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We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices
with number of steps N ranging up to 107. We show that the mean square winding angle ⟨θ2⟩ of
random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square
lattice, we show that the ratio ⟨θ4⟩/⟨θ2⟩2 converges slowly to the Gaussian value 3. For self-avoiding
walks on the cubic lattice, we find that the ratio ⟨θ4⟩/⟨θ2⟩2 exhibits non-monotonic dependence on N
and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square
winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the
square change in the winding angles of ln N independent segments of the walk, where the ith segment
contains 2i steps. We find that the square winding angle of the ith segment increases approximately as
i0.5, which leads to an increase of the total square winding angle proportional to (ln N)1.5. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4955161]

I. INTRODUCTION

The winding properties of random walks (RWs) or self-
avoiding walks (SAWs) around a point (in space dimension
d = 2) or a line (in d = 3) have been studied extensively
over the last sixty years.1–17 The problem has implications in
various fields of statistical physics, such as the conformations
and dynamics of polymer chains13–16 and flux lines in
superconductors.10 The first result by Spitzer1 showed that
the probability distribution for the winding angle θ of a planar
Brownian path around a point for large times t is

lim
t→∞

p
(
x =

2θ
ln t

)
=

1
π

1
1 + x2 , (1)

which is rather pathological since the averages ⟨|θ |⟩ and ⟨θ2⟩
are both infinite due to the slow x-decay in Eq. (1). The
non-physical behavior originates from the fact that when a
segment of the Brownian path approaches a point center, it can
wind around it an infinite amount of times. While this is true in
an idealized system, in reality, one expects that the polymer or
Brownian particle will not be able to get infinitely close to the
excluded center and a minimal distance will be imposed. For
a lattice walk, the cutoff distance is of the order of the lattice
constant. When the minimal distance is incorporated into the
model, the winding angle distribution in large t becomes5

lim
t→∞

p
(
x =

2θ
ln t

)
=

π

4cosh2(πx/2) . (2)

In a lattice version of diffusion, the diffusion time t is
proportional to the number of steps N in the walk. (In our
simulation, N will represent the number of sites in the walk,
but in the text, we disregard this distinction.) The results in
Eqs. (1) and (2) were derived and verified by several methods,
e.g., diffusion equation1,2 and conformal mapping.10

For planar self-avoiding walks,4,6,17 (Fig. 1) it was shown
using conformal invariance17 that the winding angle follows a

a)Electronic mail: hammeryosi@gmail.com

Gaussian distribution,

lim
N→∞

p
(
x =

θ

2
√

ln N

)
=

e−x
2

√
π
. (3)

In three dimensions, the winding of a RW around an
infinite line is practically identical with the two dimensional
case since the steps in the plane perpendicular to the
line are independent of the steps in the parallel direction.
Therefore, the same distribution is expected for long walks.
The problem of a SAW winding around a line, however,
is more complicated. Rudnick and Hu6 considered a self-
avoiding walk in d = 4 − ϵ and found that to first order
in ϵ ,

p ∝ exp
(
− θ2ϵ

8 ln N

)
. (4)

Surprisingly, this result coincides with Eq. (3) for ϵ = 2.
However, no exact result is known for the distribution of a self-
avoiding walk around a rod. Moreover, in recent simulations
by Walter et al.,13 it was found that p(θ) decreases slower than
a Gaussian function, at odds with the first order ϵ-expansion
results.

Due to the slow approach of the distribution to the
asymptotic form (such as ⟨θ2⟩ ∼ ln N for planar self-avoiding
walks), in order to verify the results in Eqs. (2)–(4) in
simulations, one has to use very long random and SAWs. This
can be challenging since traditionally, in order to measure the
winding angle of an N-step walk, one has to trace all the sites
visited by the walk, which takes time of O(N). Note that the
winding angle θ is the total accumulated angle of the steps
along the walk. (It is not defined modulus 2π.) Moreover, the
generation of a large ensemble of long SAWs is difficult on its
own, due to the need to check for intersections of the walk with
itself. In this work, we improve upon known measurements
of the winding angle of RWs and SAWs by using a new
implementation of the pivot algorithm that was introduced by
Clisby in recent years.18,19 The implementation allows us to

0021-9606/2016/145(1)/014906/8/$30.00 145, 014906-1 Published by AIP Publishing.
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FIG. 1. Winding angle of a SAW on a square lattice.

generate a large ensemble of RWs and SAWs with up to ∼107

steps and compute their winding angle without writing down
the entire walk, so that a measurement of the winding angle
of a walk with N sites is done in time of O(ln N).

