probability X,(p,L) that
a finite L XL XL system percolates in, say, the z direc-
tion. We may treat X,(p,L) as the renormalized proba-
bility of a bond to be present after the original problem
~ has been rescaled by a factor L. The fixed point p*(L) of
such renormalization-group transformation is determined

mean-squared size of a finite entanglement cluster, denot-
ed as correlatlon length £, is expected to diverge as

from the equation X, (p* L)—p , and provides an esti-
mate of p,, since lim; , ,p*=p,. Actually, the equation

lp *pel *, while above the threshold, the volume frac-
tion of the infinite entanglement cluster should be de-

) B, e .
scribed by a power law (p —p,)®. Similarly, one can
define other critical exponents.

One should bear in mind a formulation of the same
question in terms of plaquette percolation:?® Consider a
dual of the bond percolation problem, in which we place
a plaquette in the middle of each absent bond, perpendic-
ular to it. The concentration of the plaquettes will be

=1—p. One can easily understand the meaning of the
threshold value g,=1—p, by considering a large finite

defining the fixed point has three solutions, and we disre-
gard two of them, p*=0 and p*=1, which represent the
trivial (stable) fixed points. In an infinite system, the
root-mean-squared size of a finite connectivity cluster,
called the correlation length &, diverges as p approaches
Pt E.=alp—p.| ", where v,~0.9 for the three-
dimensional percolation,'* while the prefactor a is of or-
der unity. Far away from the percolation threshold,
where £, <L, we have X, =~0 (X, ~1) for p <p, (p >p,).
Thus, the width of the region in which X, increases from
Oto 1isof order L *e, and the slope




&

ax,
3.1)

dp

1/v,

~ <

p=p*

all)=

Actually, this relation can be used to define the exponent
Vi

ve= lim —2L_ - (3.2)

L—w lna(L)

It is worthwhile to note that in the range of L’s used in
our simulations (L ~10), we expect to have a slope
af{L)~10. )

Similarly, we can define a probability X,(p,L) that the
system is entangled (i.e., either percolates or cannot be
separated into two parts without violating the con-
straints) in the z direction, and use this function to obtain
an estimate pX(L) of the entanglement threshold p, as
well as the value of the critical exponent v, characteriz-
ing the correlation length £,. A4 priori, there is no reason
to expect equality between v, and v,. Therefore, for
sufficiently large L, the slopes of X, and of X, at their
respective fixed points may be different. One can easily
see that the expected distance between the estimates of
the critical points Ap} =p*—p/J is extremely small: The
smallest possible entangled configuration on a cubic lat-
tice consists of two interpenetrating (but not touching)
loops of sizes 2 X2 each. This minimal configuration con-
sists of 16 bonds, and its probability for p~1 will be
smaller than p*~107' In the simulation we used
boundary conditions in which the entire boundary layer
consisted of present bonds, as depicted in Figs. 4—6. Fig-
ure 3 depicts the smallest possible entanglement on L =3
lattice. For L'<2 entangled configurations are impossi-
ble, while for L ~10 we expect to have very small Apk.
(The numerical simulations indeed show that Ap}
~1078-1077 in the relevant range of L’s.) Since
X, ZX,, and both curves are smooth, for L ~ 10 they are
well approximated by straight lines in a range of p’s satis-

o o
o o o
o 0
Y o
° ° (3

FIG. 3. Smallest possible entangled configuration on L =3
lattice. The spheres represent the lattice sites, and the cylinders
represent the relevant bonds. The z axis has been chosen as the
direction of percolation and/or entanglement. The boundary
conditions used in the simulation are evident in the filling of the

top and bottom planes with bonds.
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fying |p —p*| <0.1. This range of linear behavior by

many orders of magnitude exceeds Ap);. Therefore, we
conclude that for values of L relevant to our simulation
the slopes of X, and X, coincide, and in the vicinity of p*
they are well approximated by two parallel straight lines.
Thus, instead of measuring Ap), we can measure the
quantity

AX=X,(p*L)—X,(p*,L)
=X,(pX,L)+(3X,/dp)Apt—X.(p*,L)
=(a—1)Ap2 .

