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Abstract. A recently developed exact theory of electrostatic resonances in two-component 
composite materials is applied to the discussion of optical properties of some cermets 
(ceramic-metal mixtures). A considerable improvement in the agreement with experiments 
is achieved as compared with the effective-medium and Maxwell-Garnett approximations. 

1. Introduction 

Granular metals are a very interesting class of composite materials. They are prepared 
either as cermets (ceramic-metal mixtures), as discontinuous thin metal films, or as 
metal smokes. The unusual optical properties of these systems have been investigated 
both experimentally and theoretically, for example, in the case of cermets Ag, Au or 
Mg embedded in Si02 or MgF2 matrices (Cohen et a1 1973, Sichel and Gittelman 1977, 
Lissberger and Nelson 1974), in the case of discontinuous Ag, Au or Cr films (Norman 
eta1 1978, O’Neill and Ignatiev 1978, Doremus 1964,1965, Ignatiev et a1 1979, Granqvist 
et a1 1979, Jarrett and Ward 1976) and in the case of Al, Cu and Sn smokes (Tanner et 
a1 1975, Granqvist et a1 1976). 

Granular metals are usually investigated by measuring the optical density (i.e., 
-1g T, where Tis the transmission factor) of aparticular sample. One of the most striking 
features in the optical properties is a strong absorption peak in the visible region. The 
precise location of this peak depends upon the dielectric properties of the components, 
as well as on the microgeometry of the mixture. 

The optical transmission, as well as the other optical properties, is determined by 
the complex effective dielectric constant of the mixture E,. One of the oldest theoretical 
estimates of E, is the Maxwell-Garnett equation (Maxwell-Garnett 1904, 1905) (see 
equation (16)). This equation predicts quite well the location, but not the height, of the 
absorption peak in granular metals. Maxwell-Garnett theory (MGT), which treats one of 
the components as the medium and the other as inclusions, is a nonsymmetric theory. 
By contrast, the effective medium theory (EMT) (Bruggeman 1935, Landauer 1952) 
treats both components symmetrically. However in many cases it fails to predict the 
absorption peak that is observed in the granular metals (see, e.g., Gittelman and Abeles 
1977). 
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A recent attempt to obtain a more symmetric theory has been made by Sheng (1980a, 
b). That theory is essentially an effective medium theory where each component is 
already in the form of composite spheres. The composition and volume fractions of the 
two components are found by assuming a certain model for the formation process of the 
composite. This makes the treatment rather specialised, but seems to give good agree- 
ment with experiment for a certain class of cermets. 

In this article, we take a different approach to this problem based upon a recently 
developed exact theory for calculating E, for composites where the microgeometry is 
known precisely (Bergman 1978, 1979a, b). This is in contrast with the approximate 
theories, which take into account only the lowest order (dipole-dipole) interactions 
between different inclusions, and therefore fail when the concentrations are large and 
when the frequency of the light is close to the resonant frequencies of the sample. The 
approximations that are made when we apply the exact theory of random mixtures do 
not restrict us to lowest-order interactions between inclusions, and they may in fact be 
improved in a systematic way, if necessary. 

It is important to keep in mind that the theory we are using is exact only in the static 
limit. Its use in the discussion of the optical properties of a composite is only justified if 
the sizes of the grains or of other characteristic inhomogeneities are much smaller than 
both the wavelength and the skin depth in the composite. 

The details of the model and of the calculation, as well as a comparison between our 
results and those of MGT and EMT, are given in 8 2. In 8 3 we compare the theoretical 
predictions of MGT, EMT and our model with experiments. In 8 4 we summarise the results 
and compare the main features of our model with other theories. 

