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Knots in charged polymers
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The interplay of topological constraints and Coulomb interactions in static and dynamic properties of
charged polymers is investigated by numerical simulations and scaling arguments. In the absence of screening,
the long-range interaction localizes irreducible topological constraints into tight molecular knots, while com-
posite constraints are factored and separated. Even when the forces are screened, tight knots may survive as
local ~or even global! equilibria, as long as the overall rigidity of the polymer is dominated by the Coulomb
interactions. As entanglements involving tight knots are not easy to eliminate, their presence greatly influences
the relaxation times of the system. In particular, we find that tight knots in open polymers are removed by
diffusion along the chain, rather than by opening up. The knot diffusion coefficient actually decreases with its
charge density, and for highly charged polymers the knot’s position appears frozen.
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I. INTRODUCTION

A polymer chain can be easily deformed, but since it c
not cross itself, it is subject to topological constraints. Th
constraints can be temporary, such as entanglements bet
linear polymers, or permanent if the chains are closed~ring
polymers! or cross-linked. Understanding the influence
topological entanglements on static and dynamic proper
of polymers is a long-standing issue@1,2#, which has recently
found renewed interest in the context ofknotted biopolymers.
DNA in the cell can change its topology by thetopoi-
someraseenzymes that pass one strand through anothe
the process either creating or removing knots@3#. Synthetic
RNA trefoil knots have been used to prove the existence
similar ~previously unknown! topology changing enzyme
@4#. There is also much interest in developing artific
biopolymers, for example as molecular building blocks or
DNA-based computing, and in this quest complex knots a
links have been created in both thesingle and thedouble
stranded DNA@5#. Tight knots have been tied in single mo
ecule experiments on both the DNA and the actin filame
using optical tweezers@6#.

Several theoretical approaches have addressed the
ence of topological constraints in polymer networks and
lutions. In particular, thetube model @2# in which the con-
straints are replaced by a hard confining tube is qu
successful in predicting relaxation dynamics of polyme
solutions. In a complementary approach, topological c
straints are described in terms oflocalizedentanglements o
knots that perform collective motions along the polymers@7#.
Single molecule experiments are now able to probe polym
of specified topology, and to examine the influence of k
complexity on basic physical properties such as the radiu
gyrationRg . A simple scaling picture@8# suggests thatRg is
reduced as a power of the knot complexity, measured by
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minimal number of crossings in a projection. Indeed, a Flo
mean-field theory of knotted ring polymers@9,10# incorpo-
rating this knot invariant predicts various scaling depe
dences on knot complexity. A topological localization effe
is also suggested, in which knots segregate in a single r
tively compact domain while the rest of the polymer rin
expels all the entanglements and swells freely. Recent Mo
Carlo simulations in Refs.@11–14# support the idea that en
tropic factors localize topological constraints. This is bo
stered by analytical arguments on slip-linked polymers@15#,
and experiments on vibrated granular chains@16#.

Many biopolymers are highly charged. The effect of ele
trostatics on knotting probability of double stranded DN
has been studied in the case where the screening leng
smaller than the persistence length of the polymer. The ef
of the Coulomb interactions is then to renormalize the eff
tive thickness of the polymer@17,18#. However, synthetic
polymers and single stranded DNA both have an intrin
persistence length of the order,p;1 nm @19#, which could
be small compared to the electrostatic screening lengths
this paper, we explore the influence of topological constra
on charged polymers in cases where the screening leng
large or comparable to the intrinsic persistence length.
Sec. II, we start by considering the idealized case of
screened Coulomb interactions. This case demonstrates
under long-range interactions the topological constraints
pulled into tight knots. As discussed in Sec. III, this conc
sion has to be reexamined in real systems due to finite ri
ity of the polymer, thermal fluctuations, and, most impo
tantly, finite screening. Surprisingly, we find that tight kno
are rather resilient: They remain as global equilibrium so
tions as long as the overall shape of the polymer is do
nated by the~screened! Coulomb interactions. Tight knots
can also remain as metastable states for shorter scree
lengths, as long as the electrostatic bending rigidity is lar
than the intrinsic one. Such long-lived tight knots ha
strong influence on the relaxation dynamics of the polym
as discussed in Sec. IV. In particular, we find that the m
likely way for eliminating topological entanglements is b
©2002 The American Physical Society02-1
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diffusion of tight knots along the chain; interestingly strong
Coulomb interactions lead to tighter knots that are less m
bile.