Since a~10 in the relevant range, the quantity AX is

o
Ot PRI, B
° o o
o
[+] 0 J
° =0
(<)
[o]

(b)

FIG. 4. Typical entangled nonpercolating configuration for
L =4. (a) The original random configuration. (b) The same
configuration after all small loops and dangling bonds (without
large loops) have been removed. Boundaries are filled with

present bonds, and increase the probability of loop occurrence.
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the calculation.

The first stage of the analysis of a randomly generated
sample consisted of removal of small loops (consisting of
four bonds) and “shaving” of the clusters from dangling
ends, which do not contain large loops. (However, care
had to be taken not to destroy large loops in the small-
loop elimination process.) We also removed all clusters
which were not connected to either upper or lower boun-
daries of the lattice. (Neglect of those clusters is justified
below.) This process significantly simplifies the following
treatment of the configurations. Figure 4 depicts a typi-
cal entangled configuration for L =6 before and after the
“shaving.” The numerical advantage of removal of the
clusters not connected to the boundaries and of removal
of approximately half of the bonds in the clusters which
are attached to the boundaries is self-evident.

: - . . At the next stage, the remaining loops have been found
FIG. 5. Typical entangled nonpercolating configuration for ~ Using an algorithm based on the “burning” method: A
L =6, “shaved” from dangling bonds and small loops. The en-  One bond of the cluster (e.g., a bond on the boundary of a
tanglement appears “in the middle of the lattice” without the  lattice) is chosen to be “burned” at the zeroth time step
assistance of the boundary conditions. ) o At the nth time step one burns all present prev1ously
o _burned” bonds which are adjacent to bonds burned in the
(n —1)th time step. Two simultaneously “burned” bonds
larger than Ap(, by an order of magnitude, and, there-  emerging from the same site identify a branching point,
fore, more easily measurable. AX is just the probability  and the site is denoted as a “root.” Each “burned” bond
of finding a nonpercolating, yet entangled realization for  has a pointer indicating its predecessor in the burning
given L and p. process, as well as an indicator of the last “root” which
We considered lattices with L =4, 6, 12, and 18. On  appeared on the way towards the present “burning.” Two
those lattices we examined 192, 40, 10, and 6 millions of simultaneously “burned” bonds, entering the same site,

configurations, respectively. The total simulation con-  close a loop, which can be found by tracing back the lat-
sumed eight months of CPU time on an Apollo DN 3000  est common “root” of both bonds, and by creating a
and Sun 4/110ME minicomputers. (The most time con-  complete list of bonds belonging to that loop with the use
suming parts of the algorithm are not vectorizable, and  of “backwards pointers.” (The redundant use of “back-
an attempt to execute the programs on a Cyber 205  wards pointers” and “root indicators” accelerates the
supercomputer gained only an 18-fold increase in speed.)  joop-detection process.) Only loops containing eight
Since the program demanded relatively small memory, bonds or more are registered, since smaller loops cannot
but required enormous execution times, the large redun-  create an entanglement. The final stage of the procedure
dancy of the data structure has been used to ?C,Cd‘-?r.ate _consists of testing for entanglements between pairs of
: - “Toops belonging to different connectivity clusters: First
~ we check whether the loops are located in the vicinity of
e e ,‘]_1 e each other, and if they are indeed sufficiently close, we
- R ) calculate the Gaussian invariant (2.1) by projecting the
2+ o Ioops on a glane, and analyzmg the intersections of the
- a B ‘ - prOJectlons Thls could be, in principle, the most time
e fisirhing process, since the link detection between two
£ - C ' loops consisting of L, and L, bonds requires L L, opera-
Pl - 4. o tions. However, the elimination of small loops and the
o .
i

test whether two loops are sufficiently close to each other
ehmmate the need for most of the calculations of the

