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Abstract. We present a discussion of the appearance of one-dimensional (1D) effects in 
narrow strips of percolating systems. Using both scaling and probabilistic arguments, 
rather than specific models of the infinite percolating cluster, we predict that 1D effects 
are observable at strip lengths L, >L,  exp(L,/&)DA where DA is the fractal dimensionality 
of very large clusters below the percolation threshold. 

The 2D to 1D crossover of a percolating system was recently discussed (Deutscher 
1982) using the nodes and links model (Skal and Shklovskii 1974, de Gennes 1976) 
for the infinite cluster, and known 1D results. In this model, 1D effects were predicted 
to occur at strip widths 6 2  ln(L,/&). 

We present here a more general discussion of the same problem, based uniquely 
on scaling and probabilistic arguments rather than on any specific model of the infinite 
cluster. We also extend the discussion to the situation below the percolation threshold. 

The crossover is predicted to occur when L, =z .&[ln(Lx/Ly)]l'DA, which is a more 
restrictive condition than that obtained with the nodes and links model. 

For a one-dimensional (1D) percolation problem the cluster numbers are given 
by (Wortis 1975) 

a) = p s a  - P Y  (1) 
Exponentiating this expression and assuming a finite value of conductance for each 
unremoved bond, we may write an expression for the conductivity on length scale s 
(all lengths here are measured in units of the microscopic length d), 

a ( s )  - exp(-s/A) (2) 
with 1 / A  = -In p (Bernasconi and Schneider 1981). 

Let us now consider a 2D strip of finite width L,. On large length scales this strip 
may be viewed as essentially 1D. We are aiming at evaluating the characteristic length 

(measured along the strip) that replaces A in equation (2). On length scales larger 
than the exponential decrease of the conductivity becomes apparent. We divide 
our strip into squares of linear size L, (figure 1). In other terms, we consider that the 
strip is composed of L, x L, squares that have been cut out independently from the 
infinite 2D plane, and put side by side. The conductivity of a segment of length L, 
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of the strip can be written as 

a(L,) = &,)(a * c ) L J L v .  (3) 

Here a(L,) is the average conductivity of an L, x L, square. C is the contact probability 
of such a square, i.e. the probability of having (at least) one cluster connecting both 
sides of the square. a is the conditional probability for two neighbouring squares, 
each having a contact between both of its edges, to be connected. In writing equation 
(3) we assumed that the corresponding factors for each square are independent. 
Moreover, it is assumed that if there is contact in the system the conductance may 
be calculated using Ohm’s law, e.g. by simple juxtaposition of L, x L ,  squares. 

Let us now try to evaluate the various factors appearing in equation (3). Hereafter 
all lengths are measured in units of the lattice spacing d .  We denote by 6 2  the percolation 
correlation length of a ‘real’ 2D system, & - (p -pJ”. All the quantities here and 
in the following, e.g. pc and v, refer to 2D systems. The value of v is 1.33. (For 
recent reviews on percolation, see Stauffer (1979), Essam (1980).) In principle, we 
have four asymptotic regimes, defined by p being above (below) pc, and 5 2  being 
greater (smaller) than L,. 

For a@,) we may use the following scaling expressions (Y Kantor, unpublished), 
valid for p close to pc and L,  >> 1, 

(4) 

Here, t is the conductivity exponent defined by a - ( p  - p J r  for a 2D problem. The 
asymptotic behaviour of the scaling functions is f(x + 0) + constant, f ( x  + 

For p < p c  and t2<< L, the contact (if any) within a square is due to a very rare 
‘animal’ cluster, whose fractal dimensionality DA (Mandelbrot, 1977, 1982) relates 
its radius to its mass M by M - ( r a d i ~ ~ s ) ~ ^ .  The best numerical estimate for D A  is 
1.5605~0.0007 (Derrida and de Skze (1982); see also Stauffer (1978), Herrmann 
(1979). Notice that this is quite different from the value predicted by Parisi and 
Sourlas (1981), DA = 1/0.61= 1.64.) The cluster numbers of those rare ‘animals’ are 
-exp(-constant M). We consider clusters whose linear size exceeds L,. Expressing 
M in terms of the cluster’s radius, and assuming that for r2 >> 1 the contact is function 
of a scaling argument LY/& (see Reynolds et a1 1980), we arrive at the expression 

l l ( P - P c )  a p > p ‘ ( L , )  -L;’I”f(L, ). 