II. EFFICIENT MEASUREMENT OF GLOBAL
PROPERTIES OF POLYMERS

As mentioned above, Monte Carlo simulations face a
challenge to generate large ensembles of SAWs. The pivot
algorithm18–22 is a dynamic method which generates SAWs
with fixed N and free end-points. At each time step, a random
site along the walk is used as a pivot point for a random
symmetry action on the lattice (e.g., rotation or reflection) to
be applied to the part of the walk subsequent to the pivot
point. The resulting walk is accepted if it is self-avoiding;
otherwise, it is rejected and the old walk is sampled again.
The pivot algorithm is most efficient when studying large
scale properties of the polymers.21 In the past, the bottleneck
of the algorithm was the self-avoidance tests, which required
O(N x) operations (x � 1/2).

Clisby managed to drastically improve the efficiency of
the pivot algorithm18 so that a pivot attempt is done in a time
not exceeding O(ln N). He accomplished this by storing the
walks in a new data structure in which a walk is represented
as the concatenation of sub-walks of smaller sizes. A global
property of the walk can be deduced from the properties of the
sub-walks it is constructed from. For example, the end-point
of the walk can be found by using the end-points of each of
the sub-walks, along with the symmetry operation used during
the concatenation. This is illustrated in Fig. 2. In Fig. 2(a), two
SAWs on a square lattice, w1 and w2, are drawn. The SAW in
Fig. 2(b) is obtained by applying the symmetry operation q (a
90◦ counter-clockwise rotation) to w2 and then concatenating
it with w1. Note that we use the convention that all walks start
from (1,0). The end point xi of wi is marked by a dashed line
in Figs. 2(a) and 2(b). It is shown that x3 can be derived from
x1, x2, and q, without knowing the positions of all the sites in
the walk.

The data structure used to represent the walks in the
simulation is a binary tree where each node contains the
global properties of the walk which corresponds to sub-tree

FIG. 2. (a) Two SAWs, w1 and w2, drawn on a square lattice. By convention,
the walks start at (1,0). The end points of the walks are denoted x1 and x2 and
are indicated by the dashed lines. The bounding boxes of the walks are marked
by the cyan rectangles. (b) The walk w3 is obtained by using a symmetry
operation q on w2 and then concatenating it with w1. The end point x3 can
be obtained from x1, x2, and q without knowing the position of all the sites
along the walks w1 and w2. (c) The winding angle θ3 of w3 can also be derived
from the global properties of its sub-walks. The angles θ1, θ2, and θc can be
computed from the knowledge of x1, x2, and q, without tracing all the steps
along the walk.

that contains all the nodes below it in the tree. These properties
include the end point of the walk, the symmetry operation
used to concatenate its sub-walks, and a bounding box. The
bounding box is a convex shape that completely contains
the walk (see Figs. 2(a) and 2(b)). Clisby showed that pivot
operations can be done by applying transformations to change
the structure of the tree and the symmetry operations in
the nodes. Moreover, self-intersection tests can be done by
recursively checking for intersections between the bounding
boxes of right and left children in the tree. These procedures
are explained in detail in Ref. 18.

In our simulation, we use the fact that the winding angle
of a random or SAW is also a global property that can be
deduced from the sub-walks that form it. Consider a random
or SAW w which is represented by Clisby’s binary tree.
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The following recursive function can be used to compute its
winding angle.

A. Compute θ(w )
1. Check whether the bounding box of w intersects with the

line (in dimension d = 3) or point (in d = 2) x = y = 0.
2. If not, there is no possibility that the walk has encircled the

origin and the winding angle can be computed immediately
from the position of the first site and the end point of the
walk. The function will then return this angle and terminate.
Note that the necessary information is found in the node at
the root of the tree and there is no need to trace the sites
along the walk.

3. If the bounding box does intersect with the line/point
x = y = 0:
(a) Call the function again to calculate θ1 = compute θ(wl),

where wl is the sub-walk of w that corresponds to the
left sub-tree of the SAW tree which represents w.