. Gaussian m\arxant

- } T oo e interesting to observe the 1nﬂuence of the bound-
Fo | (o ] - *an conditions on the formation of entanglements: For
0=y bl e e e [ 223 case, deplcted in Fig. 3, the presence of the bound-
0.0 0.1 02 ... 03— - ary layer is crucial for the possibility of appearance of an
/L I Mglement In the L =4 case, a significant part of the

FIG. 6. Successive distances between the fixed pomts Apfas  bonds in the loops which form the entanglement still be-
a function of inverse cell size 1/L. Error bars are the estimated  10ngs to the boundaries. Thus, in these cases, a particular
standard deviations due to the finite number of realizations. ~ choice of boundaries provides a significant assistance to
The extrapolation of the graph to 1/L =0 (as indicated by the  the formation of entanglements. However, in the L =6
arrow) gives the distance between the percolation and entangle-  case, depicted in Fig. 5, the entanglement already appears
ment thresholds. . w1thout the assistance of the boundaries.
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Simulations were performed at p*(L). Note, that
despite the small value of Apk, the wide range over
which X, and X, are linear permits us to use a low-
accuracy value for p*. Thus, we were able to determine
difference in the thresholds with accuracy of order 1077,
while the locations of the fixed points were known only
up to three-digit accuracy. One should keep in mind that
AX is extremely small in the considered range of L’s, and
therefore, it sufficed to examine only “direct” entangle-
ments between the loops belonging to the cluster attached
to the upper boundary of the lattice and the loops belong-
ing to the cluster attached to the lower boundary—the
probability of entanglement via an intermediate cluster is
completely negligible. We mentioned in the previous sec-
tion that the Gaussian invariant may not detect certain
entangled configurations. Thus, in principle, this method
of calculation would only establish a lower bound on AX.
However, even the simplest entangled configuration with
vanishing .L,, with topology depicted in Fig. 2(d) con-
tains at least 34 bonds, and in the relevant range of L’s,
the probability of occurrence of such a link is completely
negligible (and many orders of magnitude below the accu-
racy of our calculation). For similar reasons, we can
neglect the possibility of appearance of “nonpairwise” en-
tanglements, such as Borromean rings. Thus, within the
accuracy of our results, we obtain the actual value of AX,
rather than its lower bound.

In the following section we will show, that, in order to
investigate the critical exponents of the entanglement

. problem, L must exceed 300. In principle for very large
L’s (L >>100), below p,, the number of loops should in-
crease as the volume of the system, and, therefore, the
number of operations required to examine a single
configuration should increase as L° In the intermediate
range of L’s (say, L ~50), where one still can neglect the
entanglements via intermediate clusters, only the “semi-
infinite” connectivity clusters attached to the opposite
boundaries are relevant, and we expect the number of
operations to increase as L22, where D is the fractal di-
mension® of the “shaved” connectivity cluster. (Prob-
ably, it coincides with the fractal dimension of the entire
cluster, i.e., it is =~2.5.) However, in the range of our
simulation L ~ 10, the time increased only as L3, since
the time consumption was not yet dominated by the
checks of entanglements between the pairs of loops. The
increase in time is partially compensated by the increase
of entanglement probability, and the time per entangled
configuration increased very slowly, reaching 80 h CPU
for L =18 (on Apollo DN 3000). We estimate that there
will be a need for, at least, few months of CPU time per
single entangled configuration in the interesting range of
L ~300, where one should expect to see a clear separa-
tion between p. and p,. Moreover, one should keep in
mind that for large cells one will need more elaborate
methods of link detection, and entanglements between a
pair of connectivity clusters “mediated” by an additional
cluster will also play an important role. Thus, unless an
efficient vectorizable algorithm for entanglement detec-
tion can be found, one can hardly expect to investigate
the critical exponents of the entanglement problem in the
near future.
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IV. POSITION OF p, AND PROPERTIES
OF ENTANGLEMENT CLUSTERS

Among the millions of examined configurations for
each L only n~10-25 entangled nonpercolating
configurations were found. Under these conditions, the
appearance of entangled configurations is governed by
the Poisson process, and the estimated statistical error is
just Vh. Thus, the accuracy of our estimates of AX and
ApY is only about 20% to 30%. [Since, the slope a is
known to better than 1% accuracy, it does not further
contribute to the uncertainty of Ap(L).] Figure 6 de-
picts the sequence of estimates Apy(L) as a function of
1/L. The estimated asymptotic value is Ap, =~2.3
X107, Notice, an upwards curvature of the entire
curve: One may suspect that the actual value of Ap,, is
somewhat larger than the value quoted above. (This cur-
vature was not so pronounced in the previously published
results!” due to their lower accuracy.) While the distance
between the critical points is very small, there is not
much doubt that it is finite.

