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In this paper we explore temporal vibrational coherence effects in nonadiabatic radiationless
transitions between two electronic states in a large molecule or in the condensed phase, accounting
explicitly for the role of the~intramolecular and/or medium! vibrational quasicontinuum of the final
states. Our treatment of the time evolution of the wave packet of states and of coherence effects in
the nonradiative population probabilities of the reactants and the products rests on the
diagonalization of the Hamiltonian of the entire multimode system, with supplementary information
being inferred from the effective Hamiltonian formalism. New features of the vibrational Franck–
Condon quasicontinuum, which originate from weak, but finite, correlations between off-diagonal
coupling terms, were established. The state dependence of the off-diagonal couplingsVsa between
the doorway states manifold$us&% and the quasicontinuum$ua&% was quantified by the correlation
parametershss85^VsaVas8&/@^Vsa

2 &^Vs8a
2 &#1/2, where ^ & denotes the average over the relevant

energy range. Calculations were conducted for a Franck–Condon four-mode system consisting of
ns5100 doorway states andna53000 quasicontinuum states. The correlation parameters for all
pairs of doorway states are considerably lower than unity (uhss8u&0.4), obeying propensity rules
with the highest values ofuhss8u corresponding to a single vibrational quantum difference, while for
multimode changes betweenus& and us8& very low values ofuhss8u are established. Quantum beats
in the population probabilities of products and reactants in nonadiabatic dynamics are characterized
by an upper limit for their modulation amplitudesj>(G/DE)h ~for DE/2pG>1!, whereG is the
decay width of the doorway states andDE is their energetic spacing. These lowj values originate
from a small (;G/DE) contribution to the off-diagonal matrix elements of the nonradiative decay
matrix in conjunction with low correlation parameters. The amplitudes of the quantum beats in
nonradiative temporal dynamics provide dynamic information on the larger correlation parameters
hss8 . Our theoretical and numerical analysis was applied for temporal coherence effects in
nonadiabatic electron transfer dynamics in a Franck–Condon quasicontinuum of Mulliken charge
transfer complexes@K. Wynne, G. Reid, and R. M. Hochstrasser, J. Chem. Phys.105, 2287~1996!#.
This accounts for the ‘‘preparation’’~signature of coherent excitation!, for the low amplitudes of
coherent temporal modulation of reactants and products~j>0.05–0.06 determined by thehss8
parameters! and for the dominating contributions to temporal coherence~subjected to propensity
rules!. © 1997 American Institute of Physics.@S0021-9606~97!02226-5#
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I. INTRODUCTION

The advent of femtosecond~fs! dynamics on the time
scale of nuclear motion1–3 opened up new horizons in th
exploration of ultrafast nonradiative processes. Interstate
intrastate relaxation in isolated large molecules, in clust
and in the condensed phase is well understood,1–6 while the
interplay between energy relaxation and dephasing1–31 is ac-
tively pursued, being of considerable current interest. Vib
tional ~or electronic–vibrational! coherence effects in a var
ety of systems were experimentally explored, ranging fr
small diatomic molecules7–11 to huge biophysical
systems.27–31 These vibrational coherence effects origina
from the time evolution of wave packets of nuclear stat
which are manifested by oscillatory time evolution, i.
quantum beats, with the characteristic frequencies co
sponding to the energy differences between the cohere
excited nuclear~or electronic–nuclear! states. The origin of
the exploration of molecular quantum beats can be trace
the predictions of the time evolution of coherently excit
1470 J. Chem. Phys. 107 (5), 1 August 1997 0021-9606/97
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wave packets of mixed interstate or intrastate manifold32

while the utilization of femtosecond lasers resulted in ri
information on vibrational coherence effects.1–31,33–38Vibra-
tional coherence effects in clusters and in the conden
phase fall into several categories.

~A! Vibrational coherence in reactant states. The do
way ~reactant! states are coherently excited by a broa
band fs laser excitation and their time evolution is inter
gated by pump–probe1–3 or by ~spontaneous or stimu
lated! fluorescence.1–3 In this category, ‘‘small’’ subsystems
correspond to the dynamics of a diatomic in liquids, fluid
and solids~e.g., I2 in liquid hexane,

26,33 in fluid rare gases,12

and in solid Ar18!, or in clusters@e.g., I2ArN ~Ref. 13! or
I2
2(CO2)N ~Refs. 14 and 15!#. Large systems exhibiting
quantum beats in their doorway states correspond to the
brational wave packets in the electronically excited state
the bacteriochlorophyll dimer (1P* ), which constitutes the
primary electron donor in the photosynthetic reacti
center27 and vibrational wave packets in the bacteriochlo
/107(5)/1470/13/$10.00 © 1997 American Institute of Physics
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1471M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
phyll subcomponents of the bacterial photosynthe
antenna30,31 for electronic energy transfer

