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Abstract. The macroscopic conductivity ue of a simple cubic, two-component, random 
resistor network is systematically expanded as a power series in the relative difference 
between the two basic conductances. Graphs are developed to aid in implementing the 
calculation. A single-bond T-matrix-type rearrangement of the series leads to various types 
of single-bond approximations, and to an improved graph expansion for ue. The improved 
expansion is worked out up to seventh order, and used to discuss the singular properties 
of ue. 

1. Introduction 

Random resistor networks have received attention in recent years because they provide 
the simplest type of model for an inhomogeneous conductor. As such, the random 
resistor network has been used to discuss percolation conductivity in a macroscopically 
inhomogeneous medium (see, e.g., the review article by Kirkpatrick 1973), as well as 
the more difficult problem of hopping conduction between localised impurity states of 
electrons in microscopically dirty semiconductors (see Miller and Abrahams 1960, 
Ambegaokar et a1 1971, Shklovskii and Efros 1971, Pollak 1972). It has even been 
invoked in an attempt to describe the metal-semiconductor transition in metal-ammonia 
solutions and in expanded liquid mercury and liquid caesium (see Cohen and Jortner 
1974), though such uses have been severely criticised by Mott (1973). 

Theoretical discussions of random resistor networks have been given by means of 
numerical solutions of finite networks (Kirkpatrick 1973), by a scaling theory (Straley 
1976), by position-space renormalisation-group transformations (Stinchcombe and 
Watson 1976, Kirkpatrick 1977), by relating the resistor network to the zero-state Potts 
model (Dasgupta et a1 1978), by a series expansion (Fisch and Harris 1978), and by 
various one-shot approximations such as effective-medium theory (EMT) (Kirkpatrick 
1973), and mean-field theory (after properly defining an order parameter-see Stephen 
1978). Of these methods, the only one which is a systematic expansion is the series 
method developed by Harris and Fisch for cubic and hypercubic networks made of two 
types of conductors g and 0. This is an expansion in powers ofp, the probability for any 
conductor to beg. 
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2006179. 

0022-3719/81/233365 + 18 $01.50@ 1981 The Institute of Physics 3365 



3366 D J Bergman and Y Kantor 

It has recently been pointed out that the conductivity of a macroscopically inhomo- 
geneous system has some characteristic analytical properties as a function of the con- 
ductivity ratios of its pure constituents (Bergman 1978a, b). In this article we attempt to 
exploit these properties in order to develop a systematic expansion for the macroscopic 
conductivity a, of a random, simple cubic network of conductors gl, g2 as a function of 
gl/g2 and for arbitrary values of p ,  the probability for any conductor to be gl. It is hoped 
that such an expansion will eventually enable us to obtain quantitative results concerning 
the singularities of a,. It is also hoped that similar expansions may be developed in the 
future for calculating the conductivity and other properties of real disordered composite 
materials. 

In § 2, we formulate the problem and develop the basic expansion for the solution of 
the network, as well as for a,, as apower series in (g2 - gl)/g2. In 3 3, we introduce graphs 
to aid in calculating all the contributions of a given order for a,. By a standard T-matrix 
resummation procedure, the expansion is rearranged so it becomes an expansion around 
the EMT approximation for a,. Using the rearranged expansion, explicit expressions are 
found for all the terms up to seventh order in the power series for oe. In § 4, those terms 
are used to analyse the singular properties of a,. The results, though at present less 
accurate than those obtained by other methods, can in principle be improved by calcu- 
lating more terms in the series. Furthermore, they bear upon the properties of a, as a 
function of gJg2, and not merely for gl/g2 = 0, as is usually the case with all the other 
methods with the exception of the numerical simulations. In Appendix 1 we discuss the 
mathematical properties of as well as methods for evaluating certain matrix elements 
Tab that are used in the expansion. In Appendix 2 we give the decomposition of certain 
correlation functions used in the expansion. In Appendix 3 we give explicit expressions 
for the first seven terms in the power series for a,. 

2. Formulation of the problem and basic equations 

We consider a random resistor network in the form of a three-dimensional, simple cubic 
lattice, where every bond between nearest-neighbour sites independently assumes one 
of the two conductances gl, g2 with probabilityp, 1 - p respectively. The method used 
to analyse this system is the discrete analogue of the method developed by Bergman 
(1979a, b) to treat a continuous two-phase medium. 