Since we are still quite far away from a reliable scaling
regime it is quite difficult to predict the exact dependence
of the entanglement probability on L. However, if we as-
sume an approximate power-law dependence, then from
our data we may estimate that for L ~300 most of non-
percolating configurations at p* will be entangled.

The extreme closeness of two critical points prevents
investigation of the critical properties of entanglement
clusters near p =p, for such small cells. We, neverthe-
less, measured several quantitative characteristics of the
entangled configurations. It has been noted by Coniglio®®
that a percolating configuration at p, on a finite lattice is
comprised from several multiply connected regions,
which are interconnected by one-dimensional segments of
singly connected (or “red”) bonds, the destruction of
which would disconnect the lattice. He has further
shown that the average number L, of “red” bonds is pro-
portional to L™. Tt can also be shown that in a discon-
nected configuration, there exist singly disconnecting (or
“pink”) bonds, such that reconnection of any one of them
will create a percolating cluster. The number of “pink”
bonds L, (Ref. 34) is also proportional to L. Thus the
measurement of L, and L, can be used to evaluate v,.
The arguments used in establishing those relations in the
regular percolation problem can be directly implemented
for the entanglement problem: In a (large) finite lattice at
p. the role of the “red” bonds is played by the bonds,
whose removal will “disentangle” the system. The num-
ber L. of such “singly disentangling” bonds (continuing
the color nomenclature, we denote them “crimson”
bonds) should increase with the lattice size as L. Fig-
ure 7 depicts on a logarithmic scale the L dependence of
L., measured only for the nonpercolating, yet entangled
configurations. Were this measurement to be performed
for very large L, where most of the configurations are en-
tangled, its slope would provide us with the value of v,.
The numbers of “crimson” bonds by an order of magni-
tude exceed the L, in the percolating configurations, i.e.,

the configurations are “very fragile” and can be disentan-
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FIG. 7. Logarithmic plot of numbers of “pink” (L,) and '

“crimson” (L.) bonds (see text) in entangled nonpercolating
configurations as a function of lattice size L at p =p*(L).

gled by breaking a single bond in many places. On the
other hand, the slope of the curve is approximately 1, i.e.,
is consistent with the value of v for a regular percolation.
However, one should not forget that we are not in the
desired large-L regime, i.e., the entangled configurations
are exceptional, and the entire data collected on the en-
tangled configuration has a negligible contribution to the
general averages, due to rarity of the entangled
configurations. ST

The equivalent of the “pink” bonds in the percolation
problem, should be the bonds, whose addition creates an
entangled or percolating configuration. (However, since
D, is strictly lower than p_, for sufficiently large L it is im-
possible to create a percolating configuration by an addi-
tion of single bond at p =p,.) We did not measure the
numbers of those “singly entangling” bonds. The mea-
surement of L, which is relevant only to the percolation
problem (see Fig. 7), again indicates a slope close to 1,
and the values of L, significantly larger than those in reg-
ular (not entangled) nonpercolating samples. This result,
again confirms our claim that the shape of the entangled
samples is rather exceptional. The fractal dimension of
the entangled nonpercolating cluster has been measured
and appears to be consistent with the fractal dimension of
regular percolation. )