(b) Call the function again to calculate θ2 = compute
θ(wr), where wr is defined similarly to wl. Note that
when computing θ2, we need to take into account the
fact that wr is acted upon by a symmetry operation q
and then shifted to the end point of wl, xl, before it is
concatenated with wl.

(c) Calculate the angle θc, between the last site of wl and
the first site of wr . This angle will depend only on xl

and q.
4. Return θ1 + θc + θ2.

The operation of Compute θ(w) is illustrated in Fig. 2(c). In
order to compute the winding angle of w3, the function will
first check whether its bounding box intersects with the origin.
Since the bounding box of w3 does intersect with the origin
[see Fig. 2(b)]. The function will continue to compute θ1 and
θ2 recursively and the angle θc shown in the figure and return
their sum. Since the lattice walks tend to move away from the
origin, when the function Compute θ(w) is called to compute
the winding angle of sections of the walk that are far from
its beginning, it will usually find that their bounding boxes
do not intersect with the point/line x = y = 0 and return their
winding angle in a single step. In fact, we find that the number
of times that Compute θ(w) is called is very small even when
the number of sites in w is large. This is illustrated in Fig. 3.
For example, in order to compute the winding angle of a SAW
in d = 3 with N = 107, the recursive function is called only
62 times on average.

We studied the winding angles of RWs and SAWs of sizes
ranging from N = 100 to N = 107 sites on square and cubic
lattices. For each size, we started from an initial configuration,
performed a sequence of pivot attempts, and computed their
winding angles after each attempt. The initial configuration
was selected in the same way as in Ref. 23. If, as a result of
a potential pivot move the walk intersects with the point/line
x = y = 0, or, for a SAW, intersects with itself, the pivot move
is rejected and the same configuration is sampled again. An
important detail in the implementation of the pivot algorithm
is the distribution from which the pivot point along the walk
is selected. Usually, the pivot point is selected uniformly

FIG. 3. The average number of times the recursive function Compute θ(w)
that computes the winding angle of an N -step walk w is called as a function
of the number of sites N of the walk. The circles denote RWs and the squares
denote SAWs. Open symbols correspond to dimension d = 3 and full symbols
to d = 2. Note that for RWs in d = 3, we re-scaled N by a factor of 2/3, the
average fraction of steps taken in a direction perpendicular to the z axis.

from the sites along the walk.21 However, when computing
the winding angle of the walks, we find that the correlation
between successive measurements is significantly reduced
when we use a distribution that favors sites closer to the
starting point of the walk. We used the distribution that was
defined in Ref. 24.

III. WINDING ANGLE OF RWs

In order to test the theoretical prediction for the winding
angle of RWs, we can compute the average square winding
angle and check its dependence on N . From Eq. (2),

⟨x2⟩ =


x2p(x)dx =
1
3
, (5)

i.e., ⟨θ2⟩ = (ln t)2/12. For a RW with large N , the winding
angle is expected to agree with Eq. (2) where the diffusion
time t is proportional to the number of steps in the walk,
i.e., t = c0N . We therefore expect that in the large N limit,

⟨θ2⟩ = 1
√

12
(ln c0 + ln N) = A +

1
√

12
ln N. (6)

The additive constant A in Eq. (6) depends on local properties
of the system like the shape and size of the excluded area near
the origin where the RW is not allowed to visit.10 However, in
the large N limit, the root mean square winding angle should
be proportional to ln N with a prefactor of 1/

√
12, independent

of any local properties.
In Ref. 5,

⟨θ2⟩ was studied as a function of N for RWs
on a square and cubic lattices with N ranging up to 103. Some
non-negligible deviations from the theory were observed, and
it was stipulated that the main reason for these was finite size
corrections. Here we use walks with N = 102–107 to study the
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effect of finite N and see if
⟨θ2⟩ converges to the predicted

form when N increases.
In Fig. 4(a),

⟨θ2⟩ is plotted against N in semi-logarithmic
scale. The dependence is very close to linear. In order to take
into account the finite size corrections, we performed two
non-linear fits. The first was of the form

⟨θ2⟩ = A + B ln N + C(ln N)−∆, (7)

and in the second, we used integer powers of 1/ ln N , i.e.,
⟨θ2⟩ = c0 + c1 ln N + c2(ln N)−1 + c3(ln N)−2. (8)