II. UNSCREENED INTERACTIONS

We first consider a simple model of a charged polymer
which monomers repel each other viaunscreenedCoulomb
interactions. The interaction between two chargese, in a sol-
vent with dielectric constant«, separated by distancer is
e2/«r , and consequently the overall electrostatic energy o
polymer ofN monomers isVc5(e2/«)( i . j

N 1/ur i2r j u, where
r i is the position ofi th monomer. Given a typical separatio
between adjacent monomers ofa, it is convenient to intro-
duce the energy scaleeo[e2/«a. Initially, we focus on con-
figurations in which the monomers are locally stretched
form smooth straight segments, gradually curving at a lar
length scaleR set by the overall shape. For such configu
tions the Coulomb energy has the form

Ec~N!5eoFN lnS R

a D1c
aN2

R G , ~1!

wherec is a numerical constant of order unity, and we no
the following:

~i! For any smooth curve, the integral of the 1/r potential
leads to a logarithmic divergence, and consequently the
ergy of the polymer isoverextensiveand the tension on the
polymer increases as lnN. Therefore, thermal fluctuations ar
irrelevant for a sufficiently long polymer, whose shape
determined by minimizing the energy.

~ii ! The second term in Eq.~1! can be regarded as th
Coulomb interaction between charges~of orderN) on remote
parts of the polymer~distances of orderR). Since typically
R}Na, the partition of the energy between the two parts
not precise, and can be changed by redefiningR.

~iii ! The Coulomb interaction prefers to keep the char
far apart, and the polymer minimizes its energy by assum
a shape with maximalR. Thus, open polymers simply form
straight lines, while unknotted ring polymers form circles

The above argument can be misleading in the case
knotted polymer, as illustrated in Fig. 1. Here, we us
Monte Carlo~MC! off-lattice simulations to determine th
shape of knotted polymers at finite temperature. Our mo
polymer consisted of hard sphere monomers connected
‘‘tethers’’ @20# that have no energy but they limit the distan
of a connected pair to 1.05 of the hard sphere diametea.
Figure 1 depicts the results of a simulation for a trefoil kn

FIG. 1. ~Color online only! The initial ~left! and equilibrium

~right! conformations of a 64-monomer charged polymer, atT̃
51.4, forming a trefoil knot.~The right figure is reduced by a facto
of 2.!
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As an initial conformation~left! in this simulation~as well as
in the subsequent simulations of more complex knots! we
used a harmonic representation@21# in which coordinates of
the monomers are given as polynomials in cos(t) and sin(t),
where t parametrizes the curve.~This provides a relatively
clear visualization of the knot.! Since the hard core an
tether potentials do not have an energy scale, the tempera
T appears in the simulations in the combinationkBT/eo ,

which we will denote as dimensionless temperatureT̃. All

simulations described in this section were performed foT̃
51.4. It is customary to represent the strength of the e
trostatic potential by theBjerrum length,B5e2/«kBT. ~In
water at room temperature,B50.7 nm.! In our notation, the
Bjerrum length is simply related to the dimensionless te

perature by,B[a/T̃. ~Note that for the moderate values o
N564 used in this simulation, the polymer shape on
right of Fig. 1 is somewhat ‘‘wiggly’’; an effect that should
disappear forN→` due to the overextensivity of the en
ergy.!