So far the quantitative data on the (exceptional) entan-
gled configurations does not show any pronounced
differences between the regular percolation and the en-
tanglement problem. If, indeed the only difference be-
tween the two problems consists in the fact that small
loops in neighboring connectivity clusters are occasional-
ly entangled, this would mean that the entanglement
problem is essentially equivalent to percolation problem
with a somewhat shifted p.. However, this is all one can
expect to see on such small lattices. On the other hand,
the nonlocal nature of the entanglement constraint, and
the possibility of entanglements consisting of more than a
single pair of loops, lead to the expectation that the criti-
cal properties at p, will be different from those of the
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connectivity clusters at p,. The discrete nature of lattice
percolation requires the presence of rather large loops
(i.e., being close enough to p,) before entanglements be-
come physically possible. In lattices with large coordina-
tion numbers (e.g., the simple cubic lattice with nearest-
neighbor and next-nearest-neighbor connections) one
may have rather small entangled loops. However, the in-
crease in the coordination number decreases the p,, and it
does not seem to be possible to further separate the criti-
cal points. One might consider further investigation of
the critical properties near p, using percolating systems
_with short-range correlations.

_ow .. V., DISCUSSION

It is interesting to observe that the presented prob-
lem is specifically three-dimensional —it has no two-
_dimensional analog. It is unclear whether objects of
larger topological dimension, which are able to create en-

~—tanglements, appear in higher-dimensional percolation
-—problems, and what is the proper generalization of this

problem to an arbitrary dimension.

Viscosity and entropic elasticity of gels depend on both
connectivity and entanglements, and therefore can only
be used to determine the position of p,. If one wants to
distinguish between the two thresholds experimentally,
one needs to perform an additional measurement of a
quantity which is insensitive to entanglements. In princi-

__ple, one should be able to establish the position of p. by

measuring the p dependence of the energetic elasticity,
which is created by bond-stretching and bending forces in
a gel. This type of elasticity originates in the energy (U)
part of the free energy F =U — TS and is independent of
the temperature T. Energetic elastic constants vanish at
p. with a large critical exponent,®® which differs from the
critical exponent of entropic elasticity, which disappears

_at p,. In an ideal system it should be possible to separate
the energetic and entropic contributions from the mea-
surements of the T dependence of the elastic moduli, and,
thus determine the difference between p. and p,. Unfor-
tunately, additional temperature-dependent effects will
probably prevent such separation.

The entanglements may appear to be important even in
the physical systems, where p, is practically indistin-
guishable from p,, since their relative importance will in-
crease as p, is approached from above. An important fu-
ture avenue of research should be investigation of the
changes in the physical properties of random systems in
the presence of entanglements.

SRR ACKNOWLEDGMENTS

We thank M. V. Jari¢ and M. Kardar for numerous
discussions, and for their continuous interest in the prob-
lem. It is a pleasure to acknowledge discussions with B.
1. Halperin, D. R. Nelson, L. Peliti, L. Schulman, and D.
Vanderbilt on various aspects of this problem. This work
was supported by the Foundation for Basic Research at
Tel Aviv University and by Bat-Sheva de Rothschild
Foundation.



4 ENTANGLEMENTS IN RANDOM SYSTEMS

1G, Schill, Catenanes, Rotaxanes and Knots (Academic, New
York, 1971).

2{. L. Frisch and E. Wasserman, J. Am. Chem. Soc. 83, 3786
(1961), and references therein; see, also, R. Wolovsky, ibid.
92, 2132 (1970); D. A. Ben-Efraim, C. Batich, and E. Wasser-
man, ibid. 92, 2133 (1970); J. C. Wang, Acc. Chem. Res. 6,
252 (1973).

3W. W. Graesley, Adv. Poly. Sci. 16, 1 (1974), and references
therein; M. Doi and S. F. Edwards, The Theory of Polymer
Dynamics (Clarendon, Oxford, 1986), and references therein.

4M. Delbriik, in Mathematical Problems in Biological Sciences,
edited by R. E. Bellman [Proc. Symp. Appl. Math. 14, 55
(1962)].

58. F. Edwards, Proc. Phys. Soc. 91, 513 (1967).

6For recent review see S. F. Edwards and Th. Vilgis, Rep. Prog.
Phys. 51, 243 (1988), and references therein.

7S. F. Edwards, J. Phys. A 1, 15 (1968).