The curves produced by the two forms are practically
indistinguishable for the values of N in our simulation. For
a RW on a square lattice, this curve is denoted by the solid
line in Fig. 4(a), where it is shown that it is in a slightly
better agreement with the data than the linear fit denoted

FIG. 4. (a) Root mean square winding angle of a RW on a square lattice,
shown as a function of the number of sites in the walk N in semi-logarithmic
scale. The region with N = 106–107 is shown in the inset in linear scale.
The dashed line denotes a linear fit and the solid line denotes non-linear fits
[Eqs. (7) and (8)] that take into account finite size corrections. (b) Residuals
of the linear fit. (c) Residuals of the non-linear fits. Note that the curves from
Eqs. (7) and (8) are indistinguishable in this range of values for N .

TABLE I. Fitting parameters from Eqs. (7) and (8) for the root mean square
winding angle of RWs with N sites on square (d = 2) and cubic (d = 3)
lattices.

d = 2 d = 3

A 0.78 ± 0.03 0.69 ± 0.03
B 0.2888 ± 0.0005 0.288 ± 0.001
C −0.321 ± 0.017 −0.357 ± 0.012
∆ 0.62 ± 0.12 0.54 ± 0.11
c0 0.74 ± 0.006 0.63 ± 0.005
c1 0.2894 ± 0.0003 0.2892 ± 0.0002
c2 −0.48 ± 0.05 0.56 ± 0.04
c3 0.33 ± 0.11 0.45 ± 0.09

by the dashed line. In Figs. 4(b) and 4(c), we present the
residuals of the linear and non-linear fits. Clearly, the linear
form suffers from a systematic disagreement with the data,
while the residuals of the non-linear form seem to scatter
randomly around zero. Thus, both Eqs. (7) and (8) agree
with the results of our simulations. A similar behavior was
observed for RWs on the cubic lattice. The fitting parameters
acquired from the non-linear fits are presented in Table I.
Note that the parameter B from the fit to Eq. (7) is in
agreement with the theoretical value of 1/

√
12 ≈ 0.2887, both

in dimensions d = 2 and d = 3, while c1 from the fit to Eq. (8)
slightly deviates from the theory. Possibly, Eq. (7) captures the
leading order finite size corrections to

⟨θ2⟩ more accurately.

IV. SAWs ON THE SQUARE LATTICE

For long SAWs on a square lattice, the winding angle
was shown to have a Gaussian distribution [Eq. (3)].17 Even
before this analytical result, the winding angle was studied
numerically. Fisher et al.4 used exact enumeration of short
(up to N = 21) walks and Monte Carlo simulations of SAWs
with N ≤ 170 to measure the winding angle distribution. They
found that to a good approximation,

⟨θ2⟩ ∝ ln N, (9)

and

2.9 <
⟨θ4⟩
⟨θ2⟩2 < 3.2, (10)

which is close to the Gaussian value 3. Due to the limited
computer resources at the time and the lack of an efficient
algorithm to compute the winding angle of the walks, it was
not possible to measure the winding angles longer SAWs and
observe the convergence to the Gaussian form.

In this work, we studied the winding angles of SAWs
on the square lattice with N ranging from 102 to 107. The
mean square winding angle is shown as a function of N in
semi-logarithmic scale in Fig. 5(a). The dashed line denotes a
linear fit which results in

⟨θ2⟩ = (−2.268 ± 0.002) + (2 ± 0.002) ln N. (11)

The slope is in excellent agreement with the theoretical value
[Eq. (3)]. Note that the linear relation holds quite well even
for relatively short walks (N ∼ 102). To observe finite size
corrections to the Gaussian distribution of θ, we measured
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FIG. 5. (a) The mean square winding angle of a SAW with N sites on
a square lattice. The dashed line is a linear fit. (b) The ratio ⟨θ4⟩/⟨θ2⟩2

approaches the Gaussian value 3 as N increases. The dashed line denotes
a non-linear fit according to Eq. (12).

the ratio ⟨θ4⟩/⟨θ2⟩2. The results are shown in Fig. 5(b).
Note that (a) even for N = 102, ⟨θ4⟩/⟨θ2⟩2 ≈ 3.13, not far
from the Gaussian value, which is consistent with the results
for the linear dependence of ⟨θ2⟩2 on log N . (b) The small
but noticeable difference from the Gaussian form converges
slowly to zero. Even for walks with N = 107 we observe
a non-negligible deviation from 3. To study the finite size
corrections, we fitted the data to the form