Figure 1 clearly shows that in equilibrium the trefoil a
sumes an almost circular shape, with the topological det
concentrated on a very small portion.~The scale of the right
side part of Fig. 1 has in fact been reduced by a factor o
relative to the left figure, and the actual linear extent of t
equilibrated knot is almost twice its initial size.! This behav-
ior can be explained by comparing the long- and sho
ranged contributions to the Coulomb interaction: By expa
ing its radius, the long-range part of the Coulomb energy
reduced by a factor ofd(N2/R)}N. This comes at the cos
of bringing several charges close together in the tight p
tion, but the latter energy is independent ofN, and can be
easily tolerated for sufficiently long polymers.

Because of the highly curved portion, Eq.~1! does not
apply to tight knots. For a semi-quantitative understanding
the tension that creates such objects, consider a simple
ample of anN-monomer closed chain folded into a sha
consisting of a large circle ofN2n monomers, and a sma
loop of n monomers, as depicted in Fig. 2. Forn!N, the
electrostatic energy can be decomposed asEc(N2n)
1Ec(n)1Ei , whereEc is given in Eq.~1!, while Ei is the
interaction energy between the small loop and the la
circle. Assuming that the curved strands are separated
distance of the orderna, the latter is of the order of
2eon@ ln(N/n)1c8#, wherec8 is a constant depending on th
details of the shape. The leadingn-dependent part of the tota
energy is then

FIG. 2. ~Color online only! A closed loop (N-monomer poly-
mer! folded into a shape that can be approximately described as
circles consisting ofN2n and n monomers, separated from eac
other by a distance of ordern monomer sizes.
2-2
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KNOTS IN CHARGED POLYMERS PHYSICAL REVIEW E66, 031802 ~2002!
E~N,n!.eon lnS N

n D , ~2!

representing a tension that grows logarithmically with t
length of the polymer. This conclusion is not limited to th
shape depicted in Fig. 2, but should apply to any smo
linear curve consisting of two portions of very differe
sizes. Equation~2! thus indicates that from purely electro
static energy considerations,n should take the smallest pos
sible value, as indeed happens in the case of a tight kno
Fig. 1.

The tightness observed for a trefoil knot also occurs
more complicated topologies. Figure 3 depicts the result
equilibration of 128-monomer polymers beginning from
harmonic shape on the left to equilibrium shapes~on the
right! at T̃51.4. Below each figure we indicate the type
the knot in the standard notationCk , whereC is the minimal
number of crossings the knot can have in a planar projec
@22#. Since for a given number of crossings there can e
several different knots, an additional subscriptk labels the
standard ordering of these knots.~For C53 and 4 there is
only one knot, while forC58 there are 21 distinct knot
@22#.! Despite the increasing topological complexity of t
knots in Fig. 3, their eventual~collapsed-knot! state is reli-
ably represented by the semiquantitative description ba
on the energetics of Fig. 2.

The above arguments indicate the energetic advantag
compressing anyindivisible topological constraint into a
tight shape~as opposed to leaving it as an expanded str
ture!. However, similar considerations suggest that,if pos-
sible, any concentrated region of charge should split in
smaller elements placed as far as possible from each o
Such a reduction is not possible for theprime knotsconsid-
ered in Fig. 3, which~by definition! cannot be separated int
several parts connected by a single line. In contrast,compos-
ite knots are formed by joining several prime factors t
gether, and Fig. 4 presents initial and final~equilibrium!
states of several such knots on 128-monomer polymers.
notation below each knot indicates its constituent pri
components. The Coulomb interaction clearly ‘‘factorize
any composite knot, separating its elements as far as
sible. However, since the typical interaction energies
tween the prime factors are only a feweo , thermal fluctua-
tions (T̃51.4) in the distances between these tight regio
are quite pronounced.

