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Directed chaotic motion in a periodic potential
Oded Farago ∗, Yacov Kantor

School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69 978, Israel

Abstract

We study the motion of a classical particle in an in�nite, one-dimensional, sequence of equidis-
tant potential barriers, whose position and height oscillate periodically. If these oscillations are
properly synchronized, the right–left symmetry is broken and the particle drifts. Features of the
motion are studied by investigating the two-dimensional map which describes the dynamics. c©
1998 Elsevier Science B.V. All rights reserved.
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The most obvious way to set particles into motion is to subject them to an exter-
nal �eld. Yet, particle currents can be also induced by zero-averaged time-dependent
forces, provided an asymmetric potential is applied in the system. Recent studies of sys-
tems consisting of Brownian particles in periodic, locally asymmetric, potentials have
shown that motion may be induced by periodic forcing, non-random noises or due to
an oscillatory change in the potential pro�le [ 1–5]. These recti�cation processes are
interesting because they may provide insight into the mechanism of some biological
dynamical systems such as protein motors.
In this context, we study a model [6], describing the motion of a classical particle

of unit mass, moving in a one-dimensional sequence of equidistant potential barriers.
Each of the barriers has an in�nitesimal width and a �nite height. They oscillate with
the same frequency and in phase. Their velocity is given by v(t) = vbg(t). Their height
is given by H (t)=H0[1+ g(t)], where g(t) = sin(2�t). The particle moves freely be-
tween the barriers, occasionally colliding with them. At each impact, it can either cross
or be re
ected from the barrier. It crosses the barrier if its kinetic energy, in the refer-
ence frame of the barrier, exceeds the height of the potential barrier at the moment of
impact, i.e. |Vn − v(tn)|¿

√
2H (tn), where tn and Vn are, respectively, the time of the

nth impact and the velocity of the particle before that impact. If the particle crosses the
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barrier, its velocity is not changed, i.e., Vn+1 = Vn. If it is re
ected, on the other hand,
it acquires a new velocity: Vn+1 = −Vn + 2v(tn). In order to calculate the moment of
the next impact, one needs to consider the motion of both the particle and the barriers.
We made the approximation that the distance traveled between two consecutive col-
lisions is constant and equals the distance between two barriers, L, as if the barriers
do not change their position. We also assumed that in a case of re
ection, the particle
is re
ected backwards and therefore if Vn+1 has the same sign as Vn, we replace it
with −Vn+1. A similar approach was used in Ref. [7] for the Fermi accelerator model
(a ball bouncing between two walls [8,9]). Due to the periodicity of g(t) only time
modulo period (� = 1), which we denote as phase, is relevant, and two consecutive
phases are related by tn+1 = tn + L = |Vn+1| (mod 1).
What distinguishes this model from these introduced in Refs. [ 1–5] is its chaotic de-

terministic nature. A two-dimensional piecewise nonlinear map describes the dynamics
of the system. In order to inquire features of this map, we used the Poincar�e sections
method to construct plots of its phase space. The coordinates of the phase space are tn
and Vn. Pictures of the phase space are made by starting at di�erent initial conditions,
iterating the map for su�ciently many times and plotting the resulting trajectories in
phase space, i.e., the set of points {(tn; Vn); n = 0; 1; 2 : : :}.
We chose the mean height of a barrier, H0, to be the control parameter, while we set

the other parameters L = 100 and vb = 1
2 . When H0 =∞, barrier crossing is impossible

and the map reduces to the Fermi map [10]. For �nite H0, the map is piecewise
continuous, composed of two sub-maps: one corresponds to barrier crossing and one to
re
ection. The map is area-preserving since both sub-maps are area-preserving and since
their ranges do not overlap. For V ¿Vmax ≡ 2

√
H0 + vb and V¡Vmin ≡ −2√H0 + vb,

points in the (t–V ) phase space are mapped only by the crossing sub-map (the kinetic
energy is su�ciently large to cross the barriers at any phase), hence the motion in this
part of the phase space is over the lines V =V0 = const. For Vmin¡V¡Vmax the motion
is chaotic over a stochastic sea. The motion over the stochastic sea is ergodic and,
hence, almost any initial condition in this area will eventually yield the same picture of
the phase space. Since the map is an area-preserving one, the equilibrium distribution
of the motion is constant. A di�erent picture will be obtained only if initial conditions
are located inside one of the Kolmogorov–Arnold–Moser (KAM) islands which exist
in the stochastic sea. In that case the motion is regular and the trajectory “jumps”
between islands, where in each island it is found on an elliptic-like curve.
After each collision with a barrier the particle moves either to the barrier adjacent

on the left or on the right. Suppose that out of the �rst N0 collisions, N+ resulted in
an advance to the right (i.e., Vn ¿ 0) and N− = N0−N+ to the left (i.e., Vn¡0). The
mean displacement per collision, 〈d〉, is de�ned as: 〈d〉=L = limN0→∞ (1=N0)(N+−N−).
This, however, is the time average of the function h(t; V ) = sgn(V ). Since the motion
over the stochastic sea part of the (t–V ) phase space is ergodic, we deduce that: (1) 〈d〉
exists and is independent of initial conditions in the stochastic sea; (2) the time average
in the de�nition of 〈d〉 can be replaced by a spatial average of the function h(t; V ) over
the stochastic sea. Moreover, since the equilibrium distribution of the motion in that
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Fig. 1. The stochastic sea (the black area) for (a) H0 = 36 and (b) H0 = 500 (H0 is the mean barrier
height). The points denote the velocity of the particle Vn (y-axis) and the phase of the barrier tn (x-axis),
at the nth (n = 1; 2; : : :) collision. The small white areas embedded in the stochastic sea in (b) are KAM
islands.