2. Calculation of E, 

The position dependent local dielectric constant of a two-component mixture can be 
written in the following form: 

~ ( r )  = ~ ~ [ l  - (l/s)e(r)] (1) 

1, for r inside El-material 
0, for r outside El-material 

where 
e(r) = 

s = &2/(&2 - E l ) .  (3) 

We now summarise the main results of the exact theory for the calculation of 
static limit (Bergman l978,1979a, b). 

resonances of the composite in the following form: 

in the 

The bulk effective dielectric constant E, can be expressed in terms of the electrostatic 

Here the poles s, represent special values of S ( E ~ ,  E ~ )  for which an internal electric field 
can exist in the sample without the application of an external field, the state I & )  
represents the potential field distribution in such a resonance, and the scalar product of 
any two states (i.e., potential fields in the composite) is defined by: 

( 5 )  
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(Note that the integration is confined to the +volume.) Clearly, all the residues in 
equation (4) are positive, and furthermore the values of s, and F, satisfy 

0 s s n s 1  O s F , s l .  (6) 

We note that since the resonances are completely determined by the microgeometry, 
the expansion of equation (4),  which has the form of a spectral representation, com- 
pletely separates the dependence of on the geometry of the mixture from its depend- 
ence on the physical properties of the components: the locations s, and the weights F, 
of the poles depend only on the microgeometry, while the dielectric constants of the 
components enter only through the variable s. The resonances can be found by solving 
the eigenvalue problem of a certain linear hermitian integral operator I-: 

S n V n  = rVn  (7) 
1 

dV'B(r')V' - a V'V(r'). / r -  r'I 

For a specified microgeometry in a finite total volume, a set of discrete eigenvalues 
is found. For a composite with a periodic structure, although continuous bands of 
eigenvalues are found, only those corresponding to k = 0 Bloch states contribute to the 
sum in equation (4), and these are again a discrete set. In the case of a composite with 
a random geometry, represented by a suitable ensemble, the functions F(s)  must be 
averaged over the ensemble, and this leads to a smearing of the pole spectrum into a 
branch cut. (A branch cut is also obtained when the total volume is infinite and the 
system is disordered.) The ensemble averaged function F(s)  is now represented by: 

f ( x )  2 0 ,  0 s x ,  6 x2 6 1 (96) 

where f ( x ) ,  xl, x2 depend only on the statistics of the microgeometry. 
We consider the following model: a set of N spheres with randomly chosen radii 

al, . . . , UN are placed at random positions, but without overlapping, in a cubic cell. That 
cell is then repeated infinitely many times in all directions. In this way we obtain a 
periodic simple cubic composite, with a random unit cell. The location of each cell is 
defined by& = (nib, n ~ b ,  n3b) where b is the lattice spacing and the n are integers. The 
eigenstates of a single spherical grain and the matrix elements of I- between the states of 
different grains (these matrix elements are essentially overlap integrals between states 
on different grains) were calculated by Bergman (1979a). The eigenstates of such a 
grain, whose angular dependence is always given by a spherical harmonic, are charac- 
terised by the usual angular momentum quantum numbers 1(=1, 2, . . .), m(= -I, . . . , 
+l) .  The matrix element between the state ( 1 ,  m)  of a sphere of radius a and the state 
(1', m ' )  of another sphere of radius a' is given by 

11' (- I)!' + m' I +  1, !I' + 1 a 

p m '  - m 
(10) 

(cos 8) exp[i(m' - m ) ~ ]  
x ( 1  + 1' + m - m') !  + + / ' + I  

where ( r ,  8, QI) is the vector separation of the two centres in spherical coordinates and 
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Pp is an associated Legendre polynomial?. If the R = 0 Bloch states are expanded in a 
series of the individual sphere eigenstates the coefficients must satisfy an eigenvalue 
equation whose matrix elements are 

1'2 

Q ~ ~ ~ , , , , ~ ,  = (-I)/' +m,ai++a:+i( 11' 
(21 + 1)(21 + 1)(1 + m ) ! ( l  - m)!(l '  + m')!(l' - m')! 

Pi",;"(cos e) exp[i(m' - m)q] + (1 + I '  - m' + m)! + + / '  t 1 , f o r i #  j (11) 

where 
P?(COS eo) exp(iMq0) 

Rb" a(L, M )  = 
Ro#O 

and where the last sum is over all the non-zero lattice vectors of a simple cubic lattice. 
In these equations, the indices i andj  denote two spheres in the unit cell, whose radii are 
ai and U,, and whose separation is ( r ,  8, q). The summation over different unit cells is 
performed in equation (13). The sums in equation (11) appear when the matrix elements 
of (10) between non-equivalent spheres are summed over all unit cells. The derivation 
of (11) from (10) is described in detail in the Appendix. The properties of a(L, M ) ,  as 
well as some problems in the calculation of a(2,O) were discussed by Bergman (1979a). 