III. BEYOND ‘‘IDEAL’’ KNOTS

Many of the results in the preceding section are in f
known to knot theorists, who have investigated long-ran
repulsive interactions with the aim of finding a kno
invariant energy@23,24#. The basic question is whether
properly scaled energy of the ground state configuration~the
ideal state! for certain choices of interaction functions can
used as a means of distinguishing different knot types.
example of such an interaction is Simon’s ‘‘minimal distan
between the strands’’ function, or a repulsive 1/r 2-type inter-
action @25#, which produces symmetric spread-out grou
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states. In Ref.@26#, it was conjectured that minimizing knot
invariant energies should decompose a knot into prime s
knots and simulations with 1/r 2 interactions support this
@27#. Electrostatic interactions do not generate useful kn
invariant energies, since, in the absence of excluded volu
interactions, knots on a continuous curve are collapsed
point @28#, providing no~cutoff independent! way of identi-
fying knots.~Indeed, in the simulations of the preceding se
tion knots were tightened into compact objects whose ex
was determined by the monomer size.! While this conclusion
may be disappointing to a knot theorist, it is encourag

FIG. 3. ~Color online only! The initial ~left! and equilibrium

~right! shapes of knots formed by 128-monomer polymers aT̃
51.4 (,B50.7a). A selection of prime knots of varying degrees
complexity is depicted.~The figures in the right column have bee
scaled down.! The numbers in the left column are the standa
notations for knot types.
2-3
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PAUL G. DOMMERSNES, YACOV KANTOR, AND MEHRAN KARDAR PHYSICAL REVIEW E66, 031802 ~2002!
from the perspective of polymer science, since it is easie
describe the properties of tight entanglements without hav
to worry about their precise topology. However, this is t
case only if we can demonstrate that tight knots survive
realistic polymers subject to electrostatic interactions in
tual solvents. Accordingly, in this section we shall inclu
additional attributes present in such situations, and cons
the effects of bending rigidity, thermal fluctuations, a
~most importantly! of a finite screening length. In these ci
cumstances the size of the knot can be significantly lar
than in its maximally tight state; nevertheless, tight knots c
still remain.

A. Bending rigidity

Many microscopic aspects of polymers are captured
mesoscopic scale by a curvature energy, describing its re
tance to bending. In a charged polymer one should dis
guish between theintrinsic bending rigidity and aneffective
rigidity that includes the electrostatic contributions. The l
ter arises because bending a straight segment brings
monomers closer and thus increases the Coulomb en
The former can be represented by a length,p at which, in the
absence of other interactions, the transverse thermal fluc
tions of the polymer become of the same order as the len
scale itself, or at which orientations of the bonds beco
uncorrelated. Simple analysis relates,p to the bending rigid-
ity k and temperature byk[kBT,p . In charged polymers
,p should be measured in the presence of high salt con
so that electrostatic contributions to rigidity are screened
It is reasonable that the bending rigidity, rather than mo
mer size, should determine the size of a tight knot. The
ergy for bending a segment of length,, with radius of cur-
vature also of order of,, is k/, with a dimensionless shape
dependent prefactor. For the shape depicted in Fig. 2, the
now a bending cost ofEb'k/na, which competes with the

FIG. 4. ~Color online only! ‘‘Coulomb factorization’’ of com-

posite knots on a 128-monomer polymer atT̃51.4. Original~left!
and equilibrium~right! configurations~scaled down! are shown.
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electrostatic energy in Eq.~2!. By minimizing the sum of
these energies, we find that the optimal knot size is

nk'A k

eo ln~N/nk!
'A k

eo ln~N2eo /k!

5A ,p

,B ln~N2,B /,p!
, ~3!

where we have omitted numerical prefactors of order un
This result indicates that the knot in stiff polymers of mo
erate sizeN can be as large asAk/eo5A,p /,B, and be-
comes compact only forN;exp(k/eo).

