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In this paper we explore temporal vibrational coherence effects in nonadiabatic radiationless
transitions between two electronic states in a large molecule or in the condensed phase, accounting
explicitly for the role of theintramolecular and/or mediunvibrational quasicontinuum of the final
states. Our treatment of the time evolution of the wave packet of states and of coherence effects in
the nonradiative population probabilities of the reactants and the products rests on the
diagonalization of the Hamiltonian of the entire multimode system, with supplementary information
being inferred from the effective Hamiltonian formalism. New features of the vibrational Franck—
Condon quasicontinuum, which originate from weak, but finite, correlations between off-diagonal
coupling terms, were established. The state dependence of the off-diagonal colpljrzetween

the doorway states manifolds)} and the quasicontinuugja)} was quantified by the correlation
parametersnss,=(Vsavasr)/[wga)(Vi,a)]l’z, where () denotes the average over the relevant
energy range. Calculations were conducted for a Franck—Condon four-mode system consisting of
n,=100 doorway states amu,=3000 quasicontinuum states. The correlation parameters for all
pairs of doorway states are considerably lower than unity(|=0.4), obeying propensity rules

with the highest values dfy.¢| corresponding to a single vibrational quantum difference, while for
multimode changes betwe¢s) and|s’) very low values of 5s¢| are established. Quantum beats

in the population probabilities of products and reactants in nonadiabatic dynamics are characterized
by an upper limit for their modulation amplitudéss (I'/AE) n (for AE/2#T'=1), wherel  is the

decay width of the doorway states aAé is their energetic spacing. These Igwalues originate

from a small ¢-T'/AE) contribution to the off-diagonal matrix elements of the nonradiative decay
matrix in conjunction with low correlation parameters. The amplitudes of the quantum beats in
nonradiative temporal dynamics provide dynamic information on the larger correlation parameters
nsy - Our theoretical and numerical analysis was applied for temporal coherence effects in
nonadiabatic electron transfer dynamics in a Franck—Condon quasicontinuum of Mulliken charge
transfer complexelK. Wynne, G. Reid, and R. M. Hochstrasser, J. Chem. P1§5.2287(1996)].

This accounts for the “preparation{’signature of coherent excitatigrfor the low amplitudes of
coherent temporal modulation of reactants and prod(#ts0.05—0.06 determined by thge.y
parametersand for the dominating contributions to temporal coherefstibjected to propensity
rules. © 1997 American Institute of Physids$s0021-960607)02226-3

I. INTRODUCTION wave packets of mixed interstate or intrastate maniféids,
. ' while the utilization of femtosecond lasers resulted in rich
The advent of femtoseconds) dynamics on the time information on vibrational coherence effeété!33-38vibra-

. _3 . . i . .
scale of nuclear motidn opened up new horizons in the tional coherence effects in clusters and in the condensed
exploration of ultrafast nonradiative processes. Interstate a”ﬂqase fall into several categories

intrastate relaxation in isolated large molecules, in clusters,

_and in the condensed phase is vyell undersfoSgidSY;J:I_e the way (reactant states are coherently excited by a broad-
|pterplay between-energy relgxatlon and deph % aC-  pand fs laser excitation and their time evolution is interro-
tively pursued, being of considerable current interest. Vibra- ated b mp—proB&® or by (spontaneous or stimu-
tional (or electronic—vibrationalcoherence effects in a vari- 9 y pump éeg : y Sp B N

ety of systems were experimentally explored, ranging fromlated fluorescence. ~In th|.s category, S”.‘a'.' S.'Ub.s ystem;
small diatomic moleculés! to huge biophysical correspond to the dynamics of ZS;?FOW(? in liquids, fé“z“ds’
system&’-3L These vibrational coherence effects originate@nd solids(e.g., b in liquid hexan&,”*"in fluid rare gases;
from the time evolution of wave packets of nuclear states@nd in solid Af9), or in clusters[e.g., bAry (Ref. 13 or
which are manifested by oscillatory time evolution, i.e.,l2(COJn (Refs. 14 and 18. Large systems exhibiting
quantum beats, with the characteristic frequencies correduantum beats in their doorway states correspond to the vi-
sponding to the energy differences between the coherentlyrational wave packets in the electronically excited state of
excited nuclearor electronic—nuclearstates. The origin of the bacteriochlorophyll dimer'P*), which constitutes the
the exploration of molecular quantum beats can be traced tprimary electron donor in the photosynthetic reaction
the predictions of the time evolution of coherently excitedcentef’ and vibrational wave packets in the bacteriochloro-

(A) Vibrational coherence in reactant states. The door-
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phyll subcomponents of the bacterial photosynthetic
antennd’3 for electronic energy transfer -
(B) Vibrational coherence in the product states. ~
(B1) Impact excitation of vibrational wave packets of ‘-.
dissociative products. These involve diatomics produced
from fs photodissociaton in solution, e.gs, b1, +1,*® and -
Hgl,—Hgl+1.1° For large systems these involve quantum N/
beats in the vibrationally excited hemogloliidb) produced N
from fs dissociation of HINO.?8 N
(B2) Excitation of vibrational coherence via isomeriza-
tion. Femtosecond-inducedtis—trans isomerization of
stilbené® and of rhodopsin and bacteriorhodopSiresults in
a vibrational wave packet of the product.
(B3) Excitation of vibrational coherence via nonadia-
batic multiphonon processes, e.g., intermolecular electron
transfer(ET). Intermolecular E¥* in Mulliken charge trans- =
fer donor D)—acceptor A) complexe® excited by fs laser

FIG. 1. Energy levels scheme for nonadiabatic dynamics. The vibronic

pulses corresponds to manifold of the doorway statg$s)} is coupled to the dissipative quasicon-
tinuum {| @)}
hy
DA—D*A™—(DA)(v) (1.1

formalism. New features of a realistic vibrational quasicon-

[gnuum, which originate from weak but finite correlations
etween the off-diagonal coupling terms, emerge from our

study. In what follows we analyze the dynamic implications

(where v denotes a vibrationally excited ground sjat€o-
herent oscillations were observed by Wynne, Galli, Reid an
Hochstrasser in the ground electronic staBeAj(”) absorp-

tion bleach signal of hexamethylbenzene-tetracyanoethylene, . ;
(TCNB™@ and of pyrene—TCNE® complexes. Concur- wabratlonal coherence in reactant stafteategory(A)] anq
in product stategcategory(B3)] in a system undergoing

rently, coherent oscillations were also observed in the stimu- ; : . X . .
. S ) e nonadiabatic transition between zero-order vibronic mani-
lated emission gain signal of pyrene—TCR#) manifesting

vibrational coherence of the reactant doorway vibrationafOI.dS’ which corrgspond to two _d_|ffere_nt e|e<_:tron|c states
state ofD A~ [category(A)]. (Fig. 1, e.g., radiationless transitions in an isolated large

molecule or nonadiabatic dynamics in the condensed phase.