8T, Deam and S. F. Edwards, Philos. Trans. R. Soc. London
Ser. A: 280, 317 (1976).

9W. W. Greasley and D. S. Pearson, J. Chem. Phys. 66, 3363
(1976).

10K, Ywata, J. Chem. Phys. 76, 6363 (1985); 76, 6375 (1985).

HR, C. Ball and S. F. Edwards, Macromol. 13, 748 (1980).

12p, M. Goldbart and N. G. Goldenfeld, Phys. Rev. Lett. 58,
2676 (1987); Phys. Rev. A 39, 1402 (1989); 39, 1412 (1989).

13See, e.g., P. G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, New York, 1979).

14D, Stauffer, Introduction to Percolation Theory (Taylor and
Francis, London, 1985).

" 15For review, see H. J. Herrmann, Phys. Rep. 136, 155 (1986).

168ee, e.g., D. Stauffer, A. Coniglio, and M. Adam, Adv. Poly.
Sci. 44, 103 (1982).

17y, Kantor and G. N. Hassold, Phys. Rev. Lett. 60, 1457

- (1988).

188, Duplantier, Commun. Math. Phys. 85, 221 (1982).

19p, Alexandroff and H. Hopf, Topologie I (Springer, Berlin,
1935).

20F, W. Wiegel, in Phase Transitions, edited by C. Domb and J.

5341

L. Leibowitz (Academic, London, 1983), Vol. 5, p. 101; Intro-
duction to Path-Integral Methods in Polymer Science (World
Scientific, Singapore, 1986), and references therein.

21M. G. Brereton and S. Shah, J. Phys. A 13, 2751 (1980); 14,
L51 (1981); 15, 985 (1982).

228ee, e.g., R. Ball and L. Mehta, J. Phys. 42, 1193 (1981).

23A. V. Vologodskil, A. V. Lukashin, and M. D. Frank-
Kamenetskii, Zh. Eksp. Teor. Fiz. 67, 1875 (1974) [Sov.
Phys.—JETP 40, 932 (1975)].

24A, V. Vologodskil, A. V. Lukashin, M. D. Frank-
Kamenetskii', and V. V. Anshelevich, Zh. Eksp. Teor. Fiz. 66,
2153 (1974) [Sov. Phys.—JETP, 39, 1059 (1974)].

23See, e.g., R. H. Crowell and R. H. Fox, Introduction to Knot
Theory (Ginn, Boston, 1963).

268ee, e.g., J. H. Conway, in Computational Problems in Abstract
Algebra, edited by J. Leech (Pergamon, Oxford, 1970), p. 329.

27p, Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Mil-
let, and A. Ocneanu, Bull. Am. Math. Soc. 12, 239 (1985).

28M. Aizenman, J. T. Chayes, L. Chayes, J. Frélich, and L. Rus-
so, Commun. Math. Phys. 92, 19 (1983); J. Kertész and H. J.
Herrmann, J. Phys. A 18, L1109 (1985).

293, W. Essam, Rep. Prog. Phys. 43, 833 (1980), and references
therein; D. S. Gaunt and M. Sykes, J. Phys. A 16, 783 (1983),
and references therein.

30p. J. Reynolds, W. Klein, and H. E. Stanley, J. Phys. C 10,
L167 (1977); P. J. Reynolds, H. E. Stanley, and W. Klein,
Phys. Rev. B 21, 1223 (1980).

31H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A 17,
L1261 (1984).

32B. B. Mandelbrot, Fractals: Form Chance and Dimension
(Freeman, San Francisco, 1977); The Fractal Geometry of Na-
ture (Freeman, San Francisco, 1982).

33A. Coniglio, J. Phys. A 15, 3829 (1982).

34A. Coniglio, in Physics of Finely Divided Matter, edited by N.
Boccara and M. Daoud (Springer, Berlin, 1985); for detailed
derivation, see D. C. Wright, D. J. Bergman, and Y. Kantor,
Phys. Rev. B 33, 396 (1986).

35Y. Kantor and I. Webman, Phys. Rev. Lett. 52, 1891 (1984).