B. Thermal fluctuations

At high temperatures, entropic factors~which favor
crumpled states! compete with electrostatic effects. Whil
the latter dominate on sufficiently long length scales, at sh
length scales fluctuations are important. This competition
be visualized by a simpleblob picture @1#. If a strong exter-
nal forcef is applied to a self-avoiding polymer without ele
trostatic interactions, it is stretched to a linear form. Th
linear object, however, has a finite widthRb , and can be
regarded as a chain of blobs of this size. On length sc
shorter than the blob size, the external force has neglig
effect, and we can relateRb to the number of monomersNb
forming the blob via the usual relation for self-avoidin
polymers@1#: Rb'aNb

n with n'0.59. Consequently, the lin
ear extent of the entire polymer is approximatelyRb(N/Nb).
If a weak forcef is applied to a segment of spatial extentRb ,
that segment is stretched@1# by an amountX'Rb

2f /kBT. The
size of a blob is determined by a requirement thatX'Rb ,
leading toRb'kBT/ f . An open charged polymer can also b
viewed as a stretched chain formed from such blobs@29,30#,
while a ring polymer is a circle of such blobs. The forc
stretching a blob in an object of this type
eoa(Nb /Rb)2 ln(N/Nb). By substituting this force into the ex
pression for blob size, and solving it, we extract the num
of monomers in each blob as

Nb'F kBT

eo ln~N/Nb!G
1/(22n)

'F T̃

ln~N/T̃1/(22n)!
G 1/(22n)

5F a/,B

ln N~a/,B!1/(22n)G 1/(22n)

. ~4!

Of course, the blob picture is meaningful only ifNb is larger
than unity. Thus blobs can appear only for temperatureT̃

@ ln N; and for N5128 we expect to see the blobs forT̃
*5. Figure 5 depicts equilibrium shapes of a trefoil knot
T̃55 and T̃510, and we see the appearance of a wig
structure in the higher temperature regime. At such high te
peratures, we expect knots to have a size typical of that
noncharged polymer consisting ofNb monomers. The exac
size of the knot region in noncharged polymers in thre
dimensional space is not known; simulations suggest
2-4



e
ll

a
t
o

t
o

an

h
o

m
ts

c

t
re
d
f

rg
bl
e
n

r,
pl

i

n
re
lt.

g
-

t
is
es
not

gy
o

fer-
nds
ly-

ed

ra-
as

r
al

e a

-
the
and
ri-
of

ns.
the

n-

n
nce

-

n

of

KNOTS IN CHARGED POLYMERS PHYSICAL REVIEW E66, 031802 ~2002!
knots are localized@12,13#, but not compact@14#. The size of
the blob in Fig. 5 is too small for any kind of quantitativ
study, but we clearly see that the knot is no longer maxima
compact.

C. Screened interactions

A charged polymer in solution is accompanied by neutr
izing counterions and potentially other charged ions due
added salt. In general, the effect of these additional ions
the charged polymer is quite complicated, and dependen
the intrinsic stiffness, strength of the charge, and valency
counterions@31#. However, in many cases the net effect c
be approximated by a screened Coulomb potentialV
5(e2/«r )exp(2r/l), wherel is the Debye screening lengt
@32#. Since the previous arguments for the tightness
charged knots rely on the long-ranged part of the Coulo
interaction, we may well question if and when tight kno
survive with screened forces.

It is important to realize that Coulomb interactions affe
the polymer on scales much larger thanl, due to increased
bending rigidity. Curving a straight polymer to a radiusR
brings its charges closer, resulting in an extra energy cos
order (e2/«R)l̃2 for screened Coulomb interactions, whe
l̃[l/a is the reduced screening length. This can be regar
as an effective bending rigidity, which~in the presence o
thermal fluctuations! leads to the Odijk-Skolnick-Fixman
persistence length@33# of ,c5l2e2/(«kBTa2)5,Bl̃2. The
electrostatic persistence length is, in general, much la
than the screening length. In terms of our reduced varia
,̃c[,c /a5l̃2/T̃. This expression is valid provided that th
length scales considered are larger than the screening le
and T̃,l̃.