We assume that the network fills the space between the infinitely large plates of a 
parallel plate condenser, which are at a distance L from each other, and is subjected to 

Figure 1. Schematic representation of the resistor network between the parallel plates of an 
infinite condenser. In this drawing, the distance between the plates is L = 3. The sites m and 
k are surface sites. 
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apotential difference also equal to L (see figure 1). Kirchoff's equationsfor the potentials 
V, at all the lattice sites are 

IC gij(Vi - vj) = 0 ,  (2.1) 
i 

where the sum is over all the nearest neighbours to the site i ,  and where i is an internal 
site (i.e., surface sites are excluded-there the potential is either 0 or L).  The conduct- 
ance gi, is either gl or g2, and will be represented in the form 

if i, j are nearest-neighbour sites E. .  = 
l1 {; otherwise. 

Obviously, @,is a random bond-variable. Using this representation, Kirchoff's equations 
become 

IC ~ i j  (Vi - V,) = U IC 6, (Vi - V,). (2.4) 
i j 

We introduce the discrete lattice Green function y i  for the uniform network, defined 
by the equations 

(2.5) E . .  ( ! - r f )  = 8. 11 Y l  11 
i 

together with the requirement that yf vanishes when i is a surface site. The quantity yf 
is the discrete analogue of the potential created at i by a point charge at 1. With the help 
of yf, (2.4) and the accompanying boundary condition can be transformed into a set of 
equations for the voltages across the individual conductors 

vu = 2, + U IC b r u b e b v b .  (2.6) 

Here we have introduced the bond indices a ,  b ,  i.e., 

(2.7) v,=v ....v.-v. z = z . - z .  ~ = ~ . .  
11 1 I a -  1 I a - 11, 

where Zi is the z-coordinate of the site i, and the discrete dipole-dipole interaction 
between two bonds 

(2.8) r = r,,  ab - il,lm E ri - y? - ri + y;". 

The mathematical properties of r o b ,  as well as convenient series for its numerical 
evaluation, are described in Appendix 1. 

The effective or average uniform conductance per bond ge of the random network 
is defined by requiring the total current or the total dissipation (Joule heat) to be 
reproduced correctly. For convenience, we will take all the bonds of the network to have 
unit length, so that 2, = 1 if a is a bond in the z direction while 2, = 0 for bonds in the 
x or y direction. The average current density is then given by 
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where Ni s  the total number of unit cells. Instead of g,, it is more convenient to discuss 
the following quantity 

(2.10) 

where we used equation (2.2) for g,, and where we also introduced a symbolic notation 
for the summation over bond indices. Introducing a formal or a series solution of (2.6) 
for V,, we can finally writef(u) as 

(2.11) 

The function f(u) is completely analogous to the characteristic geometric function 
which was introduced by Bergman (1978a, b) to describe the macroscopic dielectric 
constant of a composite material. In the case of a random network, we must average 
every term of (2.11) over the distribution of 6, in order to get an expansion for the 
average of f(u). We will always discuss an infinitely large network, in which case y i  
depends only upon the vector i - 1. Consequently, r u b  also depends only on the vector 
separation of the bonds a and b and on their orientations, and not on their absolute 
positions. Consequently, the ensemble average of 

(2.15) 

also depends only on the orientations and vector separation of a and b ,  and in (2.11) we 
can omit the sum on one of the outermost bond indices, at the same time omitting also 
the l/Nfactor. 

3. Graph expansions for cfcu)) 

When the series of (2.11) is averaged over the distribution of the random variables e,, 
each term will include a correlation function of the type 

(e,ebe,ed. . .). (3.1) 

For independently distributed bonds, each of these correlation functions may be decom- 
posed into a sum of b-functions multiplied by polynomials inp,  e.g., 

(00) = P 

(eoei) = p2 + ~ ( 1 -  p)&i 

(e0e1e2) = p3 + p2(1 - P) (601 + 8 0 2  + 612) + p ( 1 -  p )  (1 - 2 p ) h  

( eoe1e2e3)=~4+p3( i -~ ) (bo1+ .  . . ) + p 2 ( 1  - p > ( 1  -2p)(bn1z+. . .) 
(3.2) 

+ p ( l  - ~ ) ( 1  - 6 p  +6~2)60123 

+ p2(1 - ~)~(doiS23 + 6n26i3 + Mo~), 
where a symbol such as 8012 is equal to 1 if the bonds 0, 1, 2 are all equal, and to 0 
otherwise. The decomposition of higher-order correlation functions, up to n = 6, is 
given in Appendix 2. Every order-n correlation function is multiplied by a sum of a 
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product of n - 1 matrix elements T a b .  Many of these sums either vanish due to (Al.l3), 
or simplify due to (A1.8). The low-order terms of cf(u)) are thus readily found to be 