The ubiquity of vibrational coherence effects raises th'.al'he theory will be explicitly applied to the interpretation of

conceptual question of the distinction between the experi-:, .
P 9 Pelhe experimental results of Hochstrasserl3* for the weak

mental conditions of preparation and interrogation and th? L .
intrinsic aspects of relaxation and dephasing dynamics. Th emporall modulatiofi.e., quantum beats with afrequ+ency of
) 70 cm = which corresponds to the perpendicular A~

experimental observations of vibrational coherence effects ”r]notion),s“(b) superimposed on the buildup of product states

chemical and biophysical systems triggered theoretica) v _
studies!~421-26:36-38yhich rest on the equations of motion .&DA) and on the decay of reactant stalsSA™, Eq.(1.1),
in charge transfer complexes.

of the density matrix}?4-263637 on the semigroup
formalism? and on the Redfield equatiofsSuch theoreti-
cal studies suffer from some intrinsic limitations. The sepa-“' COHERENCE IN INTRAMOLECULAR AND
. L C CONDENSED PHASE DYNAMICS
ration of the system and the bath, which is explicit in the
Redfield formalisn?® implicitly implies that the correlation The level structure, coupling, and accessibility of the
time of the bath is very short, an assumption which may banodel system considered herein consist of distinct vibronic
inapplicable for ultrafast fs dynamics of the system. Furthermanifolds of two electronic statd§ig. 1): (i) the doorway
more, these theoretical studits®*¢~3%ocused on the dy- states|s)} (s=1,2,3...,N), which carry oscillator strengths
namics of small systems, or alternatively separated out &rom the (single ground statég). (ii) The dissipative qua-
single vibrational mode in a large system. In the context ofsicontinuum state§ «)}, which correspond to a lower lying
the fs dynamics of large molecular and condensed phase syslectronic configuration and which do not carry oscillator
tems the central role of théntramolecular and/or medium strengths fromg). The doorway states are coupled to the
vibrational quasicontinuum was not considered. In this papequasicontinuum via the interstate nonadiabatic couplings
we explicitly consider the essential role of the vibrationalV,,=(s|H|a) (whereH is the system’s HamiltoniagnWhen
guasicontinuum for coherence effects in a nonradiative tranthe dissipative quasicontinuum corresponds to the ground
sition between two electronic states, e.g., radiationless trarelectronic state, thdg) state corrsponds to the lowest-
sitions in an isolated large molecule or nonadiabatic dynamvibronic state(i.e., the zero-point energypf the {|«)} mani-
ics in the condensed phase. Our treatment is based on tiigld. In the intramolecular dynamicgs)} and{|«)} corre-
exact diagonalization of the Hamiltonian of the entire multi- spond to vibronic manifolds of two electronic states of a
mode system. Supplementary information was inferred fromarge isolated molecule. In nonadiabatic dynamics of a large
model calculations which rest on the effective Hamiltonianmolecule in a condensed pha$s)} and {|a)} represent
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intramolecula#medium vibronic states of the initial and fi-
nal electronic manifolds, witfi|s)} being the reactant mani-
fold and{|a)} corresponding to the product manifold. In the
case of ET within a solvated supermolecule! A~ is the
{|s)} reactant manifold an®A is the{|a)} product quasi-
continuum. The Hamiltonian of the system is

=3 [9E(s+ 3 |Efal+Z 2 |9)

X Vg {a|+cc. (2.1

We consider in Eq(2.1) the entire system without decom-
position into the “relevant” system and a “bath.”

A coherent optical excitation of the system results in a,

wave packet ofvibrationa) doorway states
\I'(O)=§ AL0)|s), (2.2)

where the excitation amplitudés,(0) are determined by the

M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics

k(t)=d In P(t)/dt

=| > A¥(HA4t)+cc / > A2

(where the dot denotes the time derivajivEhe population
of the product states is

2.7)

P.()=2 [a|P(1)2=1-P(t). 2.9

Similarly, the photon counting rate for the spontaneous ra-
diative decay tdg), i.e.,

H()=[(gl | ¥ (1))|?
is given by

(2.93

H(0=2 |igdAdO]+ 2 2 e ALDAL (D),
s#s’
(2.9b
where{uqd are the transition moments for emission from

excitation conditions. A more general treatment of the risehe doorway states to the grouffihal) state, which are pro-

and fall of excited manifold undemeak field optical exci-

portional to the Franck—Condon vibrational overlap integrals

tation can be given, but this does not modify the generafor radiative decay!(t) consists of a directg=s’) term,
features of temporal coherence effects. The time evolution ofyhose structure is similar t&®(t), Eq. (2.6), and mixed

the wave packet of the states of the entire system is

wt):z As<t>|s>+§ B.(t)| ). 2.3

Using the Hamiltonian, Eq.2.1), and the coefficients in the

interaction representation
ag(t) =expliEgt/f)Aq(t),
b, (t)=exp(iE t/%)B,(1), (2.9

results in the equations of motion for the amplitudes of th
doorway states

—h2agt)= f AU Va2 exp{ —i wsa(t—t)Jag(t))
0 o

> 2 VeuVae

a g'+g

Xexn:_i((l)Sat_ws/at,)]asr(t,),

t
+ | dt’
0

(2.9

where wg,=(E,—Eg)/%i. Equation (2.5 will be recast in
Sec. Il for several coupling schemes.

e

(s#s') terms. Equatior2.9a implies a single final ground
state(gs) and can be readily extended by the summation over
a{|g)} gs manifold with the{uq¢ terms in Eq.(2.9b con-
taining the appropriate vibrational overlaps for the radiative
transitions.

The study of temporal dynamic observables requires the
amplitude{A4(t)} of the doorway states, E¢§2.3). For this
purpose it will be useful to write the equations of motion in
terms of the effective Hamiltonian formalistA®° The ini-
tial conditions are given by Ed2.2). The time evolution of
the subsystem of the discrefts)} manifold of the doorway
states is determined by the effective Hamiltorifan

Her=Ho—(1/12)T,

(2.10

whereHy is the Hamiltonian in the discretls)} (Hilbert)
subspace

(Uo)ss’ =Egdsy (2.19
andl is the decay matrix
(l;)ss’:277<\/3avas’>l31 (2.12

where( ) denotes the average over the relevant energy range

The time evolution and the nature of the coherence ef-5E’ where the density of statesgsi.e.,

fects (quantum beajsis determined by the character of the

dynamic observables, i.e., by the experimental interrogation
method. These dynamic observables are determined by the

amplitudes{A(t)} of the doorway states in Eq2.3). We

consider the population probability of the reactant doorway

states manifold|s)},
P(U)=2 (slW (D)= AL 2.6

The effective rate is

J. Chem. Phys., Vol. 107,

1
<VSaVaS’ > = (ﬁ) 2 VSaVaS’ . (213)

Es.Eg € 5E

The energy rang@E includes the energies of the door-
way state€ andEg and has to span the, domain of the
relevant{|a)} states which contribute to interference between
|s) and|s’). It should be noted that ifE— and the sum
over the {|a)} states includes the entire manifold, then
(VsoVas')=0(s#5s’). The energy rangéE has to be taken
as finite, to include the subset of the relevia} states, i.e.,