For very largel, comparable to the size of the polyme
the effects of screening are not very important: For exam
Eq. ~2! for electrostatic energy of a knot remains valid ifN is
replaced byl̃, and similar replacements should be made
Eq. ~3! for the knot size in a stiff polymer, or in Eq.~4! for
the blob size. In all these expressions, the number of mo
mers enters only in a logarithm, and, consequently, its
placement byl̃ does not significantly change the resu
Equation~3! for the optimal knot size is valid~with N re-
placed byl̃) only if the knot is smaller than the screenin
length. This conditionl.ank leads to the crossover bound
ary

FIG. 5. ~Color online only! Equilibrium configurations of a 128

monomer trefoil knot:~a! a tight (;20 monomer! knot at T̃55,

and ~b! an expanded (;60 monomer! knot at T̃510.
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, ~5!

which is equivalent to,c.,p . We thus conclude that a tigh
knot can exist only when the overall bending rigidity
dominated by electrostatic contributions. For smaller valu
of l, the short-range repulsion can no longer bend the k
into a tight shape.

Note that the analysis leading to Eq.~3! only demon-
strates the local stability of a tight knot. The global ener
minimum could still occur for a spread out configuration. T
decide on the latter requires estimates of the energy dif
ence between the two configurations, and decision depe
on microscopic details, as well as on the length of the po
mer. A circle with a tight knot and the spread-out knott
shape, both have a bending energy~at large scales! of the
order ofkBT,c /R. Since the circular shape has a larger
dius, it has a lower energy, the energy difference scaling
kBT,c /(Na), if both radii are proportional to the polyme
length. The tight knot in the former has an additional loc
energy cost, which is of the order ofkBT(,B /a) ~possibly
with logarithmic corrections!, but independent ofN. Thus,
we expect the configuration with a spread-out knot to hav
lower energy only for,c /N,,B , i.e., for screening lengths

l<lc'aAN. ~6!

Note that the limiting value ofl still corresponds to a per
sistence length of the order of the extended polymer, i.e.,
polymer shape is determined by energy considerations,
thermal fluctuations have little effect at this point. We ve
fied this conclusion by numerically determining the shape
the trefoil that minimizes the screened Coulomb interactio
Figure 6 shows the radius of gyration as a function of
screening length. For screening lengths larger thanlc
;0.4aN1/2, the knot switches from a loose to a tight co
figuration.

Let us briefly explore the possibility of tight knots i
nucleic acids. Double stranded DNA has a bare persiste

FIG. 6. Radius of gyrationRg of the ground state configuratio
of a trefoil knot, as a function of the screening lengthl for a
128-monomer polymer.RG has been normalized by the length
the polymerNa.
2-5
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length of ,p;50 nm, which is much larger than typica
screening lengths, and consequently is not likely to incor
rate any knots tightened by Coulomb interactions. Howe
measurements onsingle strandedDNA in high salt concen-
trations@19# suggest a much smaller intrinsic,p;1 nm, and
presumably a similar~or smaller! value applies to single
stranded RNA. Tight knots should then occur for sing
stranded nucleic acids for reasonable screening lengths o
order l;10 nm. This could for example be relevant to t
experiments of Ref.@4#, where artificial knots in single
stranded RNA were used to demonstrate the existence
topology changing enzyme. Knotted polymers are often d
tinguished from unknotted ones by electrophoresis@4#. How-
ever, if the knot is tight, the knotted polymer may have
electrophoretic mobility close to that of a ring polymer, ma
ing such detection problematic.