~ ( ~ 1 )  = up + s u 2 p ( i  - p )  + iU3p(i - p )  (1 + p )  + 0 ( ~ 4 ) .  (3.3) 
In order to calculate higher-order terms in this expansion, we need to calculate 

non-trivial sums such as 

F (rod3> (3.4) 

which have to be evaluated numerically. In order to facilitate the evaluation of the 
non-vanishing terms in the expansion, we characterise each one by an appropriate graph: 
We assign a vertex to every independent bond index a ,  and a line segment joining two 
vertices to represent every matrix element T a b .  The factor 2, is represented by a one- 
ended (dangling) segment which emanates from the vertex a. The non-vanishing con- 
tributions to the first four orders in (2.11) are represented by the graphs of table 1. The 
rules for drawing these graphs are that every vertex must have an even number of lines 
attached to it, and all graphs are doubly connected, i.e., they cannot be separated into 
disconnected parts by removing a single line. The last rule follows from the fact that 
such an isolated line would have associated with it a single sum of the form of (Al.l3), 
which vanishes. A further rule is that any vertex that has only two lines attached to it can 

Table 1. All non-zero graphs and their contributions to the coefficient of U", 1 G n c 4, in the 
series for ( f (u) ) .  In column 3 there appear the &function products which determine all the 
non-repeating covering paths 0 , l  , . .n - 1 of a given graph. The total number of such paths 
is the multiplicity of the graph. 

Order in Contributing Non-repeating 
U graphs covering paths Total contribution of the graph 

n = l  w 

n = 2  w 
5 n = 3  

6 
A n = 4  

8 
6 0 3  

6023 

6013 

603812 

6 0 2 8 1 3  

60123 

2p2(1 - p )  (1 - 2 p )  r:, 

F23 
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be ignored, and a line that includes any number of such vertices can be represented by 
a single factor T a b .  This follows from the idempotency property (A1.8). 

Using these rules, every graph can be uniquely translated into a product of r- 
matrices. In general, however, the same topological nth-order graph may represent 
more than one term in the decomposition of the order-n correlation function. The total 
number of such terms represented by one graph can be obtained simply by counting the 
number of different continuous paths which cover the entire graph without traversing 
any line more than once. Every non-repeating covering path of this kind can be rep- 
resented by a product of &functions of vertices from 0 to n - 1 which also determines 
the topology of the graph. All the &function products which correspond to the same 
graph are similar in form, and thus carry the same p-polynomial in the decomposition 
of the correlation function. Their total number is equal to the multiplicity of the given 
nth-order graph, and this number multiplied by the appropriate p-polynomial and by 
the characteristic r-product is the total contribution of that graph to the coefficient of U" 

in the series for Cf(u)). In table 1, we show all the non-zero contributions up to order 
n = 4. Together with each graph appear the S-function products which determine all the 
non-repeating covering paths, as well as the total contribution of that graph. 

From table 1, and recalling that rUa = Q (see equation (A1.9)), we can easily repro- 
duce the first three terms in the power series for Cf(u)), as in (3.3). For the fourth term 
we get, by summing all the four graphs, 

If one tries to implement this expansion beyond fifth order, the number of graphs 
proliferates to such an extent that it becomes impossible to keep track of them all. 
Furthermore, it is clear even from the orders up to n = 4 ,  shown in table 1,  that most of 
the contributing graphs are trivial in the sense that they depend only on the diagonal 
matrix element Too = 5.  In order to get a more manageable expansion, we rearrange the 
series of (2.11) by a T-matrix resummation procedure (see e.g., the review articles by 
Elliott et all974 and by Ehrenreich and Schwartz 1976). Defining 
f. = r  -16 
where 60 is some constant to be determined later, and where the matrix l 'ab has vanishing 
diagonal elements, we can easily show that 

sea = e, - eo 8 K u  E U6oa/(1 - U 6 0  - Q U S e , )  (3.6) ab - ab 3 ab 

As usual, one of the advantages of this form is that two adjacent factors must have 
different bond indices, and consequently they are statistically independent. In the 
single-bond approximation (SBA) we take aZZ the factors in each product to be indepen- 
dent, and we thus get for the average off(u) 

where we used the fact that 

2 b = - - r a a &  - 5 z a .  (3 - 9) 

The simplest of the single-bond approximations is obtained if we choose 0, = 0. In 
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that case, we find 

( 6 K )  = up/( 1 - au) (3.10) 
@(U)) = up/[l - iu (1  - p)]. 

This is just the Clausius-Mossotti approximation for f(u) of a composite medium where 
the g2 conductors are taken to be the host medium and the gl conductors are taken to be 
the inclusions. 

Another possibility is to choose eo = p,  which leads to 

(3.11) 

This approximation seems to be better than (3.10): whereas (3.10) only reproduces 
correctly the first two terms in the exact series of (3.3), (3.11) reproduces the third term 
as well. 