No. 5, 1 August 1997
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SE=|Es—Ey|. We shall takesE=d|Es—Eg/|, whered  A. The constant-coupling approximation
=5. Numerical calculations show that the averaged product

{VsaVas) taken over the energy rangi is not sensitive to of the specific final state. Furthermore, we assume that the

the magnitude of the parameudarspeuﬂ_ed aboye. final states{|a)} are homogeneously distributed with a con-
Temporal coherence effects manifested in the mOdUIaétant near-neighbor distanee-p~1 (wherep is the density

tion of the nonradiative transition probability will be exhib- of states, i.e.,E,— E.=ne—E,, so that the second term on

ited when the following conditions are satisfiétl) A coher- the rhs o,f Eq,.(2(.15) gisves s

ent wave packet, Eq2.3), is initially prepared.(2) The

doorway states decay into a common chartnel, a vibronic

quasicontinuum or a radiative continuffin (3) The off-

diagonal terms of the decay matrix, Eq2.12 and (2.13,

are nonvanishing. The equations of motion for the ampli-  _ ; ot s it

tudes{Ay(t)}, Eqg.(2.3), in the discrete Hilbert subspace are: = exIE(t—t )/h]; exfl —ielf)(t=tHn]

In this schem& the coupling termd/,, are independent

> exd —iwg(t—t")]

h d — H Y 4
(T) & A= Hehlt), 214 exiE(t—t')/f]2mhpd(t—t'). (3.1
Equation(2.5) now assumes the form
where Aq(t) is the vector of the coefficiertA¢(t)} in Eq.
(2.3. The effective Hamiltonian, E¢2.4), is diagonalized —hag(t)= |V q%past) + 7 > Ve,Vasp
by the transformation s'#s
Qljefflgil:-/.}’ (2.15 xXexdit(Es—Eg)/fi]ag(t). (3.2
whereA is diagonal, resulting in the time evolution Equation(3.2), together with Eq(2.4), results in the dynam-
- , ics, Eq.(2.14), being characterized by the effective Hamil-
A(t)=D"1 ex;{% /}t) DA4(0). (2.16 tonian (2.10, with the decay matrix, Eq2.12, being
FSS! = ZWVSaVaS’p' (33)

We now turn to the coherence effects in the dynamic
observables, i.e., the nonradiative population probabilities 0§ The random coupling
reactantsP(t), Eq. (2.6), of productsP(t), Eg. (2.8), and
the photon counting ratgt), Eq.(2.9). From the preceding . i
analysis we note that radiative decay interference effects of §1€0ry of nuclear specﬁ%l_and disordered soli#dand were
coherently excited wave packet are always exhibited in th@PPlied for the theory of intrastate and interstate dyna‘H‘ucs
photon counting raté(t), due to the second “mixed” § and _for the loss _of _mtramolecu_lar C(_)h(_erence in h|gh-orqler
#s') terms on the right-hand sidehs) of Eq. (2.9). This is muInphotog excitation and dlssomatlo_n of polyatomic
the well-known case of decay of “distinguishable levels” moleculgs“. In the case of random coupling the sums over
into the common radiative continuu##® For the population the off-diagonal §+s’) terms in Eq.(2.5 vanish. In this
probabilities of the reactaritioorway stateg|s)}) or product ~ case the second term on the rhs of E2j5) vanishes, i.e.,
(quasicontinuum state$|a)}) manifolds, the population
probabilities, Eqs(2.6) and(2.8), contain only the “direct” > VeVas XA —i(wsut— g ot')]—0, (3.4
(s=s') terms. It is apparent from Eq&.15 and(2.16) that “

a necessary condition for the appearance of coherent effecehile the diagonal sum, with the help of E@.1), is

in the nonradiative decay is the existence of a nondiagonal

decay matrix, Eqs(2.12) and (2.13. We shall address the >, |V,|2eXd — i we,(t—1')]

explicit characterization of interference effects in the decay *

to a dissipative vibronic quasicontinuum, as manifested by =(|v |2exdiE(t—t')/A]27hpd(t—t'), (3.5
the off-diagonal elements of the decay matrix. The magni- ) ] ) )
tude of these off-diagonal matrix elementspfertains to ~ Where() is defined by Eq(2.12 andp is the(mean density
the correlation between the coupling matrix elements, i.e.0f states. Equation.5) and (3.5) result in

Ve,. Ve, (s#5'), which will now be considered. —fhag(t)=m(|Vs,[%pas(t). (3.9

Random-coupling models have a long history in the

The time evolution of each of the doorway stafés)} is a
lIl. CORRELATIONS IN INTERSTATE COUPLING pure exponential and no coherence effegisantum beaijs

The exploration of temporal coherence effects require§ere exhibited in the temporal decay (t).
explicit expressions for the decay matiix Eq. (2.12. For
this purpose we shall make contact between the equations %f
motion, Egs.(2.5 and (2.4), for the doorway amplitudes
{Aq(t)} and the equations of motion within the framework of The constant-coupling or the random-coupling models
the effective Hamiltonian formalism, E@2.14). This con-  constitute limiting cases. A realistic model system for the
nection will be established for several coupling schemes. level structure, coupling, and accessibility corresponds to a

Partial correlations
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Franck—Condon system. This consists of zero-order states ofasonable description of nonadiabatic dynamics in real life.
two multidimensional harmonic potential surfadégq) and  In what follows we shall provide model calculations of tem-
U:(q), with the minimum of U;(q) being considerably poral vibrational coherence in a model system with partial
lower in energy than that dfl;(q). The eigenstate§a)} of  correlation. These calculations will be supplemented by
U:(q) constitute the dissipative quasicontinuum and do nomore detailed simulation§Sec. \} for interstate nonadia-
carry oscillator strengths from the ground stige, repre-  batic dynamics in a Franck—Condon system.

senting the Franck—Condon quasicontinuum. The eigenstates To explore the effects of correlations on the coherent
{|s)} andU;(q) carry an oscillator strength frofg), con-  dynamics we considered two doorway statesl,2 with en-
stituting the doorway states of the system. The interstatergiesE; andE, (energy spacind E=|E;—E,|) coupled to
nonadiabatic coupling¥,, mix the doorway and quasicon- a common quasicontinuum. We shall use the effective
tinuum states. From a numerical analysis of the correlationglamiltonian formalism(Sec. Il)). The equation of motion of

of the {|s)}—{|a)} couplings within the Franck—Condon the wave packeW (t)=A,(t)|1)+A,(t)|2) is governed by
system(Sec. V) we shall infer that the correlations between the effective Hamiltonian Heq)11=E1— (i/2)['11, (Her)22

the off-diagonal couplings are finite but weak. This state de=E,—(i/2)";; and Hes)12= (Her)21= — (1/2)nI'1,. For
pendence of the off-diagonal couplings will be quantified inthe sake of simplicity we sdt,;=T,,=1"1,=T" and the ini-
terms of the correlation functions tial amplitudesA;(0) andA,(0) are taken to be real. Fur-
thermore, we assert that the dominating decay involves the