IV. TIGHT KNOTS AND DYNAMICS

Tight knots are created whenever a polymer is under
sion; the source of tension need not be long-range repulsi
For example, it has been argued that tight molecular kn
appear in polymer systems undergoing crystallization,
crystallization at one point may create tension in other p
of the chain@34#. Polymers in a strong shear flow are al
subject to tension@34,35#, and may even undergo a coi
stretch transition as a result@36#. It is plausible that stretch
ing could tighten loose knots in the chain. Once created, s
molecular knots should be quite stable and thus accoun
long-time memory effects observed in polymer melts@34#.
However, molecular dynamics simulations suggest that o
the tension is removed a tight knot opens up in a short t
@37#. Without being systematic, here we examine a couple
dynamical issues pertaining to charged tight knots, nam
their creation in a high temperature quench and their re
ation by diffusion along the chain.

A. Tightening by quench

It is quite likely that when topological entanglements a
first formed, e.g., in the process of cyclization of a polym
they are spread out over the whole chain. Subsequent t
ening then occurs upon increasing tension. In the cas
charged knots, this process is illustrated in Fig. 7. Here,
initial configurations are the spread-out harmonic represe
tions, which soon evolve into loops separated by tight e
ments. The relaxation process then slows down as one o
loops grows at the expense of the others. A universal
stage is the appearance of a structure reminiscent of Fig
with two loops separated by a tight ‘‘slip link.’’ We observe
the same sequence in simulations where the initial confi
rations was an equilibrated~random walk! knot. The forma-
tion of the two loops separated by a slip link was ag
relatively fast, and the rate limiting step was the sliding
one loop through the tightly packed monomers at the
link.
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B. Diffusion of tight knots

As demonstrated in the previous situation, tight kno
slow down the relaxation of the polymer to its eventual eq
librium state. Here we study such relaxation more explici
for a knot in an open charged polymer. In this case ther
no topological constraint, and the polymer is expected
unknot to achieve its equilibrium state. Does a tight knot
an open chain relax by becoming loose and opening up
by sliding ~diffusing! to one end. As demonstrated in Fig.
the latter is the case: The initial configuration~in a chain of
N564 monomers with unscreened interaction! remains tight,
indicating that the stretching force from the monomers at
ends of the chain is larger than from those forming the kn
In the simulation, the knot’s position fluctuates for some tim
in the middle, before moving to one direction. The event
unknotting occurs when the diffusing tight knot reaches
end of the polymer.

A tight knot in the middle of an open chain is in a met
stable state. We can estimate a potential energy for the t
knot by considering a chargeQ5ne along a charged chain
of N monomers. The Coulomb energy then depends on

FIG. 7. ~Color online only! Time evolution~using Monte Carlo
dynamics! of ~a! 31 and ~b! 819 knots, from the initial~harmonic!
geometry ~top! through an intermediate state when the kn
‘‘strangles’’ the loop close to its middle, and to a final state~bottom!
when the knot is localized. A similar sequence takes place for
other prime knots in the simulations of Fig. 3.
2-6
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KNOTS IN CHARGED POLYMERS PHYSICAL REVIEW E66, 031802 ~2002!
position of this chargeN1, as E5kBT(,B /a)n ln@N1(N
2N1)#. This energy is minimal when the chargeQ is at either
end point of the polymer, i.e., forN150 or N. Note that the
force pushing the extra charge towards the end scales
,B , and we may naively expect that the resulting relaxat
becomes faster as the Coulomb energy is increased. In
the opposite occurs for charge knots, with relaxation slow
down as Coulomb interactions become more dominant.
reason is that the increased charging energy leads to a h
tension and more closely packed monomers in the knot. A
motion of the knot requires some internal rearrangement
these monomers, accompanied by pulling in some monom
from the straight portions of the chain. This necessita
overcoming an energy barrier of;,B ln N, and consequently
higher charged knots are tight and harder to move. Si
rearrangements require a large activation energy, the
remains stuck in position. This is quite similar to what ha
pens to a knot in a polymer under strong tension@34#.