Finally, we can choose 60 so as to make the average of &vanish. This leads to 

(3.12) 

which is nothing else than the effective-medium approximation (EMT) for the random 
network. Since now ( b ~ )  = 0, it is clear that the exact series for cf(u)) - uB0 will start 
with a fourth-order term in 6~ (and hence in U). All the lower-order terms on the RHS of 
(3.7) will vanish when averaged. Like (3.11), equation (3.12) is thus correct up to, and 
including, terms of order u3, and we may hope that the resulting exact expansion for 
(f(u)) will perhaps be more manageable than the direct expansion described earlier. 

Comparing equations (2.11) and (3.7), it is obvious that the two series have the same 
structure. Therefore the same graphs are used in both expansions. However, many of 
the graphs that appeared in expanding the average of (2.11) will give a vanishing 
contribution when expanding the average of (3.7): such will be the case with all graphs 
that have a vertex with only two lines attached to it, since such a vertex corresponds to 
an isolated single bond factor ( 6 ~ ~ )  = 0. Furthermore, no Too loops appear in the 
rearranged expansion, since fo, = 0. 

In order to determine the contribution of an order-n graph, we assign the factor f a b  

to a line that connects the vertices a and b ,  and sum over the positions and orientations 
of all the vertices except for the entry bond and the exit bond (the one or two vertices 
with a dangling line). The entry bond is held fixed, and though the position of the exit 
bond is summed over (unless it happens to coincide with the entry bond), its orientation 
is kept identical with that of the entry bond-we have taken it to lie along the z axis. 

Besides the f-product discussed above, the contribution of every order-n graph 
includes a product of single-bond averages (Se), which arises from the decomposition 
of the order-n correlation function (8~08~1 . . . ~ K ~ - J  into a sum of non-repeating 
covering paths. When the graph is traversed, starting from one dangling line that is 
labelled by 0 and ending at the other one that is labelled by n - 1, each vertex (bond) is 
followed by a different vertex, but each vertex is visited at least twice. The different 
covering paths belonging to the same graph all give the same kind of decomposition for 
the order-n correlation function, and the same sum of f-products. The total contribution 
of a given order-n graph is thus the product of these two terms times the combinatorical 
factor, which is the total number of covering paths. Because of restrictions on the allowed 
covering paths, we find far fewer terms in this decomposition than we did in (3.2) or in 
Appendix 2. 
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The graphs are characterised by the number of vertices (or different bonds) U ,  and 
by one plus thenumber of internal (i.e., non-dangling) lines (or f-factors) n. The number 
n is also equal to the total number of factors appearing in the correlation function, and 
is therefore equal to the order of the graph. In order to ensure that all graphs and 
covering paths with given n and U were counted, we made an independent calculation 
of the total number L,(n) of covering paths of all n ,  U graphs for U = 2, 3,  4. These 
numbers were found to be 

L2(n) = 1 for n 3 4, zero otherwise 

L3(n) = 2"-' - 2n + 1 for n 3 6, zero otherwise 

L4(n) = 4(3n-2 + 15) - 2"-l - 3(n - 2)2n-4 + 2n(n - 3)  forn 2 8, zero otherwise. 

(3.13) 

In this way, all the graphs and their combinatorical factors were found up to order 
n = 9 (Kantor 1979). However, the sums of f-products were only calculated completely 
up to order n = 7. The reason for this is that the limiting factor in the calculations turns 
out to be the amount of computer time needed to calculate these long-range multiple 
sums. We were thus able to calculate double sums, which sufficed for graphs up to order 
n = 7, but we were unable to complete the calculation of all the graphs of order n = 8 
and n = 9, where triple sums also appear. The results for graphs of order n = 8 and 
n = 9 appear in Kantor's thesis (1979) and are available upon request. 

The single-bond averages (8P)  which appear in table 2 are readily evaluated from 
(3.61, e.g., 

(3.14) 

Into this result we naturally have to substitute eo = eo(u) from (3.12). Clearly, the 
resulting expansion for (f(u)) is not a power series in U .  However, if the order-n term in 
the expansion is itself expanded in powers of U ,  the leading term is un. In this way, a 
power series in U can systematically be constructed for (f(u)). The results represented in 
table 2 allowed us to expand (3.7) up to order S K ~ ,  and thus to get the expansion of (f(u)) 
as a power series up to U'. The technical aspects of the rearrangement of (3.7) in order 
to get the power series in U are summarised in Appendix 3. The coefficients of the 
expansion are given there in the form of polynomials inp ,  so that the numerical values 
can be calculated for any p .  For comparison, the corresponding expansion of ueo(u) 
(which is the EMT approximation for (f(u))) is also given. In 9 4, the power series which 
we obtained for (f(u)) in this way will be used to discuss the singularities of this function. 