In our calculation 4 spheres were placed in the repeated cubic cell. The random 
configurations were generated by computer. For each concentration p of the first 
material, the poles and their weights were calculated for 60 different configurations. All 
of these poles were then superimposed, and a continuous distributionf(x) was obtained 
in the form of a histogram with Ax = 0.02. In calculating the pole spectrum for each 
sample, the matrices were truncated at 1 = I '  = 2 ,  i.e., only the strongest (dipole and 
quadrupole) overlaps were taken into account. These results of the calculations off(x) 
for 3 different concentrations are depicted in figure 1. As f ( x )  depends only on the 
microgeometry of the sample, these histograms can now be used to calculate E, for any 

and E ~ .  For comparison, we show the predictions of MGT and EMT forf(x) in the same 
figure. In these approximations,f(x) is given by 

KX)MGT = pd[x - S(1 - ~ 1 1  (14) 
112 

-(-9x2 + 6(1 +P)X - (1 - 3p)') , forxl s x  s x 2  

f(X)EMT =\! otherwise (15a) 

t For M < 0, we use the following convention for F'y (see e.g. ,  Messiah 1962) 
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Figure 1. Pole density functionf(x) for 3 different concentrations (a )  p = 0.1, ( b )  p = 0.2, 
(c)  p = 0.3 as predicted by EMT (broken curve), MGT (chain vertical line represents a 6- 
function) and our calculation (full line-histrogram). 

x1,2 = ${l + p 7 2[2p( l  - p)]"7 .  (15b) 

The results (14) and (15) can be easily deduced from the corresponding expressions for 
E, as predicted by MGT and EMT, which in our notation, are given by 

It can be shown (Bergman 1978), thatf(x) must satisfy certain sum rules, i.e., 

C"'f(4 dx = P 

The first of these must always hold, whereas the second must hold if the system is 
isotropic or cubic. Both MGT and EMT satisfy these sum rules. In our model, the first sum 
rule is satisfied automatically. On the other hand, for any particular configuration we 
found that the second sum rule was usually violated by about 10%. This is easily 
understood once it is realised that the system does not in general have cubic point 
symmetry. Nevertheless, the continuous distribution f ( x ) ,  obtained by superimposing 
the poles of 60 different configurations never violated equation (19) by more than 2%. 
This indicates that the statistical average over the configurations leads to a system that 
is quite closely cubic or even isotropic. 

Because they satisfy both sum rules, all of the theories provide similar predictions 
for E, when s is far away from the region of nonanalyticity (e.g., when s is real and large, 
or s has a large imaginary part). In order to discriminate between the theories we must 
therefore look at values of s that are near the region of nonanalyticity, where the 
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Figure 2. The trajectory of s(w) in the complex s-plane for 0 < w C wp for a hypothetical 
granular metal described in the text. Note the different length scales along the Res  and Im 
s axes. Note also that the scale of distance of the trajectory from the Res  axis is determined 
by the ratio y l q .  

predictions diverge. To illustrate this, consider the case of a hypothetical granular metal, 
made of metallic grains with a frequency dependent dielectric constant given by 

& 1 = l -  4 
w ( u  + iy) 

inserted into an insulating matrix with ~2 = 1. Taking the plasma frequency to be up = 
9.4 x 1015 s-l, and the damping constant to be y = 1014 s-l ,  we find 

u(u + iy) 
S =  4 

In this case y/wp 6 1. Part of the trajectory of s ( u )  in the complex s-plane is shown in 
figure 2. Clearly, for 0 6 w G wp the trajectory passes close to the singular region. The 
location of the MGT pole and the branch points x1 and x2 of EMT are shown in the figure 
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Figure3. Graphs of (a )  Re&,, ( b )  ImG and ( c )  the optical density of the hypothetical granular 
metal (concentration p = 0.3) as predicted by EMT (broken curve), MGT (chain curve) and 
our calculations (full curve). 
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for the case of metal concentration p = 0.3. In figure 3 we show Re%, ImEe and the 
optical density for this model, as predicted by MGT, EMT and our calculations. The 
differences among the various predictions can be easily understood with the help of 
figure 1: the whole weight of f(x)MGT is concentrated at one point, which explains the 
sharp peak in figure 3; ~ ( x ) E ~ ~  is broadly smeared, and thus predicts a very small and 
very broad peak; f ( x )  of our model looks like a somewhat broadened version Off(X)MGT, 

and thus the peak predicted by our calculations is lower and broader. 