— 2 2\11/2
s ={VsaVas [{|Vsal )| Vas'| )12 B2 ponradiative channel, as appropriate for femtosecond dynam-
where () is defined by Eq.2.13 with the energy range ics, i.e., [>T .4, wherel',4is the radiative width.
SE=d|E;—Eg/|, with d=2-5. The averaged sums over The relevant range of the energetic and dynamic param-
for the off-diagonal products in Eq2.5 then assume the eters, where quantum beatsR(t) are exhibited, is charac-
form terized by the numbemMN,(=17/T,) of the periodsT,
(=h/AE) of beats in the decay time domair(=#/T"),
<E VeuVas X —i(wgt— g at’)] which exceeds unity, i.e.,
N,=(2m) Y(AE/T)=1, 4.1
_’[<|V5a|2><|Vs’a|2>]l/27lss’ qui(Est_Es’t,)/ﬁ] i ( ) ( ) . . ( )
so thatI'/AE=<(1/27). The time evolution of the system
®2mhps(t—t'). (3.8 (for [/AE<1), given by Egs.(2.15 and (2.16), is mani-

The averaging in Eq(3.8) is taken over an ensemble of fested by the nonradiative population probability, £2,6),
systems with differentysy correlations for the couplin{f, ~ @nd by the effective rate, E{2.7), which are given by

This procedure results in constant values of the squared cou- T
plings, which are independent on the specific final state P(t)y=exp(—t/7) 1—2A1(0)A2(0)(E)sin(AEt/ﬁ)}
The resulting equations for the amplitudes are 42
_hés(t)=77<|VSa|2>Pas(t) and
+7 2 (Vo (Ve ol D1 2055 p k(t)=(1/r)| 1+ 217A1(O)A2(0)Cl(2iAEt/ﬁ) _
s'#s n
1-2A1(0)A5(0)| —=|SIN(AEt/%
@exg (it/h)(Eq—Eg)lag(1). (3.9 100 )<AE) " )
The dynamics, Eq3.9), of a system with partial correlations ) _ (4.3
is determined by the effective Hamiltonig®.10 with the ~ For #zI'/AE<1 this expression reduces to
decay matrix k(t)=(1/7)[1+27A1(0)A,(0)cod AEt/A)].  (4.33
— 2 2\11/2
Lso =2 {[Vsal H|Vsr ol Y1 P 155 - (310 For the sake of future discussion we also present the photon

For the diagonal terms);c=1 while for the off-diagonal counting rate, Eq(2.9), where the transition momenjsy;
terms 7y <1 with typical values for the Franck—Condon and ug, are taken to be real. The perturbative result is

quasicontinuunmy,g=0-0.4(Sec. V). (1) =exp —t/T)[|MglA1(0)|2+ |Mng2(0)|2

IV. MODEL CALCULATIONS FOR PARTIAL +2 g1 g2A1(0)Ay(0)COS AEH)]. (4.4)

CORRELATION It is instructive to note that the amplitude of the leading

From the foregoing analysis of the correlation functions,term of the quantum beats in the nonradiative decay prob-
Eq. (3.7), of the interstate nonadiabatic couplings we inferability P(t), Eq. (4.2), and in the effective rat&(t), Eq.
that the following limiting situations can be realizeg,y (4.3), is determined by the correlation parameigrin con-
=1 for constant coupling ang,y =0 for random coupling. trast to the quantum beats contribution li@), Eq. (4.4),

For the coupling of a doorway state manifold to a Franck-whose amplitude is independent pf
Condon quasicontinuumygy <1, with realistic valueqsee Figure 2 presents typical results based on HE%),
Sec. VJ of 7,9 =0.05-0.4. The latter situation provides a (2.7), (2.15, and(2.16 for P(t) andk(t) in a model system
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FIG. 2. Model calculations for the reactants population probabHiy)
within the framework of the modulation amplitudé&), Eqg. (4.1, and the
effective ratek(t) of the effective Hamiltonian formalism for the decay of a
wave packet of two doorway statél and |2) with E;—E,=26.5 cm?,
W(t)=A(1)|1)+A(1)|2) (A(0)=A,(0)=1W2) to a quasicontinuum.
The quasicontinuum is characterized by the decay métixI",,=I" and
T',=7T, with T=1.77 cm! and »=0-1 (marked on the curves(a
Calculation of P(t). The insert shows the values ¢ft) for increasing
values ofy=1.0 (highest modulationto »=0 (flat line) in steps of 0.2(b)
Calculation ofk(t).

for the energetic and dynamic paramet&=26.5 cm!
and r=#/T'=3000fs "=1.77 cm?), and for the initial
conditionsA1(0)=A2(0)=1~2, while the correlation pa-
rameter was taken in the range=0—1. From Egs(4.2) and
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(4) In general, the population probability of the reactants
P(t), Eqg. (4.2, and the population probability of the prod-
uctsP(t), Eq.(2.8), are characterized by weak modulation
amplitudes. The modulation amplitudeskft) can be char-
acterized by

P(t)—Av[P(1)]
Av[P(H)] 7

where Av[P(t)] represented the smoothen&t) curve
(which corresponds tey=0 with the same parametgrsA

maximal value|¢(”| of the modulation amplitudes d®(t)

for a given value ofy, is given from Eq.(4.2) by the simple
[perturbative result

|£|=n(TIAE). (4.6)

The data of Figs. 2 and @vhich give| £7=1)|=0.07 and
|£(7=02|=0.015, which correspond toXE/T")=15, are in
agreement with these results. From E4.6) we conclude
that for the relevant range oAE/T")(=2), the maximal
values of the modulation amplitudé®r »= 1) are given by
|£(7=1)|=(T'/AE)<1. The 5 dependence of the modulation
amplitude is linear, i.e.|£&(”|x 7, exhibiting a marked de-
crease for weak correlations. For a Franck—Condon system
(Sec. V »=0.4-0.05 and the temporal modulations of
P(t) are diminished.

(5) The temporal modulation of the effective ratt) is
considerably larger than that &f(t). The modulation am-
plitudes ofk(t) can be expressed by

k(t) —Av[k(1)]
Av[k(t)]

A maximal value|e(”| of the amplitude modulation of
k(t) for a given value ofy is given from Eq.(4.3) by

&)= (4.5

o(t)= 4.7)

o™= 7. (4.8

For lower values ofp the modulation ok(t) decreases lin-
early with ». The modulation ofk(t) is independent of
AE/T. In particular forp=1 complete interference is exhib-
ited for k(t), with k(t) reaching the value of zero when
¢(t)=—1.0, while for lower values of the correlation pa-
rameter 5 the values of|¢(t)| diminish linearly with de-
creasingz.

For lower values ofN,<1, P(t) does not involve quan-
tum beats, but rather the decay of overlapping resondfices,

(4.3) and the model calculations portrayed in Fig. 2 we inferwhich will be explored in a future worf® The model cal-

the following.