~B! Vibrational coherence in the product states.
~B1! Impact excitation of vibrational wave packets

dissociative products. These involve diatomics produ
from fs photodissociaton in solution, e.g., I3

2→I2
21I, 16 and

HgI2→HgI1I. 19 For large systems these involve quantu
beats in the vibrationally excited hemoglobin~Hb! produced
from fs dissociation of Hb•NO.28

~B2! Excitation of vibrational coherence via isomeriz
tion. Femtosecond-inducedcis→trans isomerization of
stilbene20 and of rhodopsin and bacteriorhodopsin29 results in
a vibrational wave packet of the product.

~B3! Excitation of vibrational coherence via nonadi
batic multiphonon processes, e.g., intermolecular elec
transfer~ET!. Intermolecular ET34 in Mulliken charge trans-
fer donor (D) –acceptor (A) complexes35 excited by fs laser
pulses corresponds to

DA→
hn

D1A2→~DA!~y! ~1.1!

~wherey denotes a vibrationally excited ground state!. Co-
herent oscillations were observed by Wynne, Galli, Reid a
Hochstrasser in the ground electronic state (DA)(y) absorp-
tion bleach signal of hexamethylbenzene-tetracyanoethy
~TCNE!34~a! and of pyrene–TCNE34~b! complexes. Concur-
rently, coherent oscillations were also observed in the stim
lated emission gain signal of pyrene–TCNE,34~b! manifesting
vibrational coherence of the reactant doorway vibratio
state ofD1A2 @category~A!#.

The ubiquity of vibrational coherence effects raises
conceptual question of the distinction between the exp
mental conditions of preparation and interrogation and
intrinsic aspects of relaxation and dephasing dynamics.
experimental observations of vibrational coherence effect
chemical and biophysical systems triggered theoret
studies,1–4,21–26,36–38which rest on the equations of motio
of the density matrix,21,24–26,36,37 on the semigroup
formalism,38 and on the Redfield equations.22 Such theoreti-
cal studies suffer from some intrinsic limitations. The sep
ration of the system and the bath, which is explicit in t
Redfield formalism,39 implicitly implies that the correlation
time of the bath is very short, an assumption which may
inapplicable for ultrafast fs dynamics of the system. Furth
more, these theoretical studies21–26,36–38focused on the dy-
namics of small systems, or alternatively separated ou
single vibrational mode in a large system. In the context
the fs dynamics of large molecular and condensed phase
tems the central role of the~intramolecular and/or medium!
vibrational quasicontinuum was not considered. In this pa
we explicitly consider the essential role of the vibration
quasicontinuum for coherence effects in a nonradiative tr
sition between two electronic states, e.g., radiationless t
sitions in an isolated large molecule or nonadiabatic dyna
ics in the condensed phase. Our treatment is based on
exact diagonalization of the Hamiltonian of the entire mu
mode system. Supplementary information was inferred fr
model calculations which rest on the effective Hamiltoni
J. Chem. Phys., Vol. 107
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formalism. New features of a realistic vibrational quasico
tinuum, which originate from weak but finite correlation
between the off-diagonal coupling terms, emerge from
study. In what follows we analyze the dynamic implicatio
of vibrational coherence in reactant states@category~A!# and
in product states@category ~B3!# in a system undergoing
nonadiabatic transition between zero-order vibronic ma
folds, which correspond to two different electronic stat
~Fig. 1!, e.g., radiationless transitions in an isolated lar
molecule or nonadiabatic dynamics in the condensed ph
The theory will be explicitly applied to the interpretation o
the experimental results of Hochstrasseret al.34 for the weak
temporal modulation~i.e., quantum beats with a frequency
170 cm21 which corresponds to the perpendicularD1A2

motion!,34~b! superimposed on the buildup of product sta
(DA)y and on the decay of reactant statesD1A2, Eq. ~1.1!,
in charge transfer complexes.