While with unscreened Coulomb interactions the tig
knot feels a potential that drives it to one end, there is
such force when the interactions are screened~unless the
distance between the knot and the end point of the polyme

FIG. 8. ~Color online only! Unknotting of a charged polyme
with N564 monomers and unscreened Coulomb interaction

strengthT̃51.4 (,B50.7a). The initial configuration is a tight kno
in the middle of the chain. Rather than open up gradually, the k
slides along the polymer and remains localized until it reaches
end.
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of the order of the screening length!. The energy barrier pre
venting the loosening of the knot is also finite in this ca
The resulting dynamics for a chain of 128 monomers with
screening length ofl56a is demonstrated in Fig. 9; despit
the screening the knot remains tight until it diffuses to o
end. The characteristic time scales for the relaxation of
knot can be estimated as follows. The time for diffusion ov
a distanceNa scales asa2N2/Dknot , with the knot diffusion
coefficient behaving asDknot}D exp(2ED /kBT). Here,D is
the diffusion constant for a single monomer, while the ac
vation energy for local rearrangements necessary for mo
of the tight region is roughlyED'kBT(,B /a)ln(l/a). There
is also the possibility that the knot becomes loose, escap
the local minimum of the tight configuration. The energ
barrier for the latter isEb'kBT,Bl/a2, with a corresponding
time scale oft'(a2/D)exp(Eb /kBT). In time t, the knot
can diffuse a distanceL'ADknott. We thus estimate a ‘‘pro-
cessivity length’’ over which a tight knot diffuses, befor
opening up, by

Lp}a exp~C,Bl/a2!, ~7!

whereC is a constant of order unity. The processivity leng
increases strongly with the screening lengthl and quickly
reaches a macroscopic length, indicating that the relaxa
of a tight knot will be by diffusion along the chain, even fo
very long chains. Also note thatLp is, in general, much
larger than the electrostatic persistence length that o
grows quadratically with the screening length (,c
',Bl/a2).

V. DISCUSSION

We have shown that long-ranged Coulomb forces gen
ate a tension that tightens topological constraints into de
localized regions, leaving the rest of the polymer une
tangled. For knots on ring polymers, we confirm the ‘‘facto
ization’’ of composite knots into their prime component
Tight knots remain, even when the Coulomb interaction
screened, as long as the electrostatic contributions domi

f

ot
e

FIG. 9. ~Color online only! Monte Carlo dynamics of a tigh
knot in a chain withN5128 monomers and screened interactio
The screening length isl56a, roughly the size of the knot. The
knot shows no sign of opening up; it remains tight until it reach
the end of the polymer.
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the rigidity of the polymer. Once formed, tight knots dras
cally slow down the equilibration of the polymer~or polymer
solution!, as they typically relax by diffusion along the bac
bone. If the Coulomb interactions are strong enough,
knot is pulled so tight that it is unable to diffuse, and
position appears frozen. This is different from uncharg
polymers where molecular dynamics simulations in Ref.@37#
find that tight knots in short uncharged polymers open
rapidly. Our results predict that tight knots in polyelectr
lytes can be very stable and cause long relaxation tim
While we have focused on single polymers, it is natural
speculate about similar behavior in solutions of many cha
It is indeed quite likely thatinterchain entanglements are
also tightened in polyelectrolyte solutions and gels.

Additional consequences of tight knots are in their infl
ence on mobility~electrophoresis!, and on the mechanica
strength of polymers. It has been shown recently by dir
measurement on DNA and actin filaments that knots sign
s

ad

.
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M

s
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c.
.

m

03180
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o
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ct
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cantly weaken the strand@6#. Similarly, molecular dynamics
simulations of knotted polyethylene chains also find that
strands becomes weaker, and typically break at the entra
point where the straight segment ends and the tight k
begins @38#. Single stranded DNA is relatively fragile an
sometimes breaks during electrophoresis or when subje
flow; tight knots may well be responsible for this phenom
enon.
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