+co)+x r, f(x + -Oo)+O. 

cP-&2<< L,) - e x p [ - ( ~ , / t 2 ) ~ ~ I .  ( 5 a )  

Hereinafter we omit constants in the exponents and ignore slowly varying coefficients. 
Since bond percolation on a square lattice is a self-dual problem, we may write 

an expression for the regime p > p c ,  L, > t 2 ,  

(5b) Cp>pc ( t Z < <  L,) = 1 - e x p [ - ( ~ , / t 2 ) ~ ~ I .  
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The interpretation of this expression is straightforward. When p >pc and L, >&,, 
most L, x L, squares are conducting. However, because of the existence of (rare) 
clusters of vacant bonds (‘vacant animals’) of linear size -Ly, there is a small but 
finite probability that a given square will be interrupted. These rare clusters play a 
crucial role in the 2D to 1D crossover. In particular, they justify our description of 
the strip as composed of squares of size L, rather than of bands of length & (Deutscher 
1982): most interruptions of the strip are due to clusters of vacant bonds of a size 
only slightly larger than L,, because larger clusters are even more rare. Hence, they 
occupy a length of the order of L,. In other words, in order to find another independent 
vacant animal along the strip, we must go at least a distance of the order of L, (and 

The validity of equations ( 5 )  is presumably more general than for a square lattice 
only. 

There are indications that for L, not too large (compared with &) C is analytic 
in p -pc ,  i.e. analytic in 6:’” (Reynolds et a1 1980). This means that for p =pc, L, < ( 2 ,  

C could be expanded in powers of (LY/&)””, 

not 52) .  

C p > p c ( 5 2  >>L,) = t+ (L,/52>“/”, 

C p < p c ( 5 2  = 1- (L,/52)’/”. ( 5 4  

( 5 c )  

For L, >t2 the contact function (5c), (5d) may be written by extrapolation as 1 - 
e~p[--(L,/&)~”’] and e~p[-(L,/&)~/”] forp >pc, p <pc ,  respectively. These expressions 
are an alternative to equations (5a, b ) ,  and give (nearly) the same result on the basis 
of totally different extrapolation. Though it is not obvious that these expressions are 
valid for L, >>e2, this may be the case; one notes that the numerical value of 2/v in 
2D is 1.5 which is close to the numerical value for DA stated above. (Note also the 
interesting observation that within mean field theories 2/v = DA = 4 (the value DA = 4 
was given by Zimm and Stockmayer (1949).) 

A direct estimation of the joining probability cy is very complicated, since one 
cannot neglect the correlations between two neighbouring L, x L, squares. However, 
it can be shown that cy is always larger than C. Thus, the crossover from the 2D to 
the 1D regime is dominated by the exponential factor C L x ’ L y .  Using equation 5(b)  
we find that the crossover to 1D is expected to occur at length x, satisfying 

WUL,) = ( ~ ~ / l 2 ) ~ ~  (P > P o  L, >>52). (6) 

In a typical experiment (Deutscher et al 1979) d - 300 8, and p - p c =  0.1. This leads 
to 6 2  = 0.65 p.m = 21d. With a strip of width L, -- 1.3 pm =42d one has = 22 pm, 
a fairly convenient value. However, since equation (6) is valid only up to a multiplica- 
tive constant which is unknown and may not be of order unity (it is related to the 
relative weight of the animals compared with that of the regular clusters), an experi- 
mental determination of the value of x would by no means be a trivial verification 
of currently accepted scaling theories. 

For the other regimes ( p  < p c  and p >pet &.> L,) it follows from our analysis that 
1D exponential decay is expected already on length scales -L,, hence 

Notice that our analysis, based on scaling arguments, is insensitive to the explicit 
picture of the infinite cluster. In particular, no use of either the links and nodes picture 
(Skal and Shklovskii 1974, de Gennes 1976) or self-similar models (Gefen 1981, 
Gefen et a1 1981) is necessary. Our result (equation (8)) predicts how the strip length, 

- L,. 
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at which 1D effects appear, scales with the strip width and the percolation correlation 
length. The main interest of experimental measurements of 1 would be to determine 
the weight of the large ‘animals’, for which no results are available at the moment. 
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