area is constant [= (area of the stochastic sea)−1] we �nd that 〈d〉=L = (A+ − A−)=A,
where A, A+ and A− are, respectively, the areas of the stochastic sea and the areas of
its upper and lower sides (V ¿ 0 and V¡0).
A non-vanishing value of 〈d〉 means that the particle drifts. Such a symmetry break-

ing is indeed expected in our model and its origin can be explained as follows: Bar-
rier crossing depends both on its velocity, v(t), and its height, H (t), at the moment
of impact. If we examine our potential we see that on the �rst-half of the period
(0¡t¡�=2 = 1

2), when v(t)¿ 0, H (t) varies between H0 and 2H0; while on the
second-half of the period, when v(t)¡0, H (t) varies between 0 and H0.
Pictures of the phase space were constructed and 〈d〉 was calculated for various

values of H0. For low values of H0 (¡50) we found that the stochastic sea covers the
entire region between Vmin and Vmax in the (t–V ) phase space. Thus, A = �(Vmax −
Vmin) = (Vmax − Vmin), A+ = Vmax, A− = |Vmin| and

〈d〉
L
=
Vmax − |Vmin|
Vmax − Vmin =

vb
2
√
H0

=
1

4
√
H0

: (1)

Interestingly, similar results were obtained when we replaced the deterministic process
with the assumption that the phase, t, is chosen randomly on the interval [0; 1). Indeed,
when H0 is low the characteristic time interval between two consecutive collisions,
L=Vmax∼L=(2

√
H0), is at least a few times larger than the period of the barriers’

motion, leading to only weak correlations between consecutive phases.
For larger values of H0 (¿50), the particle gains higher speeds (Vmax∼ 2

√
H0) and

phase correlations appear. An indication of these correlations is the appearance of KAM
islands inside the stochastic sea. Fig. 1 shows the stochastic sea corresponding to (a)
H0 = 36 (without islands) and (b) H0 = 500 (with islands). The area these islands
enclose is inaccessible upon moving in the stochastic sea and Eq. (1) therefore is not
valid in these cases. However, as shown in Fig. 2 the corrections due to the islands are,
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Fig. 2. Open circles denote the values of 〈d〉 (the mean displacement per collision) computed numerically
for various values of H0, using trajectories of 109–1011 points. The solid line depicts the dependence of 〈d〉
on H0 as given by Eq. (1). For small values of H0, numerical results coincide with Eq. (1). For larger H0,
open circles deviate from the solid line.

relatively, minor and Eq. (1) can be taken as a rather good approximation. If initial
conditions are set inside a KAM island, the trajectory is not a stochastic but regular. It
makes a periodic cycle over a �nite number of islands (a chain), where in each island
it is located over an elliptic-like curve. Each chain has two branches between which
trajectories alternate: one in the upper side (V ¿ 0) and one in the lower side (V¡0)
of the phase space. A trajectory over a chain with M+ (M−) islands in upper (lower)
branch, corresponds to a particle’s net drift of magnitude (M+ −M−)L per cycle. The
mean displacement per collision, 〈d〉, equals to 〈d〉=L = (M+ −M−)=(M+ +M−). For
most of the chains embedded in the stochastic sea, the value of 〈d〉 is larger, in many
cases by more than an order of magnitude, than the value of 〈d〉 for the motion in the
stochastic sea. Moreover, while the value of 〈d〉 for the stochastic motion takes only
positive values (Fig. 2), for the regular motion, one can �nd chains with both positive
and negative values of 〈d〉. Thus, by an appropriate choice of initial conditions, a
relatively e�cient (with large 〈d〉) regular motion directed either to the right or to the
left can be obtained.
For very large H0 (above 1000), phase correlations become very strong. Many chains,

some with a large number of islands, appear in the phase space. These chains may
have an interesting e�ect on the stochastic motion: if several such chains are adjacent,
they may form a pseudo-boundary in the phase space. Trajectories need to di�use
across the chains in order to move from one side of the pseudo-boundary to the other.
However, due to the phase correlations in the vicinity of the chains, trajectories tend
to propagate along the chains. The probability of crossing all the chains forming a
certain pseudo-boundary can be very small and the motion can be restricted to only a
part of the stochastic sea for many iterations. If the characteristic time scale for leaving
this part of the stochastic sea is large enough, the value of 〈d〉 corresponding to the
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motion in that part can be computed numerically. Thus, for large H0, the motion of
the particle is composed of long time intervals, each characterized by a di�erent value
of 〈d〉.
In conclusion, we introduced a deterministic model for a directed motion in a peri-

odic, time-dependent, potential. Most initial conditions lead to chaotic dynamics with
the same average drift. Some initial conditions result in regular dynamics with di�erent,
usually larger values (in some cases with opposite sign) of the mean displacements.
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