(1) For the random coupling limit, i.e.y=0, a pure
exponential decay oP(t)=exp(-t/7) is exhibited with a
constant effective rate=1/7. No modulation ofP(t) and of
k(t) is exhibited.

(2) For correlated coupling, i.e., 0n<1, temporal
modulation of P(t) and ofk(t) is exhibited. The temporal
modulation is characterized by the peridg=h/AE, with
T, being independent of, as expected? The amplitude of
the temporal modulation increases linearly with increasjng

(3) For the constant coupling limig=1, the most pro-
nounced temporal modulation amplitudes Bft) and of
k(t) are exhibited.

J. Chem. Phys., Vol. 107,

culations for partial correlation rest on an oversimplified de-
scription of the dissipative quasicontinuumihich is charac-
terized by the parametdt), which will now be extended to
consider dynamics in a Franck—Condon system.

V. DYNAMICS IN THE FRANCK—-CONDON
QUASICONTINUUM

The Franck—Condon systefRig. 1) is characterized by
the doorway stateg|s)} of a harmonic potential surface
U;(q), which are coupled to the manifold of the final states
{|a)} of a potential surfac&(q). The minimum ofU;(q)
is considerably lower in energy than thg(q), so that the

No. 5, 1 August 1997
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1476 M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics

0.5 - {|«)} manifold constitutes a dissipative quasicontinuum. The
] zero-order states are characterized by the doorway states
1" ' {Is)}={dixsy and the quasicontinuum stateg|a)}

0.4 ={dixa} Whereg; and¢; denote the electronic wave func-
] tion of the initial and the final manifolds, respectively,

] 2. 3 2, 3 and y, denote the nuclear wave functions. The coupling
3 4 4 terms are:

037 g .6 >
Tig o Ve =Vi(s;a), (5.2
1 9+ g*

0.2 ] 10 16 f(s;@)=(XslXa), (5.2
] . W whereV is the electronic couplingwithin the framework of
E ‘12 ‘2 the Condon approximationand f(s;«) is the vibrational

o1 3 overlap integral.

1 In what follows we consider explicitly the entire level
3 O structure of the system. The Hamiltoni&h of the system,

0.0 oy i R N Eqg. (2.1, is diagonalized by the unitary transformation

(a') o 2 4 s 6 g8 10 UHU™ =E, resulting in the molecular eigenstates

0.4 7. . =2 als)+ X b)a), (5.3

(23
4
] wherea{’=U;; andb)=U;,. The energie€; of the mo-
03 ] lecular eigenstates constitute the diagonal elementg.of
R PP - The zero-order vibronic states can be reconstructed from the
1 . . molecular eigenstates
]1s 5
021,08 8T -, 7 [m)=2% (U)mjli),
2l . : .. ., * . J
1 * »s . * * * ;
I ., . . e B D1 :
] t:t. ., :‘ : " t" * HEL IR _; C|('rjl)|]>

0‘11::3,;.’4;: T et ‘:”:n,: ’ , A , ,

SREIREE SR ESR TN IS (cl=al for m=s, c=bY for m=a). (5.9
PR TS IS UT ] I PR A R P A

i PR & N [] . x . b I L. . .

] §%".u‘;3 I B N LIRS The initial state, Eq(2.2), is expressed in the form
TR T

0.0 0
0 5 10 15 20 25 30 35 40 \If(0)=§sl EJ: A0)al)[j). (5.5

(b) s

Eq. (5.5 provides the transformation from a wave packet of
zero-order doorway states to a wave packet of molecular
FIG. 3. Absolute values of the correlation parametersy|, Eq. (5.1, eigenstates, which provides the time evolution
between doorway statess’. Data for the four-mode Franck—Condon sys-
tem with the frequencies;=27 cm't, v,=35cm?, v3=75cm?, v, . ]
=117 cni’?, with the coupling parameters are specified in Sec. V. Saed P(t)= Z E AS(O)a(S”| jyexp— |Ejt/ﬁ)- (5.6
s’ states are labeled by the index1,2,3...,N in the order of increasing s

energy. Eacls state is correlated with the statgs=1,... N and vice versa, The population bprobability of the reactant doorwa:
so that for eacls,s’ two identical correlation parametergy and 7y s are pop p y Yy

presentedwhich allow for the easy identification af ands’). The larger ~ States, Eq(2.6), is obtained from Eq(5.6) in the form
correlation parameters are labeled by numbers, which represent the corre-

sponding values of ands’, each labeled by the combination of the quan- P(t)= E
tum numbersS;k;jw; (j=1-4 andk; are integersand being given by -
s,8'=[2j«jo; ,ijj’ wj'], while 0 corresponds to the electronic origia) s
AE=500 cm*. The energy rangdE—50 cm '<E<AE+ 250 cm ! con- 2
tainsN= 10 states and 90 values gfy . The pairs of states with the largest = 2 [ } ,
values of 7s¢(>0.1), which are labeled as 1-12, are: D3], 2. s’

[vy,v24], 3. [v5,2v,], 4. [2v4,3v4], 5. [Ow,], 6. [O,v4], 7. [vy (5.7)
+v,5,2vq,v5], 8.[vi+ vy, v+ 2v5], 9.[vy, vt vs], 10.[vy, v+ 5], 11. :

2

> > AJ(0)alal) exp(—iE;t/h)
s ]

2
+

g A(0)Seg (1) § A(0)Cey (1)

[2v1,2v1+ v,], 12.[2v,,2v,+ v4]. (b) AE=500 cnit. The energy range where

AE—200 cm '<E<AE+250 cm ! containsN=40 states and 1560 val-

ues of sy . The pairs of states with the largest values pf{>0.2), which o E:t

are labeled as 1-7, are: l0,v,], 2. [0,3], 3. [v1,v1+v,], 4. [vs,vs SSS,(t):z a(SJ)a(SII) Siﬂ( _J)’ (5.89
+v,], 5.[v,2v4], 6.[v2,2v5], 7.[3v1,3v1+v,]. j fi
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N E;it
Cee(t)=>, aal) cos< 7’) . (5.8b
|
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by the following constraints{i) attainment of a vibrational
quasicontinuumA E> w; for all the vibrational frequencies,
(i) negligible edge effects, i.eAE>27V? FD(E,) for all

Equations(5.7) and (5.8) provide the information on coher- the doorway states, ar(di) the direct decay is slower than
ent dynamics. We now proceed to characterize the harmonithe coherent modulation frequency, i.e.;7\22 FD(Eg)

manifolds {|s)} and {|«)} and their couplingsVs,, Eg.
(5.1), within the framework of the harmonic model.
The level structure and coupling within the Franck—

~2mV? FD(Ey )< (Es—Eg). Here FDE,) is the Franck—
Condon densiff/ around Eg, ie., FDE,)
=[8E] 1= ,|f(s;a}|?, where thea sum is taken over the

Condon model will be described by a simple harmonicquasicontinuum states in the energy rarifie- SE/2<E,
model with two multidimensional displaced nuclear potential<E + SE/2.

surfacesU;(q) and U;(qg), which are characterized by the
same frequencies. The relevantibrational modes are char-
acterized by coordinategi={q;,q,,...,0,}, mMassesm
={m;,m,,....m,}, frequenciesw={w;,w,,...,0,}, and

The zero-order basis set consistsngf=100) doorway
states{|s)} and n,(=3000) quasicontinuum states. The
(ng+n,)X(ng+n,) Hamiltonian matrices were diagonal-
ized resulting in the molecular eigenstaf¢l} with the ac-

displacements of the equilibrium positions between thecessibility amplitudegal’} and the energiegE;}. The tem-

minima of the potential surfacesq={Aq;,Aq,,...,AqQ,}.

poral decay of a wave packet of doorway states was

It is useful to define the squares of the reduced displacemengsmulated using Eqg5.7) and (5.9).