3. Comparison with experiments 

Any attempt to compare the theoretical predictions with the experimental results 
depends on a knowledge of the dielectric constant of the components. When we deal 
with metal grains inside an insulating matrix, the dielectric constant of the matrix is 
usually assumed to have its bulk value, which does not depend on the frequency in the 
frequency range that we are interested in. The bulk values of the dielectric constant of 
the metal are adapted to the case of small grains in the following way: the interband part 
of E is left unchanged, but in the free electron part of E the relaxation time t = l iy is 
adjusted so that the mean free path is equal to one half of the average grain size (Doyle 
1958, Kawabata and Kubo 1966, Kreibig 1974). 

In real materials that have been made, the differences between the predictions are 
smaller than in the hypothetical case discussed in the previous section, because the 
damping y is much greater. Nevertheless there are considerable differences between 
the predictions of the different theories. 

In figure 4 we show experimental and theoretical results for the optical density of a 
30% Ag-70% Si02 mixture investigated experimentally by Cohen et a1 (1973). In plot- 
ting the theoretical graphs, we used E = 2.2 for fused quartz (Si02). For E(w) of Ag we 
used the form found by Johnson and Christy (1972) but, following Cohen eta1 (1973) we 

0.2 1 . o  

Figure 4. Optical density of 30% Ag-70% Si02 mixture as predicted by EMT (broken curve), 
MGT (chain curve) and our calculations (full curve). The experimental results (dotted curve) 
are taken from Cohen et a1 (1973). The thickness of the film is 640 A.  
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replaced the bulk value of the relaxation time t by 2.5 x s .  This corresponds to a 
mean free path of about 25 A, while the typical grain size is about 50 A. The MGT and 
EMT graphs are similar to those drawn by Gittelman and Abeles (1977), i.e. EMTpredictS 
no absorption peak, while MGT predicts a peak that is too high and narrow. Our model 
predicts a smaller and broader peak, but there is still some discrepancy between the 
predicted graph and the experimental results. 

Although the peak we predict has the right position and width, it is still somewhat 
higher than the experimental peak. More disturbingly, at frequencies below the peak, 
the predicted absorption is too low. A possible reason for this could be that our model 
does not account correctly for the statistics of close approaches of individual grains. 
Earlier calculations on a periodic array of spherical inclusions (Bergman 1979b) lead to 
the qualitative conclusion that close approaches or clumping can be responsible for an 
enhancement of the absorption at low frequencies owing to the appearance of many 
resonances at small values of s. 

Another possibility, which we cannot rule out at this time, arises from the fact that 
the experimental results in figure 4, taken from Cohen er a1 (1973), have actually been 
shifted somewhat arbitrarily by these authors so as to make them agree with MGT at a 
wavelength of 1 ym. Therefore, the absolute values of the experimental optical density 
are known only to within a somewhat unknown additive constant. 

As another example, weconsider a 18% Mg-82% MgF2mixture that was investigated 
experimentally by Sichel and Gittelman (1977). The experimental absorption curve is 
shown in figure 5 ,  together with the predictions of EMT, MGT and our own calculation. 
The theoretical graphs were calculated using E = 1.96 for MgF2, while the E of Mg was 
taken from Hageman er a1 (1974), replacing the bulk value of z by the much smaller 
value t = 2.5 x s .  This value corresponds to a mean free path of 4 A, which would 
mean that each Mg grain consists of a few atoms. The actual grain size is not known in 
this case, but Sichel and Gittelman (1977) point out that there is a large number of very 
small grains in this mixture. The relaxation time can be viewed as an unknown adjustable 
parameter in this calculation: if we increase z the discrepancies between the theories 
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Figure 5. Optical density of an 18% Mg-82% MgF2 mixture as predicted by EMT (broken 
curve), MGT (chain curve) and our calculations (full curve). The experimental results (dotted 
curve) were taken from Sichel and Gittelman (1977). The thickness of the film is 600 A.  
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and the experiment become greater. In this case MGT (EMT) predicts an absorption peak 
that is too strong (too weak). Our model predicts an absorption peak that is very close 
to the experimentally observed peak. 