4. Analytic properties and asymptotic analysis of ~(CU)) 

The three lowest orders in the exact expansion (see (A3.6)) coincide with those of the 
EMT approximation for (f(u)), namely, uOo(u). But even at higher orders, the differences 
between the coefficients of the two series are very small as can be seen from the example 
in table 3. This explains the good agreement between EMT and the results of numerical 
simulations even for values of U as high as 0.9 (Kirkpatrick 1971), which could be 
expected to be outside the region of validity of EMT (i.e., / u I  e 1). 
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Table 2. List of all contributing graphs and non-repeating covering paths and their contri- 
butions to the term of order 6x“ in the expansion of (4.14). 

Order in Contributing Correlation Combinatorical Non-repeating 
6 ~ n  graphs function factor covering paths Sum o f f  products 

4 

5 

6 

6 

6 

7 

7 

7 

7 

7 

1 

1 

1 

1 

4 

1 

1 

2 

4 

12 

2 Z&Z1 = - 0.2824 X 

f$: =0.3254 x 

Z$&Zl = - 0.5387 X 

c 1.2 i.o,i.:2i.20t 

c 1-2 zof02f~,i.:2z2 

= 3 I‘!2 = O ,  1085 x lo-’ 

= -0.2272 X 

f81 =0.5748 x 

l%&f% =0.6656 x 
1.2 

~ ~~~~ 

7 Since this sum is actually independent of both the position and the orientation of the bond 0, one can sum 
over 0 , 2  instead of over 1,2,  and then use (A1.8) to obtain 

In this way one obtains the second form for this sum. 

Table 3. An example of the expansion coefficients of ( f (u))  and u&(u) forp = 0.60. 
~~ 

Orderofu 0 1 2 3 4 5 6 7 

u80(u) 0 0.6 0.08 0.04267 0.02702 0.01896 0.01421 0.01114 

Mu)) 0 0.6 0.08 0.04267 0.02686 0.01868 0.01386 0.01076 
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The function &,(U) has a branch cut on a segment of the real axis [ucl, uc2] given by: 

3(1 + p )  3 6[2p(l - p)]”* 
(1 - 3PI2 

&1,2 = 

The lower edge of this cut uC1 is usually greater than 1, being equal to 1 only at the EMT 
percolation threshold for the g2 conductors p ,  = 8 (note that the concentration of the g2 
conductors is 1 - p ) .  We expect that the exact solution will have a qualitatively similar 
behaviour. That is, we expect cf(u)) to have a branch cut on the real axis with the lower 
edge uC1 2 1, equality being achieved only at the true percolation threshold of the simple 
cubic, independent random bond lattice (Bergman and Imry 1977). The function (f(u)) 
should have no singularities outside the real U axis, and the branch point uC1 will be the 
closest singularity to the origin. We can therefore try to determine the location of uC1 as 
well as the singular behaviour of cf(u)) there by an asymptotic analysis of the power 
series. We analysed our power series for (f(u)) using the method of Neville tables (see, 
for instance, Gaunt and Guttman 1974; in what follows, we will use their notation). We 
are looking for the convergence radius ucl of our series expansion 

(f(u)) = x an(plun, 

which is given by lhcl = limn-,m e:, where e: E a,/a,,- The Neville tables relate to each 
sequence {e:} a set of sequences {e;} that are expected to converge more quickly to the 
same limit with increasing order Y = 1,2,3. The highest-n term in each sequence, namely 
e; ( r  =1,2,3) ,  was taken as an approximation to l /ucl ,  with the expectation that, as r 
increases, the approximation becomes more exact. These approximations are depicted 
as a function o f p  in figure 2. The curves for r = 1 , 2 , 3  reach their maximum value at the 
concentrations 0.617,0.687 and 0.755, respectively. The last result is in good agreement 
with the best known value of the percolation threshold of the independent, random 
bond, simple cubic lattice, namely 0.7535 (Fisch and Harris 1977). 

The successive approximations are not well converged, but comparing them with 
the lower branch point of Oo(u) for different values of p ,  we can conclude that the true 
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uC1@) stays closer to the value 1. This result could have been expected because in the 
EMT approximation, ucl(p) has the following form near the percolation threshold: 

UC1@)  - 1 = &I - 3)2. (4 12) 

On the other hand, scaling arguments (Straley 1979) predict that the exponent of u,l(p) 

near threshold should be 2.4 k 0.2. 
The method of Neville tables can also be used to estimate the exponent which 

characterises the singularity of (f(u)) at U = ucl, but our expansion up to order U' turns 
out to be too short to determine this exponent with any reasonable accuracy. We have 
also applied the method of Pade approximants to the logarithmic derivative of (f(u)). 
This gave worse results than the previous method, probably due to the fact that the 
expected singularity in (f(u)) is a weak one (i.e., the function does not diverge at ucl). 