⟨θ4⟩/⟨θ2⟩2 = A + B(ln N)−1 + C(ln N)−2. (12)

[This form was in slightly better agreement with the data
than a function with non-integer powers like in Eq. (7).] The
result is denoted by the dashed line in Fig. 5(b). We find A
= 3.0097 ± 0.0013, B = −0.262 ± 0.020, and C = 3.85 ± 0.07.
Note that A is very close to the Gaussian value. The small
difference is most likely a result of corrections in the form of
higher powers of 1/ ln N that were not taken into account in
Eq. (12).

V. SAWS ON THE CUBIC LATTICE

Despite the long standing interest in this problem, the
exact distribution pN(θ) of the winding angle of a SAW with
N sites around a rod in dimension d = 3 is unknown. The only
analytical result that we know of was obtained by Rudnic and
Hu,6 where they used renormalization group methods to show
that in d = 4 − ϵ , to first order in ϵ , pN(θ) follows the Gaussian
distribution given in Eq. (4). The authors also reported a Monte
Carlo simulation of SAWs with up to 910 steps, where they
were only able to study the pre-asymptotic regime where
RW behavior was observed. More recently, Walter et al.,13

utilized the improvement in computer power to study the
winding angle distribution of SAWs on the cubic lattice
with N ≤ 25 000. They showed that pN(θ) does not converge
to the Gaussian form and found that ⟨θ2⟩ ∝ (ln N)2α where
α = 0.75(1). They also showed that ⟨θ4⟩/⟨θ2⟩2 converges to
3.74(5), which differs significantly from the first order ϵ-
expansion prediction. Here we extend the study to walks with
N up to 107 to see whether the behavior that was observed in

FIG. 6. (a) The root mean square winding angle of a SAW with N sites on a
cubic lattice. The dashed line is a power law fit. (b) The ratio ⟨θ4⟩/⟨θ2⟩.
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Ref. 13 persists as N → ∞, or a pre-asymptotic regime has
been observed.

Our results for the root mean square winding angle of a
SAW with N sites on a cubic lattice are depicted in Fig. 6(a).
The dashed line denotes a power law fit to the form

⟨θ2⟩ = A · (ln N)α (13)

that resulted in A = 0.703 ± 0.004 and α = 0.764 ± 0.003.
Note that α extracted from our data is in agreement with the
result in Ref. 13. The ratio ⟨θ4⟩/⟨θ2⟩2 from our simulation is
shown in Fig. 6(b). Note the non-monotonic dependence
of ⟨θ4⟩/⟨θ2⟩2 on the number of sites in the walk. We
find that it reaches a maximum value of 3.73 ± 0.01 for
N ≈ 104 (in agreement with the result in Ref. 13) and then
decreases as the walks increase in size. For N = 107, we
find ⟨θ4⟩/⟨θ2⟩ = 3.705 ± 0.008, still far from the Gaussian
value 3 predicted from first order ϵ-expansion.6 The non-
monotonic behavior is quite surprising, since we do not have a

FIG. 7. (a) Winding angle distribution of a SAW with N steps on a cubic
lattice. (b) The distribution divided by the maximal value, as a function of
scaled angle.

reason to expect that ⟨θ4⟩/⟨θ2⟩2 will reach its maximum value
around N = 104. This behavior might indicate a crossover
from a non-asymptotic regime at finite N to the asymptotic
regime at infinite N . One possible reason for such a crossover
can be the influence of the lattice on which the walks are
created. In Fig. 7, we present the winding angle distribution
of SAWs on a cubic lattice for N ranging from 104 to 107.
For N = 104, the lattice structure is evident in the distribution
pN(θ), where narrow peaks are observed at specific angles
corresponding to lattice sites close to the z axis. This effect
is diminished significantly when N increases, and the peaks
in the distribution are not observable in our simulation for
N = 107. In Fig. 7(b), we show that pN(θ) for different N
collapse to a single curve when θ is scaled by (ln N)0.76, in
agreement with the results in Ref. 13 and with the behavior
shown in Fig. 6. Note that the effects of the lattice structure
were not evident in Figs. 8 and 9 in Ref. 13 due to the coarse
binning in those graphs. (The bin width in the histograms was
0.5 rad, compared to π/1000 in our graphs.)