II. COHERENCE IN INTRAMOLECULAR AND
CONDENSED PHASE DYNAMICS

The level structure, coupling, and accessibility of t
model system considered herein consist of distinct vibro
manifolds of two electronic states~Fig. 1!: ~i! the doorway
states$us&% (s51,2,3,...,N), which carry oscillator strengths
from the ~single! ground stateug&. ~ii ! The dissipative qua-
sicontinuum states$ua&%, which correspond to a lower lying
electronic configuration and which do not carry oscillat
strengths fromug&. The doorway states are coupled to t
quasicontinuum via the interstate nonadiabatic coupli
Vsa5^suHua& ~whereH is the system’s Hamiltonian!. When
the dissipative quasicontinuum corresponds to the gro
electronic state, theug& state corrsponds to the lowes
vibronic state~i.e., the zero-point energy! of the $ua&% mani-
fold. In the intramolecular dynamics$us&% and $ua&% corre-
spond to vibronic manifolds of two electronic states of
large isolated molecule. In nonadiabatic dynamics of a la
molecule in a condensed phase$us&% and $ua&% represent

FIG. 1. Energy levels scheme for nonadiabatic dynamics. The vibro
manifold of the doorway states$us&% is coupled to the dissipative quasicon
tinuum $ua&%.
, No. 5, 1 August 1997
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1472 M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
intramolecular1medium vibronic states of the initial and fi
nal electronic manifolds, with$us&% being the reactant mani
fold and$ua&% corresponding to the product manifold. In th
case of ET within a solvated supermolecule,D1A2 is the
$us&% reactant manifold andDA is the $ua&% product quasi-
continuum. The Hamiltonian of the system is

H< 5(
s

us&Es^su1(
a

ua&Ea^au1(
s

(
a

us&

3Vsa^au1cc. ~2.1!

We consider in Eq.~2.1! the entire system without decom
position into the ‘‘relevant’’ system and a ‘‘bath.’’

A coherent optical excitation of the system results in
wave packet of~vibrational! doorway states

C~0!5(
s
As~0!us&, ~2.2!

where the excitation amplitudesAs(0) are determined by the
excitation conditions. A more general treatment of the r
and fall of excited manifold under~weak field! optical exci-
tation can be given, but this does not modify the gene
features of temporal coherence effects. The time evolutio
the wave packet of the states of the entire system is

C~ t !5(
s
As~ t !us&1(

a
Ba~ t !ua&. ~2.3!

Using the Hamiltonian, Eq.~2.1!, and the coefficients in the
interaction representation

as~ t !5exp~ iEst/\!As~ t !,

ba~ t !5exp~ iEat/\!Ba~ t !, ~2.4!

results in the equations of motion for the amplitudes of
doorway states

2\2ȧs~ t !5E
0

t

dt8(
a

uVsau2 exp@2 ivsa~ t2t8!#as~ t8!

1E
0

t

dt8(
a

(
s8Þs

VsaVas8

3exp@2 i ~vsat2vs8at8!#as8~ t8!, ~2.5!

wherevsa5(Ea2Es)/\. Equation ~2.5! will be recast in
Sec. III for several coupling schemes.

The time evolution and the nature of the coherence
fects ~quantum beats! is determined by the character of th
dynamic observables, i.e., by the experimental interroga
method. These dynamic observables are determined by
amplitudes$As(t)% of the doorway states in Eq.~2.3!. We
consider the population probability of the reactant doorw
states manifold$us&%,

P~ t !5(
s

u^suC~ t !&u25(
s

uAs~ t !u2. ~2.6!

The effective rate is
J. Chem. Phys., Vol. 107
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k~ t !5d ln P~ t !/dt

5F(
s
Ȧs* ~ t !As~ t !1ccG Y (

s
uAs~ t !u2 ~2.7!

~where the dot denotes the time derivative!. The population
of the product states is

Pa~ t !5(
a

u^auC~ t !&u2512P~ t !. ~2.8!

Similarly, the photon counting rate for the spontaneous
diative decay toug&, i.e.,

I ~ t !5u^gum̂uC~ t !&u2 ~2.9a!

is given by

I ~ t !5(
s

umgsu2uAs~ t !u21((
sÞs8

mgsmgs8
* As~ t !As8

* ~ t !,

~2.9b!

where $mgs% are the transition moments for emission fro
the doorway states to the ground~final! state, which are pro-
portional to the Franck–Condon vibrational overlap integr
for radiative decay.I (t) consists of a direct (s5s8) term,
whose structure is similar toP(t), Eq. ~2.6!, and mixed
(sÞs8) terms. Equation~2.9a! implies a single final ground
state~gs! and can be readily extended by the summation o
a $ug&% gs manifold with the$mgs% terms in Eq.~2.9b! con-
taining the appropriate vibrational overlaps for the radiat
transitions.