To summarise this section, we have been able to investigate the position of the 
branch cut singularity in ( f (u)) ,  although we have not been able to obtain quantitative 
information about the critical exponents. To do that we would need to calculate more 
terms in the series for cf(u)). 

Appendix 1 

In this Appendix we discuss the mathematical properties of the matrices y i  and rab, and 
develop convenient series for the numerical evaluation of Tab. 

The discrete analogue of Green's theorem for the homogeneous network is 

x [ Ul&I](Vl - V]) - V&]( U ,  - U,)l = E (VI&I]U, - U,EJ]), ( A l .  1) 

where on the LHS, j ranges over all sites while i ranges only over all the internal sites 
(i.e., excluding surface sites). On the RHS, j ranges only over the surface sites, while i 
ranges over those internal sites which are nearest neighbours to surface sites. Obviously, 
the RHS is obtained by noting that the terms on the LHS for which both i and j are internal 
sites will cancel out when the sums are performed. If we substitute U, = y f  and VI = y y  
in (Al . l ) ,  and remember that these quantities vanish at the surface, we find 

(A1.2) 

In the case of an infinite network, it is easy to derive an expression for the Fourier 

y ( k )  = yi" exp[ik, (m - 111, (A1.3) 

, , I  l % !  

1 
Y m  - ~ i "  = 0, 

which is the discrete version of the reciprocity theorem. 

transform of y r ,  

1 

with the help of the Fourier transform of 
3 

~ ( k )  = 2 &lm exp[ik. (m - l ) ]  = 2 2 cos k ,  (A1.4) 
m ff=l 

Taking the Fourier transform of equation (2.5) we get 
3 

1 = (4 E sinz&kff)-', y ( k )  = &(O) - &(k) u=l  
(A1.5) 
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so that 
d3k exp[ -ik. (m - l ) ]  

-76< k,< X. 
4 Z:",= sin2 ikw (A1.6) 

These quantities are special cases of the so-called lattice Green function for a simple 
cubic lattice. A summary of the properties of this function, as well as a list of references 
where selected values are tabulated, can be found in an article by Katsura er aZ(l971). 
Detailed double series for calculating these functions with arbitrary accuracy have been 
developed by Abe and Katsura (1973). 

From (Al.6) and (2.8) we can derive a Fourier integral expression for our T a b  

d3k sin ik,sin i!kpcos(k, (R - R')) 
-n< k, < 76, (A1.7) 

sin2 t k ,  T a b  E r R a , R ' D  = 

where the symbol Radenotes a bond pointing in the positive direction e,, whose centre 
is at R.  From this expression, it is immediately clear that Tab is an idempotent matrix, 
i.e., 

2 r a b r b c  = rat, 
b 

and also that its diagonal elements are 
r = I  aa 3 .  

(A1.8) 

(A1.9) 

In the limit of large separation, the lattice Green function y? reduces to the ordinary 
Coulomb potential 

for large 11 - mi. (A1.lO) 

Similarly, the r-matrix reduces in that limit to the interaction between two dipoles 

(Al.  11) 

By considering the behaviour of (A1.7) under the various transformations of the 
cubic point symmetry group at R ' ,  we can easily show that when r R n , R ' P  is summed over 
the star of R - R' the result is zero unless R a  = R'P. From this it follows that if we sum 

over all the bonds b # a in a cube surrounding a ,  the result will be zero. A different 
result is obtained if we sum r R a ; R ' P  over all the sites R' of the network (including R' = R),  
This is due to the fact that the matrix elements r R a , R ' P  decrease with separation only as 
lR - R' so that the infinite sum is only semiconvergent. Thus, the value of such a sum 
depends on the shape of the network. Since the network as a whole does not have the 
shape of a cube, the previous method of summation is inappropriate. In order to obtain 
the sum in this case, we consider a uniform network where 19, = 1 for all bonds a. The 
voltage distribution is then simply Va = Z,, and (2.6) becomes 

(A1.12) 

We conclude that 

(A1.13) 

for any orientation of the bond a. 
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We will now develop series for the numerical evaluation of the matrix elements T a b .  

Several years ago, Abe and Katsura (1973) developed and published a number of 
series expansions for the lattice Green function of simple cubic and tetragonal lattices, 
in their notation 

cos lx cos my cos nz lbs. - ie-  ycosx - cosy-  cosz’ Z(a; I ,  m ,  n ;  y )  

Obviously, our quantities y{of (A1.6) are related to these integrals by 

y i  = iZ(3; I ,  m ,  n ;  1) 

(A1.14) 

( A l .  15) 
j - i 5 le, + mey + ne,. 