VI. THE GAUSSIAN ARGUMENT

The Gaussian form of the winding angle distribution
given in Eq. (3) can be explained by the following simple
argument:4,10 Starting from the first step, the SAW can be
divided into segments of lengths 1,2,4, . . . ,2m ≈ N/2. The
ith segment has 2i steps and starts after approximately 2i steps
of the walk. Thus both its linear size and its distance from
the origin are typically of the order of 2iν, where ν = 3/4 for
SAWs in d = 2.25 The winding angle of each segment is then
expected to be of order one. The total winding angle of the
walk is approximately the sum of the changes in the winding
angles of these individual segments, i.e.,

θ =

i

∆θi. (14)

The SAW is a self-similar object, and it is expected that the
properties of the smaller segments are identical to those of
the larger segment when they are scaled down to the same
size. Thus, the angles ∆θi have identical distributions. Under
the assumption that they are independent, and with a finite
variance, the central limit theorem states that in the limit of
large m, θ will have a Gaussian distribution with a variance
proportional to m ∝ ln N .

In Ref. 10, it was mentioned that this argument fails
when it is applied to RWs since a RW is allowed to return
to the vicinity of the excluded center, while a SAW in d = 2
cannot return to the origin without self-intersection. In fact in
d = 2, the size of the effective excluded area is of the order of
the segment size, and upon rescaling, those properties remain
unchanged. For a RW, the size of the excluded center has the
size of a lattice cell for any segment size. We suspect that this
is also the reason why the Gaussian argument fails for SAWs
in d = 3.

In order to understand the behavior of SAW in d = 3, we
studied their return to an infinite cylinder of radius r centered
on the z axis. (The SAW tree allows very fast intersection tests
between the walk and the cylinder that take time no longer
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than O(ln N)).23 In Fig. 8, we present the probability Pr(n)
that the site n in a SAW of N steps will be inside a cylinder
of radius r . Note that in this simulation, these cylinders are
not excluded regions like the infinite line x = y = 0 and we
use them simply to check if the walk is wandering close to the
excluded center. In Fig. 8(a), we depict on a logarithmic scale
Pr(n) as a function of n for several sizes r and several total
lengths N of the SAWs. We note that for fixed r , the data points
of larger Ns nicely continue the trend of the smaller Ns. This
is true apart from a small increase in Pr(n) near the end of the
walk (as n ∼ N). This increase implies that the probability for
the site n to be inside the cylinder is reduced by the presence
of a finite part of the walk subsequent to n, and when this part
is not present (near the end of the walk), it is easier for the
walk to return to the cylinder. All graphs have Pr(n) ≈ 1 until
the size of the segment of the walk anν ∼ r , and then decay
with a slope of about −1.2. This decay is slow but converging
in the sense that in the asymptotic limit (when N → ∞) only
a finite number of sites will be in the cylinder. In Fig. 8(b), we
show that these curves collapse when Pr is plotted against the

FIG. 8. Probability of the n site in a SAW with N steps on the cubic lattice
to be inside a cylinder of radius r around the z axis.

scaled position n/r1/ν. This collapse demonstrates that when
a long walk is scaled down, the statistics of the walk in a
cylinder around the z axis correspond to those of a smaller
cylinder, with reduced radius. The rescaling in Fig. 8(b) does
not change the size of the excluded line, but the collapse of
varying cylinder radius to the same curve indicates that if
we take a segment of a SAW and scale it down, it does not
correspond to an earlier (smaller) segment but corresponds to
the behavior of a SAW with a smaller excluded center. Thus,
its winding angle distribution will not be identical to that of a
preceding segment and will, probably, have a larger variation
∆θ.