The study of temporal dynamic observables requires
amplitude$As(t)% of the doorway states, Eq.~2.3!. For this
purpose it will be useful to write the equations of motion
terms of the effective Hamiltonian formalism.32~b!,40 The ini-
tial conditions are given by Eq.~2.2!. The time evolution of
the subsystem of the discrete$us&% manifold of the doorway
states is determined by the effective Hamiltonian40

H< eff5H< 02~ i /2!G< , ~2.10!

whereH< 0 is the Hamiltonian in the discrete$us&% ~Hilbert!
subspace

~H< 0!ss85Esdss8 ~2.11!

andG< is the decay matrix

~G< !ss852p^VsaVas8&r, ~2.12!

where^ & denotes the average over the relevant energy ra
dE, where the density of states isr, i.e.,

^VsaVas8&5S 1

rdED (
a

Es ,Es8PdE

VsaVas8 . ~2.13!

The energy rangedE includes the energies of the doo
way statesEs andEs8 and has to span theEa domain of the
relevant$ua&% states which contribute to interference betwe
us& and us8&. It should be noted that ifdE→` and the sum
over the $ua&% states includes the entire manifold, the
^VsaVas8&50(sÞs8). The energy rangedE has to be taken
as finite, to include the subset of the relevant$ua&% states, i.e.,
, No. 5, 1 August 1997
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1473M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
dE*uEs2Es8u. We shall takedE5duEs2Es8u, where d
>5. Numerical calculations show that the averaged prod
^VsaVas8& taken over the energy rangedE is not sensitive to
the magnitude of the parameterd specified above.

Temporal coherence effects manifested in the mod
tion of the nonradiative transition probability will be exhib
ited when the following conditions are satisfied:~1! A coher-
ent wave packet, Eq.~2.3!, is initially prepared.~2! The
doorway states decay into a common channel~i.e., a vibronic
quasicontinuum or a radiative continuum40!. ~3! The off-
diagonal terms of the decay matrix, Eqs.~2.12! and ~2.13!,
are nonvanishing. The equations of motion for the am
tudes$As(t)%, Eq. ~2.3!, in the discrete Hilbert subspace ar

S \

i D d

dt
A> s~ t !5H< effA> s~ t !, ~2.14!

whereA> s(t) is the vector of the coefficient$As(t)% in Eq.
~2.3!. The effective Hamiltonian, Eq.~2.4!, is diagonalized
by the transformation

D< H< effD<
215L< , ~2.15!

whereL< is diagonal, resulting in the time evolution

A> s~ t !5D< 21 expS 2 i

\
L< t DD< A> s~0!. ~2.16!

We now turn to the coherence effects in the dynam
observables, i.e., the nonradiative population probabilities
reactantsP(t), Eq. ~2.6!, of productsPa(t), Eq. ~2.8!, and
the photon counting rateI (t), Eq. ~2.9!. From the preceding
analysis we note that radiative decay interference effects
coherently excited wave packet are always exhibited in
photon counting rateI (t), due to the second ‘‘mixed’’ (s
Þs8) terms on the right-hand side~rhs! of Eq. ~2.9!. This is
the well-known case of decay of ‘‘distinguishable levels
into the common radiative continuum.32~b! For the population
probabilities of the reactant~doorway states$us&%! or product
~quasicontinuum states$ua&%! manifolds, the population
probabilities, Eqs.~2.6! and~2.8!, contain only the ‘‘direct’’
(s5s8) terms. It is apparent from Eqs.~2.15! and~2.16! that
a necessary condition for the appearance of coherent ef
in the nonradiative decay is the existence of a nondiago
decay matrix, Eqs.~2.12! and ~2.13!. We shall address the
explicit characterization of interference effects in the dec
to a dissipative vibronic quasicontinuum, as manifested
the off-diagonal elements of the decay matrix. The mag
tude of these off-diagonal matrix elements ofG< pertains to
the correlation between the coupling matrix elements,
Vsa , Vs8a (sÞs8), which will now be considered.

III. CORRELATIONS IN INTERSTATE COUPLING

The exploration of temporal coherence effects requ
explicit expressions for the decay matrixG< , Eq. ~2.12!. For
this purpose we shall make contact between the equation
motion, Eqs.~2.5! and ~2.4!, for the doorway amplitudes
$As(t)% and the equations of motion within the framework
the effective Hamiltonian formalism, Eq.~2.14!. This con-
nection will be established for several coupling schemes
J. Chem. Phys., Vol. 107
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A. The constant-coupling approximation

In this scheme41 the coupling termsVsa are independen
of the specific final statea. Furthermore, we assume that th
final states$ua&% are homogeneously distributed with a co
stant near-neighbor distancee5r21 ~wherer is the density
of states!, i.e.,Ea2Es5ne2Es , so that the second term o
the rhs of Eq.~2.5! gives

(
a

exp@2 ivsa~ t2t8!#

5exp@ iEs~ t2t8!/\#(
n

exp@2 i e/\!~ t2t8!n]

5exp@ iEs~ t2t8!/\#2p\rd~ t2t8!. ~3.1!