Sszqﬁmkwk/Zh. The nuclear reorganization energy is

x:kgl 0 Sy (5.9

Regarding the input data, of considerable interest are the
correlation functionsyss, Eq.(3.10), for the coupling to the
Franck—Condon quasicontinuum. Using E§.1) these cor-
relations are

and the energy gap between the minima of the two potential

surfaces is denoted bXE. The initial and final vibronic

states will be specified in terms of the occupation numbers of

the vibrational modes, i.e.|s)={iy,i,,....io} and |a)
={f,,f5,...,f}, respectively.

The vibrational overlap between the initig and final
f\ states of the model is

f(i,;f)=exp —S/2)(i! f1)12
min(i,f ) ot (it f—20)/2

(1) Sl )

A rri—nt(f—r)r

r=0

where on the rhs of Eq5.10 we abbreviate&s=S, , i=i,,
and f=f,. The Franck—Condon vibrational overlaps be-
tween the vibronic statds) and|«) are

(5.10

f(s,a)zkll fliy:fy). (5.11)

_ (f(sa)f(e;s))
7735'_[(f(s;a)2)<f(s’;a)z)]l’z'

(56.12

Numerical calculations ofp,y for s,s'=1-10 ands,s’
=1-40(wheres=1 denoted the electronic origiwere per-
formed. Figure 3 portrays the absolute valuesmnfy|. The
values of| 7s¢| show some dependence on the range®Bf
over which the averaging is performed. For a fixed value of
the lower limit of SE the values ofpsy show a weak depen-
dence(10% on the upper limit of SE (in the rangedsE
+AE=v;d;, whered;=1.5-8, »; being the characteristic
frequencies and E being the electronic origin energy of the
{|s)} manifold. The 55y show a more pronounced sensitiv-
ity (in the variance range of 50%) on the lower limit of the
energy domain(in the range AE—SE=v;d; with d;
=0.5—-8. The relative sizes of the largest values gfy
(>0.1) are practically invariant with respect to the lower

We have performed numerical model calculations for thdimit of the energy rangeSE. As the calculations of the
level structure coupling and dynamics in a four-mode har-n,y are intended to demonstrate the nature of the correlation
monic model of two displaced potential surfaces. The inpueffects between doorway states, this variance of the values of

data are the harmonic modes frequencies
=(wn,0n-1,...,01) (With the w;’s being given in the order

of increasing frequengythe reduced displacements param-

etersS=(S;,S,,...,S,), the energy gapAE between the
minima ofU; andU; (AE=Us-U;), and the electronic cou-
pling V.

7sy IS Of little concern. Thegabsolute values pfcorrelation
parameterg ».y| for pairs (,s’) of doorway stategFigs.
3(a) and 3b)] are considerably lower than unity. The highest
values of correlation parameters fall in the regiony
=0.4-0.2. These relatively high values|af,y| correspond
to members of a vibrational progression wighands’ dif-

The input parameters taken for our model calculationsfering only by a single vibrational quanturiFig. 3) i.e.,

were wo/cm 1=(117, 75, 35, 27), andS=(1.0, 1.1, 2.0,
3.0), which giveA=350cm !, and the energy gap\E
=500 cm . The highest vibrational mode is close to the
intermolecular vibrational motion in thB—A charge trans-
fer complex, while the lower vibrational frequencies mimic
solvent modes. The electronic coupling was choserVas
=20 cmi !, to give ultrafast dynamics on the time scaig

Avj==1 (wherev; is the vibrational quantum number of
mode j), with the highest value of7y| being ~0.4. For
multimode changes betweenand s’ very low values of

| 7s¢| are exhibited. From this analysis we infer that weak,
but nonvanishing, correlations, which are subjected to pro-
pensity rules, do exist for the coupling of a manifold of door-
way states to a Franck—Condon quasicontinuum. These finite

~1500 fs. The choice of the energy parameters was guidedorrelations will preserve some temporal interference effects

J. Chem. Phys., Vol. 107,
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1.Og 1.0 T T T T

0.8

AP(t), E(t)

0.6

e o
Q.4 0.4
0.2+ 0.2
! 1 l | l | | \
0 1000 2000 3000 4000 5000 0] 1000 2000 3000 4000 5000
t(fs) t(fs)

FIG. 4. The time-dependent population probability of the reactfity for FIG. 6. The time-dependent population probabift) of the reactants for
the decay of the two-doorway states initial wave packgD)=|1)+|2) the seven-doorway states initial wave packet0)=Ag(0)|s)* defined in

defined in the textthe solid ling. The dashed line showsu[P(t)]. The the text(the solid ling. The dashed line showsv[ P(t)]. The insert shows
insert shows the time dependence oP(t)=P(t)—Av[P(t)] (the solid  the time dependence af(P)=P(t)—Auv[P(t)] (the solid ling and of

line) and of &(t), Eq. (4.1) (the dashed line £(t), Eq. (4.1 (the dashed line

in the dynamics. The present estimates 9fy|<0.4 were parameter|»|=0.4 [while the numerical value of the
already utilized in Sec. IV for simple modeling of quantum [0,v,=27 cm !] correlation parameter in Fig.(® is »
beats. =0.29]. These low|&(t)| values originate from an intrinsi-
We now utilize the complete numerical information on cally small contribution to the off-diagonal matrix elements
the molecular eigenstates and the initial conditions for theof the nonradiative decay matrix, i.exI'/AE according to
wave packet expressed #y;(0), together with Eqs(5.7) Eqg. (4.6), in conjunction with low valués) of correlation
and(5.8), for the numerical calculation of the time-resolved parameters. For this two-doorway states systéth shows a
dynamics. Typical data for the time-dependent reactants denore pronounced modulation with the largest modulation
cay probabilityP(t) are presented in Figs. 5 and®(t) for  amplitude of| ¢(t)|=0.4 (Fig. 5), which is still considerably
the decay of the initial wave packet of two statég0) lower than the maximal value of unity, reflecting the reduc-
=|0)+|1), where |0) is the electronic origin and tion of », according to Eq(4.8). In Figs. 6 and 7 we display
|1)=|v,)=27 cmi lis the single vibrational excitatiofiFigs.  the dynamics of a multistate wave packet initially containing
4 and 5 exhibits regular, but weak, temporal coherence withthe seven lowest states in this>} manifold and spanning
the single period and with the largest modulation amplitudethe energy range of 75 cm, i.e., ¥ (0)=A4(0)|s), where
|£(t)|=0.042(insert to Fig. 4. This largest modulation am- |s)=(0,v1,v,,2v,,v1+ 1,,2v,,v3), With the amplitudes
plitude of |£|=0.042 is in good agreement with the analysiswhich are given by the vibrational overlap integrals from the
of the model system in Sec. IV. For this two-doorway electric origin of the lowest manifold, i.eA(0)=(0.0287,
states system(Fig. 5 7=1900fs =2.8cm?!) and —0.0498, —0.0406, 0.0609, 0.0704, 0.0406;0.0301.
I'/AE=0.103, so that Eq.(4.6) (i.e., |£7]=0.10375|) These data show a somewhat less regular modulation with
accounts for these data with the reasonable correlatiothe largest values d&(t)| (=0.06 for the maximal value of