By rotating the SAW tree we can divide the walk into
segments of differing sizes in the simulation. For SAWs
with N = 223 in d = 2,3, we measured the winding angles of
segments of sizes 128,256, . . . ,222, starting from the origin
(i.e., the size of the i segment was 64 ∗ 2i). The change in the
winding angle ∆θi and the correlation between the changes of
different segments were measured. In both d = 2 and d = 3,
we find that the correlation between the different segments is
very weak (Pearson correlation smaller than 0.05). Thus, to a
good approximation, ∆θi can be considered as independent of
each other. In Fig. 9, we present the variances of the individual
segments. The first segment was omitted from the graph since
it scales differently than the others. (The first segment starts at
the origin and does not have a preceding segment that is half
its size.) As expected, in d = 2, the variance of the different
segments is constant. We find that it equals 0.75 as denoted
by the dashed line in Fig. 9. In d = 3, we see that the variance
of the winding angle increases as i increases, as we predicted
earlier. The solid line in Fig. 9 denotes a power law growth of
⟨∆θ2

i ⟩ ∼ i0.52, which is consistent with the results of Sec. V.
(Due to the small range of i and some arbitrariness in the

FIG. 9. The change in the winding angle of a SAWs on square (d = 2) and
cubic (d = 3) lattices for segments of the walk of sizes 64∗2i, starting from
the beginning of the walk. The first segment (i = 1) was omitted from the
graph. For SAWs in d = 2, ⟨∆θ2

i⟩ is approximately 0.75 for all segments
(dashed line), while for SAWs in d = 3, ⟨∆θ2

i⟩ increases with i. The solid
line represents a power law increase of ⟨∆θ2

i⟩∼ i0.52.
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numbering of the segments, the error in this exponent can be
as large as 0.1.) Under the assumption that the winding angles
of the different segments are independent,

⟨θ2⟩ ≈
 m

1
⟨∆θ2

i ⟩di ∝ m1.52 ∝ (ln N)1.52. (15)

VII. SUMMARY AND DISCUSSION

Using a recent implementation of the pivot algorithm,18

we were able to study the winding angle θ of RWs and
SAWs on square and cubic lattices of sizes that were not
previously available to simulations. The method described
in Sec. II to compute the winding angle relies on the fact
that some properties of a lattice walk can be deduced from
aggregate information about large sections that constitute the
walk, without knowing its small scale details. This approach
can be useful in various situations. For example, it is possible
to perform fast intersection tests of a SAW with various
surfaces.23,24 This can be used in future studies to measure
the distribution p(θ) of the winding angle of long walks near
excluded regions of different shapes and sizes. Specifically,
it would be interesting to know how a smaller radius of the
excluded center increases the winding angle of a SAW.

By studying RWs and two-dimensional SAWs with the
number of sites N ranging up to 107, we were able to observe
the N dependence of p(θ) that was predicted by the theory. For
RWs, we showed that as N → ∞,

⟨θ2⟩ is linear in ln N with
the predicted slope 1/

√
12, apart from finite size corrections

(Eqs. (7) and (8)). For SAWs on the square lattice, we showed
that the ratio ⟨θ4⟩/⟨θ2⟩2 approaches Gaussian value 3, as is
predicted by the theory, with a small correction that decays
slowly as N increases.

For SAWs on the cubic lattice, we observed non-
monotonic dependence of ⟨θ4⟩/⟨θ2⟩2 on N . This surprising
result shines a different light on the previous result by Walter
et al.,13 where it was shown that for SAWs with N ≤ 25 000,
⟨θ4⟩/⟨θ2⟩2 converges to a constant value of 3.74(5) as N is
increased. (We show that this is in fact approximately the
maximum value of ⟨θ4⟩/⟨θ2⟩2.) This behavior might indicate
a crossover from a non-asymptotic regime to the asymptotic
behavior in the limit N → ∞. It is possible that the crossover
is related to the structure of the lattice. We showed that the
lattice structure is evident in the winding angle distribution
even for walks with N = 105 and diminishes for larger
walks.

In Sec. VI, we demonstrated that the square winding angle
of a SAW in d = 3 can be obtained from the summation of the
square change in the winding angles of m ∝ ln N independent
segments of the walk. Unlike the situation in d = 2, where
these segments have identical mean square winding angles,
in d = 3 the mean square winding angle of the i segment
increases approximately as i0.52, which leads to an increase
of the total square winding angle proportional to (ln N)1.52,
as was measured here and in Ref. 13. We stipulate that the
increase in the winding angle of the individual segments can
be explained by the fact that when the segment is scaled down
to the same size, the excluded center is also effectively scaled
down, and thus the winding angle is increased.
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