Equation~2.5! now assumes the form

2\ȧs~ t !5puVasu2ras~ t !1p (
s8Þs

VsaVas8r

3exp@ i t ~Es2Es8!/\#as8~ t !. ~3.2!

Equation~3.2!, together with Eq.~2.4!, results in the dynam-
ics, Eq. ~2.14!, being characterized by the effective Ham
tonian ~2.10!, with the decay matrix, Eq.~2.12!, being

G< ss852pVsaVas8r. ~3.3!

B. The random coupling

Random-coupling models have a long history in t
theory of nuclear spectra42 and disordered solids43 and were
applied for the theory of intrastate and interstate dynamic44

and for the loss of intramolecular coherence in high-or
multiphoton excitation and dissociation of polyatom
molecules.45 In the case of random coupling the sums ov
the off-diagonal (sÞs8) terms in Eq.~2.5! vanish. In this
case the second term on the rhs of Eq.~2.5! vanishes, i.e.,

(
a

VsaVas8 exp@2 i ~vsat2vs8at8!#→0, ~3.4!

while the diagonal sum, with the help of Eq.~3.1!, is

(
a

uVsau2exp@2 ivsa~ t2t8!#

5^uVsau2&exp@ iEs~ t2t8!/\#2p\rd~ t2t8!, ~3.5!

where^& is defined by Eq.~2.12! andr is the~mean! density
of states. Equations~2.5! and ~3.5! result in

2\ȧs~ t !5p^uVsau2&ras~ t !. ~3.6!

The time evolution of each of the doorway states$us&% is a
pure exponential and no coherence effects~quantum beats!
are exhibited in the temporal decay ofP(t).

C. Partial correlations

The constant-coupling or the random-coupling mod
constitute limiting cases. A realistic model system for t
level structure, coupling, and accessibility corresponds t
, No. 5, 1 August 1997
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1474 M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
Franck–Condon system. This consists of zero-order state
two multidimensional harmonic potential surfacesUi(q) and
Uf(q), with the minimum of Uf(q) being considerably
lower in energy than that ofUi(q). The eigenstates$ua&% of
Uf(q) constitute the dissipative quasicontinuum and do
carry oscillator strengths from the ground stateug&, repre-
senting the Franck–Condon quasicontinuum. The eigens
$us&% andUi(q) carry an oscillator strength fromug&, con-
stituting the doorway states of the system. The inters
nonadiabatic couplingsVsa mix the doorway and quasicon
tinuum states. From a numerical analysis of the correlati
of the $us&%–$ua&% couplings within the Franck–Condo
system~Sec. V! we shall infer that the correlations betwee
the off-diagonal couplings are finite but weak. This state
pendence of the off-diagonal couplings will be quantified
terms of the correlation functions

hss85^VsaVas8&/@^uVsau2&^uVas8u
2&#1/2, ~3.7!

where ^ & is defined by Eq.~2.13! with the energy range
dE5duEs2Es8u, with d52–5. The averaged sums overa
for the off-diagonal products in Eq.~2.5! then assume the
form

K (
a

VsaVas8 exp@2 i ~vsat2vs8at8!#L
→@^uVsau2&^uVs8au2&#1/2hss8 exp@ i ~Est2Es8t8!/\#

^2p\rd~ t2t8!. ~3.8!

The averaging in Eq.~3.8! is taken over an ensemble o
systems with differenthss8 correlations for the coupling.45

This procedure results in constant values of the squared
plings, which are independent on the specific final statea.
The resulting equations for the amplitudes are

2\ȧs~ t !5p^uVsau2&ras~ t !

1p (
s8Þs

@^uVsau2&^uVs8au2&#1/2hss8r

^exp@~ i t /\!~Es2Es8!#as8~ t !. ~3.9!

The dynamics, Eq.~3.9!, of a system with partial correlation
is determined by the effective Hamiltonian~2.10! with the
decay matrix

G< ss852p@^uVsau2&^uVs8au2&#1/2rhss8 . ~3.10!

For the diagonal termshss51 while for the off-diagonal
termshss8,1 with typical values for the Franck–Condo
quasicontinuumhss8>0–0.4~Sec. V!.