0.000 171 L LR L L L R L = LOBLINL L S By e I A G B P SO S I S OO
F g -0.0002 -
E‘ -0.0004 P dPiany — g 7
a N i
& L B a
T L . 2 -0.0006 -
a | -
Py I b a
S -0.0008- _ 5 ]
o L - a
- i © -0.00I0 -
e W0 0 Y- T T S W U (0 O IO O A Coovoga by v e b g b vy e
’ 0] 1000 2000 3000 4000 5000 0] 1000 2000 3000 4000 5000
t(ts) tlfs)

FIG. 5. The time dependence d:-P(t) (upper curve and of —k(t) FIG. 7. The time dependence di"(t) (upper curvg and of k(t)

= P(t)’ll'D (lower curve for the dynamics of the two-doorway states sys- = P(t)’lP(t) (lower curve for the dynamics of the seven-doorway states
tem of Fig. 4. system of Fig. 6.
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Fig. 5 and of |¢(t)| (=0.33 for the maximal valye The  On the basis of these results we address the following issues:
time-resolved reactants, which decay into a typical Franck— (1) How are quantum beats manifested in the time de-
Condon gquasicontinuum, exhibit modest effects on the tempendence of different observables, i.e., nonradiative popula-
poral modulation, with maximal values of the modulation tion probabilities and photon counting rates? While the peri-
amplitudes, Eq(4.5), of |£(t)|~0.04—0.06, which are close ods T,=h/|Es—E| of the quantum beats are, of course,
to the|&(t)| values obtained for the two-doorway states sys-nvariant for the nonradiative and radiative decay, their am-
tem. A more pronounced effect of temporal coherence iplitudes qualitatively and quantitatively differ for the nonra-
exhibited for the(time-dependentdecay ratek(t), with a  diative and for the radiative decay channels. As is apparent
maximal modulation amplitude ¢f(t)|=0.3—0.4, whichis from Egs. (6.3 and (6.4 two major differences between
considerably lower than the upper limit of unitffor  P(t) andI(t) emerge. First, as noted in Sec. Il and as is
| 7s¢|=1), reflecting[according to Eq(4.8)] the effects of apparent from Eqg4.2), (4.3), and(4.4) for a simple model

the low correlation parameters. A cursory comparison ofsystem of two-doorway states, as well as from E§<9) and
these results for the Franck—Condon quasicontinuum withig.4), the amplitude of the temporal interference terms is
the model calculations, based on the effective Hamiltonianmuch larger for the ratel{t) or k(t) than for the population
formalism(Sec. IV), indicates that the Franck—Condon sys- probability P(t). For P(t) the amplitude ratios for the quan-
tem is characterized by weak correlation, i.¢s¢<0.4.  tum beats[i.e., the ratios of the amplitudes in the second
This conclusion concurs with the direct analysisgl (Fig.  term and in the first term in Eq6.3)] are I'ss/|E—Es/|

3). For nonadiabatic dynamics the temporal modulation for<1, while the ratio of the amplitudes for the quantum beats
the reactants and products is of the same form, as is evidefdr |(t), Eq. (6.4), are of the order of unity. Second, the

from Eqs.(2.6) and(2.8). amplitudes of the temporal coherence terms for the nonradi-
ative probability, Eq(6.3), are determined by the molecular
VI. CONCLUDING REMARKS or condensed phase parameters for nonradiative coupling and

; 172 ; ; )
We explored temporal vibrational coherence effects inrelaxanonnss(ksks/) ; while the amplitudes of the tempo

. X L " ral coherence terms in the radiative decay rate are deter-
nonadiabatic radiationless transitions between two electronic._. *
mined by the products of thegqys and do not depend on

states_m a_lar_ge molecule or in th_e c_ondensed_ phase. Tr%ﬁe nonradiative parameters. The radiative decaylfajeof
nonadiabatic time-resolved dynamics is determined by the

. . . a wave packet of doorway states into a radiative continuum
microscopic rategthe diagonal elements of the decay ma-. . iy a
is characterized by complete correlatior., sy =1 for all

trix) s,s’), while the nonradiative decay of such a wave packet
ke=2mV2FD(EJ)/#, (6. into a Franck—Condon quasicontinuum is subjected only to
while the off-diagonal matrix elements of the deca matrix,part_Ial mtramoleculgr correlf'atlonsngS,SOA), further re-
g y ducing the modulation amplitudes fé¥(t) andk(t) in the
Eqg. (3.10, are . o .
nonradiative decay. It is important to realize that the low
[sg = 75 (112) (Keker ) 2 (6.2  modulation amplitudes in coherent nonradiative decay reflect

The time dependence of the nonradiative decay probability ithe intramolecular correlation effects, while the large modu-

obtained from Eqs(2.6), (2.15), and(2.16 (for the limit of lation amplitudes in the radiative decay just manifest the

interest when quantum beats are manifested, F.gy,<|Eq signature of the “preparation” conditions. While the quan-

—E|) in the form tum beats in the radiative decay rate are much more pro-
S!

nounced than for the nonradiative probability, the latter is
_ 2 . much more interesting, manifesting information on nonradi-
P(t)_% [AS(O)]* exp(—kst) ative correlation effects, while the former just provides spec-
i 7eg (Keke )2 troscopic information for the energy differencs,—Eg|.
+ EE A;‘AS,[ﬁ} Thus novel dynamic information emerges from tfvaeak
{sh#{s"} (Bs—Esr) quantum beats in the nonradiative population probability, but
Qlexpi(Es—Eg))t/hlexd — (kstke)t/2], (6.3  not from the photon counting rate.

where{s}=|s),|s'),..., represent the doorway states within (2) What determines the characteristics of quantum beats

the laser bandwidth. The first term in E@.3 represents for the noprtadlgtlgle dlscay ko f (? hnc'jt'al) wave p?cket ?PfTh
dynamics of population changes of the doorway states Wh”goor_\;va); st_a es fmtr? a rantc ~ bont ?n q”alj"t"”? m(;Jutm. €
the second term denotes the coherence effects. Another pép-am estation of the quantum beat termsR(t) is deter-

tinent observable is the photon counting rate, E@s9), mined by the spectroscopic, energetic, and dynamic proper-