Unfortunately, the point a = 3 ,  y = 1 is a singular point of I ,  and consequently the series 
expansion, which is a double series, converges rather slowly. Since we are really inter- 
ested in Tab rather than in y { ,  we used the series for 1(3; I ,  m ,  n; 1) (equation (3.3) from 
Abe and Katsura (1973)) to derive a series for r with the help of (2.8) and (A1.15) .  In 
order to exhibit this series and discuss its properties, we need amore convenient notation. 
Representing the site vectors of r ( i , h k  by 

(A1.16)  i = R 1  j = R 1 + e l  h = R 2  k = R l + e 2  

RI2 = R I  - R2 = le, + mey + ne,, 

where each vector e l ,  e2 is a unit vector parallel to one of the coordinate axes, we 
introduce the following notation 

( A  1.17) 

where lji = 1 , 2 , 3  according to whether e,  = e,, ey ,  e,. 
The values of ljl and E2 thus determine the directions of the two bonds, (ij) and (hk) ,  

each of which is taken to point in the positive direction along one of the coordinate axes. 
The integers 1, m, n determine the vector R12 which points from the origin of (hk)  to the 
origin of (ij). 

r(lmnl1) = 2y(lmn) - ? ( I -  lmn) - y(1+ lmn) 

r(lmn21) = y(1mn) - y(1- lmn) - y(Zm + In) + y(1-  lm  + In),  (A1.18) 

and these need only be calculated for 1,  m, n 2 0 ,  because all other matrix elements can 
be found from the following equations: 

y f  = H ( 3 ;  1, m, n;  1) E y(lmn) ri,,hk = r(lmnhEz), 

In practice, we only need to calculate two types of matrix elements 

r(lmn33) = T(mn122) = T(nlml1) 

r(lmn31) = r(lnm21) = T(mln32) 

r(lmn21) = r(-Z- m - n12) 

r(lmn11) = r (hmi1 )  = r(jl1 lml lnl11) 

r(lmn21) = r(lm In/ 21) 

r(-lmn21) = -r(l+ lmn21) 

r(l -mn21) = -T(lm - ln21). (A1.19) 
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These equations are, in turn, easily obtained from (Al.  18) and from 

r(lmn> = r(lll Iml Inl). (A1.20) 

In this way the following series were obtained 
m 2k 

r( lmnl1) = 2 2 V(kr) 

X (A1.21) 

r(lmn21) = 2 V(kr) 

x (  p + 6 k -  2r 6(m + 2k - r  + l ) ( m  + n  +2k - r  + 1)  ' 

where 

k = O r = - x  

5k + 2(1+ 1 ) ( p  - 2r) - 61(l+ 1 )  - Hp - 2r)(p - 2r + 1 )  
(p t 6k - 2r)(l+ k + 1 )  

x 2k 

k = O r = -  cc 

(A1.22) 1 p - 2r - 61 (m + n + 4k -2r + l)(p -2r -61 + 1 )  - 

V(kr )  = g + 1 + 6 k - 2 r  

(A1.23) ( m  + n + 4k - 2 r ) ! ( p  +6k  -2r) !  
k !  ( I  + k ) !  (2k - r ) !  (m + 2k - r ) !  ( n  +2k - r ) !  ( m  + n  +2k - r ) !  

X 

p = 1 + m + n ,  m , n  3 0 ,  l z - 1 ;  

and 
m 2k 

2r - m - n + 5 
r(Omn11) = 2 V(kr) 3 ( k +  1> k=O r =  - x 

(A1.24) 

( m  + n - 2r - 4 ) ( m  + n + 6k - 2r + l ) ( m  + n + 4k - 2r + 1 )  
6(m + 2k - r + l)(m + n + 2k - r + 1 )  

2 r - m - n + 5 +  

(A1.25) 

where 
m , n a @  (A1.26) 

and where V(kr)  is again given by (A1.23) but with 1 = O  and p = m  + E. 
In order to get an idea of the convergence properties of these double series, consider 

for example equation (A1.22). Using Stirling's approximation, we find that the general 
term of that series has the following forms of asymptotic behaviour 

for r = 2k % p  

for lrl * 3k % p  (A1.27) 
r2 " 1 - - + O(r/k) ) --( 3k 

fork % r2 

We see that the slowest asymptotic decrease occurs in a region along the k-axis whose 
width in terms of r is 

Ar 2: q ( 3 k ) .  (A1.28) 
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Thus, if all the terms in such a region are summed up to k,,,, the number of terms will 
be - 2 d 3 e i X .  When (A1.22) is summed only over r for large k ,  the result will be of 
order 2V(3k)/(1O3 k3) -3.5 X 10-3k-5’2 (the factor comes from the small coeffi- 
cient in the last line of (A1.27)). Therefore the last term in the subsequent sum on k will 
be -3.5 x 10-3k;:i2, while the absolute error will be -3.5 x 10-3k;2’,2. Thus, if we take 
k,,, = 100, we have altogether to sum over about 3500 terms for every matrix element 
rob, and we can expect to obtain it with an absolute accuracy of 3 x lop6. 