IV. MODEL CALCULATIONS FOR PARTIAL
CORRELATION

From the foregoing analysis of the correlation function
Eq. ~3.7!, of the interstate nonadiabatic couplings we in
that the following limiting situations can be realized:hss8
51 for constant coupling andhss850 for random coupling.
For the coupling of a doorway state manifold to a Franc
Condon quasicontinuumhss8,1, with realistic values~see
Sec. V! of hss850.05–0.4. The latter situation provides
J. Chem. Phys., Vol. 107
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reasonable description of nonadiabatic dynamics in real
In what follows we shall provide model calculations of tem
poral vibrational coherence in a model system with par
correlation. These calculations will be supplemented
more detailed simulations~Sec. V! for interstate nonadia-
batic dynamics in a Franck–Condon system.

To explore the effects of correlations on the coher
dynamics we considered two doorway statess51,2 with en-
ergiesE1 andE2 ~energy spacingDE5uE12E2u! coupled to
a common quasicontinuum. We shall use the effect
Hamiltonian formalism~Sec. III!. The equation of motion of
the wave packetC(t)5A1(t)u1&1A2(t)u2& is governed by
the effective Hamiltonian (H< eff)115E12( i /2)G11, (H< eff)22
5E22( i /2)G22 and (H< eff)125(H< eff)2152( i /2)hG12. For
the sake of simplicity we setG115G225G125G and the ini-
tial amplitudesA1(0) andA2(0) are taken to be real. Fur
thermore, we assert that the dominating decay involves
nonradiative channel, as appropriate for femtosecond dyn
ics, i.e.,G@G rad, whereG rad is the radiative width.

The relevant range of the energetic and dynamic par
eters, where quantum beats inP(t) are exhibited, is charac
terized by the numberNp(5t/Tp) of the periods Tp
(5h/DE) of beats in the decay time domaint(5\/G),
which exceeds unity, i.e.,

Np5~2p!21~DE/G!>1, ~4.1!

so thatG/DE<(1/2p). The time evolution of the system
~for G/DE,1!, given by Eqs.~2.15! and ~2.16!, is mani-
fested by the nonradiative population probability, Eq.~2.6!,
and by the effective rate, Eq.~2.7!, which are given by

P~ t !5exp~2t/t!F122A1~0!A2~0!S hG

DED sin~DEt/\!G
~4.2!

and

k~ t !5~1/t!F 11
2hA1~0!A2~0!cos~DEt/\!

122A1~0!A2~0!S hG

DED sin~DEt/\!G .
~4.3!

For hG/DE!1 this expression reduces to

k~ t !5~1/t!@112hA1~0!A2~0!cos~DEt/\!#. ~4.3a!

For the sake of future discussion we also present the ph
counting rate, Eq.~2.9!, where the transition momentsmg1

andmg2 are taken to be real. The perturbative result is

I ~ t !>exp~2t/t!@ umg1A1~0!u21umg2A2~0!u2

12mg1mg2A1~0!A2~0!cos~DEt/\!#. ~4.4!

It is instructive to note that the amplitude of the leadi
term of the quantum beats in the nonradiative decay pr
ability P(t), Eq. ~4.2!, and in the effective ratek(t), Eq.
~4.3!, is determined by the correlation parameterh, in con-
trast to the quantum beats contribution toI (t), Eq. ~4.4!,
whose amplitude is independent ofh.

Figure 2 presents typical results based on Eqs.~2.6!,
~2.7!, ~2.15!, and~2.16! for P(t) andk(t) in a model system
, No. 5, 1 August 1997

to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



fe

l

ts
-
n

n

tem
of

f

-
n
-

es,

e-

e
es

a

1475M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
for the energetic and dynamic parametersDE526.5 cm21

and t[\/G53000 fs (G51.77 cm21), and for the initial
conditionsA1(0)5A2(0)51/&, while the correlation pa-
rameter was taken in the rangeh50–1. From Eqs.~4.2! and
~4.3! and the model calculations portrayed in Fig. 2 we in
the following.

~1! For the random coupling limit, i.e.,h50, a pure
exponential decay ofP(t)5exp(2t/t) is exhibited with a
constant effective ratek51/t. No modulation ofP(t) and of
k(t) is exhibited.

~2! For correlated coupling, i.e., 0,h,1, temporal
modulation ofP(t) and of k(t) is exhibited. The tempora
modulation is characterized by the periodTp5h/DE, with
Tp being independent ofh, as expected.32 The amplitude of
the temporal modulation increases linearly with increasingh.

~3! For the constant coupling limith51, the most pro-
nounced temporal modulation amplitudes ofP(t) and of
k(t) are exhibited.