5. Summary and discussion 

The dielectric constant E, of a two component composite mixture can be expressed 
through the resonance density functionf(x), which depends only on the microgeometry 
of the mixture, and the dielectric constants of the components. We used a simple model 
to calculate f ( x )  for a composite with a special type of random geometry and the 
predictions that followed from this for the optical properties were in good agreement 
with experiments. 

Among the simple theories, MGT seems to predict quite reasonably the optical 
properties of granular metals. The discrepancies between MGT and experiments indicate 
that f ( ~ ) ~ ~ ~ ,  which is a &function, is too sharp and therefore predicts an absorption 
peak that is too strong. On the other handf(x)EMT seems to be too broad. Most attempts 
to obtain an improved expression forf(x) were made in two directions: (i) introduction 
of randomness in the grain shapes, such as randomly oriented ellipsoids (Polder and van 
Santen 1946, O’Neill and Ignatiev 1978) and (ii) attempts to take into account higher 
order interactions between the grains, e.g. a calculation of polarisabilities of grain 
clusters (Yoshida eta1 1971, Meessen 1972, Bedeaux and Vlieger 1974, Vlieger 1979) or 
direct introduction of effective polarisabilities (Granqvist and Hunderi 1978a, b) and 
subsequent use of these polarisabilities in EMT or MGT. 

Our calculation demonstrates that the &function peak of ~ ( x ) ~ G ~  can be broadened 
merely by taking into account the disorder in the locations and radii of individual spheres 
(without introducing any disorder in the shapes), and by and taking into account the 
higher order interactions between different spheres. It seems as though by increasing 
the number of spheres in our repeated cubic cell and by taking into account still higher 
order interactions we should be able to get even better agreement with experiments. 

Finally, it should be noted that since the entire calculation is based upon the static 
approximation to Maxwell’s equations (this is true also of MGT and EMT), it is bound to 
fail if o is large enough. However, as long as the grain size is much less than the 
wavelength of the electromagnetic waves and the skin depth, the static approximation 
is expected to be good. 

Appendix 

The matrix element in equation (11) is the sum of the overlap integrals between the 
(I, m) state of the ith grain in one cell and the ( l ’ ,  m’) states ofjth grains in all the cells. 
The vector separation between the two grains is expressed in the form 

r = ( r ,  e, cp) = R~ + rj - ri = R ~  + r‘ = ( R ~ ,  eo, q o )  + (r’, e’, q‘) (Al l  
where ri and ti are the locations of the ith andjth grains in the same unit cell, while Ro is 
the separation between the two unit cells containing the grains i, j .  Thus the matrix 
element given by equation (10) should be summed over all lattice vectors Ro (including 
Ro = 0). The last term in equation (11) is the& = 0 term of the sum. We are left with the 
summation only over non-zero lattice vectors. The matrix element of equation (lo), 
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which depends on the intergrain separation r,  is expanded in a sum of products of a 
function of rf and a function of Ro (this is done with the help of results from Danos and 
Maximon (1965), as described by Bergman (1979a)) 

= A  
( L  + A +  p -  M ) !  
(A + p)! ( L  - M ) !  

r”.P?(cos e’) exp(ipp’) ( - l ) * + p  
PF(cos e) exp(iMrp) 

4+l I=O p =  -A 

(A2) 
PFiiYcos 60)  exp[i(M - p)p)O] 

WAt’ X 

This expression may now be summed over the non-zero lattice vectors Ro, and that 
leads to a factor a(L + A, IM - pi), as defined earlier in equation (13). Replacing 
( L ,  M )  by (I + 1‘, m’ - m )  in equation (A2), and omitting the primes in ( r ’ ,  e’, y ’ ) ,  we 
finally arrive at equation (11). 
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