Before closing this Appendix, we mention some exact properties of the r-matrices 
that are useful in providing us with an independent means of checking the accuracy of 
the numerical calculations. One is the fact that the diagonal element Taa = 5 (equation 
(A1.9)), from which we deduce 

q o o o i i )  = g. (A1.29) 

The second is the idempotency of r (equation (Al.8)), from which it follows, in par- 
ticular, that 

rg1 = roo = B. 
1 

The last property is the fact that 

r ( i a i i )  = 0, for 1 # 0. 

This follows from the equation (see (A1.7)) 

dx dy dz sin2 4z cos I(x + y + z) 
-n 7 ~ ) ~  sin2 i x  + sin2 hy + sin2 it r ( m )  = I (2 

cos Z(x + y + 2) = $6,. dxdydz 

(A1.30) 

(A1.31) 

(A1.32) 

Appendix 2 

In this Appendix we give the decomposition of the n = 5 and n = 6 correlation functions 
of e,, which are needed in any attempt to extend the expansion of (3.3) and (3.5) up to 
terms of order u5 and u6, respectively. 

(&SI . . . 84) = p5 + p4( 1 - p )  (10 pairs 601, etc) 

+ p3( 1 - p )  (1 - 2p)  (10 triplets 8012, etc) 

+ p3(l  - ~ ) ~ ( 1 5  products 601623, etc) 

+ p2(1 - p)  (1 - 6p + 6p2) (5  quartets 80123, etc) 

+ p2(1 - P ) ~ (  1 - 2p) (10 products 6016234, etc) 

+ p(1 - p )  (1 - 2p) (1 - 12p + 601234 (A2.1) 
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(e0$,. . . e j ) = p 6 + p 5 ( 1  -p)(15pairs) + p 4 ( l  -p)(1 -2p)(20triplets) 

+ p4( 1 - p ) 2  (45 products 801823, etc) 

+p3(1 - p ) ( 1  -6p  + 6p3(15 quartets) 

+ p3( 1 - p ) 2  (1 - 2p) (60 products 8018234, etc) 

+ p3(l - p ) 3  (15 products 601623845, etc) 

+ p2(1 - p ) 2  (1 - 2 ~ ) ~  (10 products 60128345, etc) 

+ p2(1 - p ) 2  (1 - 6p + 6p2) (15 products 80123645, etc) 

+p2(1 -p ) (1  -2p) ( l  - 12p +12p3(6 quintets) 

+ p ( l  - p )  [I - 3op (1 - p ) ( 1  -2p)T 8012345. (A2.2) 

Appendix 3 

In this Appendix we give some analytical expressions for the functions used to expand 
(f(u)) in a power series up to order U’. 

= up + (i /3)p(i  - p ) u 2  + (1/3~)p(i - p )  (I + p ) u 3  

+ (1/33)p(l -p) (1  + 4p - p 2 ) u 4  

+ (1/34)p(l -p ) (1  +p)(1 + 8p - 5 ~ 2 ) ~ ’  

+ (1/3j)p(l - p ) ( l  + 16p + 26p2 - 24p3 - 3p4)u6 

+ (1/36)p(l -p ) (1  + p ) ( 1  + 24p + 66p2 - 96p3 + 2 1 ~ 4 )  U’ 

+ O(u8) (A3.1) 

(A3.2) 

+ + F(82)*(8?) + O(u8) (A3.5) 

A = -0.2824 X B = 0.3254 X 

C = -0.5387 x 

E = 0.5748 X 

D = 0.8478 x 

F = 0.6210 x 
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By using equations (A3.1)-(A3.5) we can expand ( f ( u ) )  in a power series as follows: 

H o b )  E A' 

Hi@) K(p)  + 3A'p 

H2(p)  = L(p) + 3(K(p)  + A ' ) p  + 3A'p2 

H3(p) = M ( p )  + 3(L(p) + K(p)  + A ' )  + 3KCp)p2 + 3A'p3 

A' = 33A 

K(p)  E 33[(4A + 3B)  + ( 4 A  - 6B)pl 

L(p) 33[(10A + 15B + 9C) + (28A - 15B - 36C + 9 0 ) p  
+ ( 2 A  - 30B + 36C - 9 0 ) p 2 ]  

M ( p )  E 33[(20A + 42B + 54C + 27E) + 3(36A + 8B - 52C + 1 8 0  

- 45E + 9F)p + 3(20A - 66B + 81E - 27F)p2 

+ 2(-14A - 188 + 108C - 2 7 0  - 81E + 27F)p3] ( A 3 . 7 )  
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