FIG. 2. Model calculations for the reactants population probabilityP(t)
within the framework of the modulation amplitudesj(t), Eq. ~4.1!, and the
effective ratek(t) of the effective Hamiltonian formalism for the decay of
wave packet of two doorway statesu1& and u2& with E12E2526.5 cm21,
C(t)5A1(t)u1&1A2(t)u2& (A1(0)5A2(0)51/&) to a quasicontinuum.
The quasicontinuum is characterized by the decay matrixG115G225G and
G125hG, with G51.77 cm21 and h50–1 ~marked on the curves!. ~a!
Calculation ofP(t). The insert shows the values ofj(t) for increasing
values ofh51.0 ~highest modulation! to h50 ~flat line! in steps of 0.2.~b!
Calculation ofk(t).
J. Chem. Phys., Vol. 107
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~4! In general, the population probability of the reactan
P(t), Eq. ~4.2!, and the population probability of the prod
uctsPa(t), Eq. ~2.8!, are characterized by weak modulatio
amplitudes. The modulation amplitudes ofP(t) can be char-
acterized by

j~ t !5
P~ t !2Av@P~ t !#

Av@P~ t !#
, ~4.5!

where Av@P(t)# represented the smoothenedP(t) curve
~which corresponds toh50 with the same parameters!. A
maximal valueuj (h)u of the modulation amplitudes ofP(t)
for a given value ofh, is given from Eq.~4.2! by the simple
@perturbative# result

uj~h!u5h~G/DE!. ~4.6!

The data of Figs. 2 and 3~which giveuj (h51)u50.07 and
uj (h50.2)u50.015!, which correspond to (DE/G)515, are in
agreement with these results. From Eq.~4.6! we conclude
that for the relevant range of (DE/G)(>2p), the maximal
values of the modulation amplitudes~for h51! are given by
uj (h51)u5(G/DE)!1. Theh dependence of the modulatio
amplitude is linear, i.e.,uj (h)u}h, exhibiting a marked de-
crease for weak correlations. For a Franck–Condon sys
~Sec. V! h50.4–0.05 and the temporal modulations
P(t) are diminished.

~5! The temporal modulation of the effective ratek(t) is
considerably larger than that ofP(t). The modulation am-
plitudes ofk(t) can be expressed by

w~ t !5
k~ t !2Av@k~ t !#

Av@k~ t !#
. ~4.7!

A maximal value uw (h)u of the amplitude modulation o
k(t) for a given value ofh is given from Eq.~4.3! by

uw~h!u5h. ~4.8!

For lower values ofh the modulation ofk(t) decreases lin-
early with h. The modulation ofk(t) is independent of
DE/G. In particular forh51 complete interference is exhib
ited for k(t), with k(t) reaching the value of zero whe
w(t)521.0, while for lower values of the correlation pa
rameterh the values ofuw(t)u diminish linearly with de-
creasingh.

For lower values ofNp,1, P(t) does not involve quan-
tum beats, but rather the decay of overlapping resonanc46

which will be explored in a future work.46~c! The model cal-
culations for partial correlation rest on an oversimplified d
scription of the dissipative quasicontinuum~which is charac-
terized by the parameterG!, which will now be extended to
consider dynamics in a Franck–Condon system.

V. DYNAMICS IN THE FRANCK–CONDON
QUASICONTINUUM

The Franck–Condon system~Fig. 1! is characterized by
the doorway states$us&% of a harmonic potential surfac
Ui(q), which are coupled to the manifold of the final stat
$ua&% of a potential surfaceUf(q). The minimum ofUf(q)
is considerably lower in energy than theUi(q), so that the
, No. 5, 1 August 1997
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1476 M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
FIG. 3. Absolute values of the correlation parametersuhss8u, Eq. ~5.12!,
between doorway statess,s8. Data for the four-mode Franck–Condon sy
tem with the frequenciesn1527 cm21, n2535 cm21, n3575 cm21, n4

5117 cm21, with the coupling parameters are specified in Sec. V. Thes and
s8 states are labeled by the indexs51,2,3,...,N in the order of increasing
energy. Eachs state is correlated with the statess851,...,N and vice versa,
so that for eachs,s8 two identical correlation parametershss8 andhs8s are
presented~which allow for the easy identification ofs ands8!. The larger
correlation parameters are labeled by numbers, which represent the c
sponding values ofs ands8, each labeled by the combination of the qua
tum numbers( jk jv j ~j51–4 andk j are integers! and being given by
s,s85@( jk jv j ,( jk j8v j8#, while 0 corresponds to the electronic origin.~a!
DE5500 cm21. The energy rangeDE250 cm21<E<DE1250 cm21 con-
tainsN510 states and 90 values ofhss8 . The pairs of states with the larges
values of hss8(.0.1), which are labeled as 1–12, are: 1.@0,n3#, 2.
@n1 ,n21#, 3. @n2,2n2#, 4. @2n1,3n1#, 5. @0,n2#, 6. @0,n1#, 7. @n1