. S S L ties of the doorway stategswithin the laser bandwidih
(2.19, and(2.16) (for |Es—Ey[)>I'sg>I'red Which is |s),|s’),]|s"),..., which are characterized byi) large prepa-
ration amplitudesA¢(0), A4 (0),..., forexcitation from the
ground state(ii) the periodsT,=h/|Es—Eg/|, according to
relation (6.3), i.e., 7/T,=1; (iii) modulation amplitudes de-
+ 2,2 A(0)Ag(0) whsugs termined by Ty /|Es—Eg|~(%/2) 7y (Kks') V7 |Es
{sh#{s'} —Eg/|, wherel'gy is the off-diagonal matrix element of the
exdi(Es—Eg)t]lexd — (kst+ kg )t/2]. (6.4 nonradiative decay matrix, which is proportional 12y ,

|<t>=% |A(0)]?] j1gd? eXp(—Ksb)
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and (iv) sufficiently large values of the correlation param- tinuum, based on the dynamics of wave packets for a realis-
eterszsy , Which constitute a novel feature of the Franck—tic Franck—Condon level structure, which originates from
Condon quasicontinuum. While featur@s and (ii) provide  coupling between two coupled manifolds of zero-order har-
the signature of the laser excitatidfpreparation”) condi-  monic states. Our treatment rests, in principle, on the exact
tions, featuregiii) and (iv) constitute intrinsic properties of diagonalization of the entire Hamiltonian of the system,
the nonadiabatic nonradiative coupling and dynamics. Ouwithout considering a separation of the relevant system from
analysis provides the distinction between the experimentahe bath. In practice we treated a four-mode system, while
conditions of wave packet “preparation,” which reflect the other degrees of freedofwhich can be considered as a bath
level structure and “excitation” amplitudes of doorway (which will contribute to relaxation and “dephasingWwere
states, and the intrinsic aspects of intramolecular couplingot taken into account. Indeed, a four-mdtarmonig sys-
and dynamics, as manifested in the amplitudes of the quariem is of sufficient size to provide relevant information on
tum beats for nonradiative decay. vibrational coherence effects in nonradiative decay. Regard-
(3) What are the general properties of the Franck—ing additional hidden assumptions in our treatment, we note
Condon quasicontinuum? This central issue, which pertainthat an additional effect not considered by us, which may
to the features of the correlation parameters introduced andiminish the modulation amplitudes in real life, pertains to
explored herein, transcends the problem of quantum beatfatic inhomogeneous broadening effects on the energy dif-
and addresses broad features of intramolecular and coference§E;—E. /| between doorway states. In addition, co-
densed phase radiationless transitions. From the point dferent excitation of a large number of low frequency vibra-
view of general methodology, the most significant result istional modes, as is the case for a condensed phase system,
the occurrence of finite, though low, correlations for the cou-will also smear out the quantum beats. Accordingly, our re-
pling of the manifold of doorway states into a Franck—sults concerning the amplitudes of the quantum beats and
Condon quasicontinuurfi.e., 7,¢=<0.4), in contrast to the their modulation, constitute an upper limit.
idealized model system of constant coupfh@r.=1) and Nonadiabatic dynamics in the condensed phase, e.g., ET
of random couplinéf*® (s =0). These finite correlations transfer of type1.1), is amenable to the theoretical descrip-
ensure the realization of nonvanishing off-diagonal matrixtion in terms of nonradiative decay into a Franck—Condon
elements of the decay matidx Eq.(3.10, resulting in quan-  quasicontinuum. Our theoretical and numerical analysis of
tum beats in the temporal nonradiative decay of an initiallythe temporal coherence effects in nonadiabatic dynamics in
prepared wavepacket of doorway states. the Franck—Condon system can be confronted with the ex-
(4) Does a coherent excitation of a wave packet of doorperimental results of Hochstrassest al®* for ET in
way states modify the nonadiabatic ET dynamics? The anMulliken-type charge transfer complex&sEq. (1.1). Our
swer to this question rests on the nature of the temporaheoretical analysis predicts the following.
modulation and on its magnitude for a given dynamic ob- (@) Low amplitude of coherent temporal modulation. The
servable. Only when the temporal modulation amplitudes deappearance of quantum beats in the temporal d&gay of
pend on the molecular or condensed phase parameters fihre reactants, Eq6.3), and in the buildugP (t), Eq.(2.8),
nonradiative coupling can we assert that the quantum beatsf the products is characterized by a modest modulation with
in the dynamic variable modify the nonadiabatic dynamics.£ being in the range of a few percent. This feature reflects the
This is the case for the nonradiative population probabilitycharacteristics of nonradiative decay probabilities in a
P(t). The temporal modulation amplitudesi{t) are weak Franck—Condon system. The experimental data of Hoch-
~T'.¢ /|Es—Eg/|, as is apparent from a cursory examinationstrasseiet al. for the dynamics of the nonradiative decay of
of Figs. Za), 4, and 6. Thus, the overall influence of the the doorway states of the pyreneTCNE~ compleX*® give
coherent excitation on the nonradiative dynamics is smallT,=200fs for the period of the beats andr
On the other hand, the amplitudes of the pronounced quan=1400-1200 fs for the decay time. Accordingly,, Eq.
tum beats in the photon counting raté) do not provide (4.1), is N,=6-7 and Eq(4.4) predicts the maximal value
information on nonradiative coupling, just reflecting radia- of the modulation amplitudes ¢&(”|=(0.17—0.14). For
tive interference effects. Vibrational coherence effects in theéhe reasonable value of the correlation parametgr
electronically excited bacteriochlorophyll diméi*) ofthe ~ =0.3-0.4(Fig. 3), |£(”|=0.05—-0.06, which concurs with
bacterial photosynthetic reaction center were experimentallthe experimental resulfé® We should note that we did not
studied by induced and spontaneous fluorescéhte,, by  consider effects of static inhomogeneous broadening and of
the interrogation ofl (t). These quantum beats Iift) just  additional smearing of the quantum beats due to a contribu-
provide spectroscopic-type information on the excitation amiion of a large number of vibrational modésot taken into
plitudes{A,(0)} within the laser bandwidth and the energy account in our four-mode system
gaps |Es—Eg/| of the doorway states, while the primary (b) Dominating contributions to temporal coherence.
charge separation dynamipdetermined by the microscopic The most pronounced temporal modulatioeflected in the
ratesks, Eg.(6.1)] is unmodified by the coherent excitation largest values ofs¢|) originated from coherence between
of the wavepacket of doorway states. doorway states, e.gs,s’, which correspond to members of a
We have performed model calculations for the time-single vibrational progression withv=1. Thus the peri-
resolved nonradiative decay of an initially prepared waveod(s) T, of the pronounced quantum beats is dominated by
packet of doorway states into a Franck—Condon quasicorsingle-mode vibrational frequencies. The propensity rule
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