1n2,2n1 ,n2#, 8. @n11n2 ,n112n2#, 9. @n1 ,n11n2#, 10. @n2 ,n11n2#, 11.
@2n1,2n11n2#, 12. @2n2,2n21n1#. ~b! DE5500 cm21. The energy range
DE2200 cm21<E<DE1250 cm21 containsN540 states and 1560 val
ues ofhss8 . The pairs of states with the largest values of (hss8.0.2), which
are labeled as 1–7, are: 1.@0,n4#, 2. @0,n3#, 3. @n1 ,n11n4#, 4. @n2 ,n2

1n4#, 5. @n1,2n1#, 6. @n2,2n2#, 7. @3n1,3n11n4#.
J. Chem. Phys., Vol. 107
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$ua&% manifold constitutes a dissipative quasicontinuum. T
zero-order states are characterized by the doorway s
$us&%5$f ixs% and the quasicontinuum states$ua&%
5$f fxa%, wheref i andf f denote the electronic wave func
tion of the initial and the final manifolds, respectively.xs

and xa denote the nuclear wave functions. The coupli
terms are:

Vsa5Vf~s;a!, ~5.1!

f ~s;a!5^xsuxa&, ~5.2!

whereV is the electronic coupling~within the framework of
the Condon approximation! and f (s;a) is the vibrational
overlap integral.

In what follows we consider explicitly the entire leve
structure of the system. The HamiltonianH< of the system,
Eq. ~2.1!, is diagonalized by the unitary transformatio
U< H< U< 15E< , resulting in the molecular eigenstates

u j &5(
s
as

~ j !us&1(
a

ba
~ j !ua&, ~5.3!

whereas
( j )5Ujs andba

( j )5Uja . The energiesEj of the mo-
lecular eigenstates constitute the diagonal elements ofE< .
The zero-order vibronic states can be reconstructed from
molecular eigenstates

um&5(
j

~U1!mju j &,

5(
j
cm

~ j !u j &

~cm
~ j !5as

~ j ! for m5s, cm
~ j !5ba

~ j ! for m5a!. ~5.4!

The initial state, Eq.~2.2!, is expressed in the form

C~0!5(
s

(
j
As~0!as

~ j !u j &. ~5.5!

Eq. ~5.5! provides the transformation from a wave packet
zero-order doorway states to a wave packet of molec
eigenstates, which provides the time evolution

C~ t !5(
s

(
j
As~0!as

~ j !u j &exp~2 iE j t/\!. ~5.6!

The population probability of the reactant doorwa
states, Eq.~2.6!, is obtained from Eq.~5.6! in the form

P~ t !5(
s8

U(
s

(
j
As~0!as

~ j !as8
~ j ! exp~2 iE j t/\!U2

5(
s8

FU(
s
As~0!Sss8~ t !U21U(

s
As~0!Css8~ t !U2G ,

~5.7!

where

Sss8~ t !5(
j
as

~ j !as8
~ j ! sinSEjt

\ D , ~5.8a!

re-
, No. 5, 1 August 1997
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1477M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
Css8~ t !5(
j
as

~ j !as8
~ j ! cosSEjt

\ D . ~5.8b!

Equations~5.7! and ~5.8! provide the information on coher
ent dynamics. We now proceed to characterize the harm
manifolds $us&% and $ua&% and their couplingsVsa , Eq.
~5.1!, within the framework of the harmonic model.

The level structure and coupling within the Franck
Condon model will be described by a simple harmo
model with two multidimensional displaced nuclear poten
surfacesUi(q) andUf(q), which are characterized by th
same frequencies. The relevantn vibrational modes are char
acterized by coordinatesq[$q1 ,q2 ,...,qn%, massesm
[$m1 ,m2 ,...,mn%, frequenciesv[$v1 ,v2 ,...,vn%, and
displacements of the equilibrium positions between
minima of the potential surfacesDq[$Dq1 ,Dq2 ,...,Dqn%.
It is useful to define the squares of the reduced displacem
Sk5Dqk

2mkvk/2\. The nuclear reorganization energy is

l5 (
k51

n

\vkSk ~5.9!

and the energy gap between the minima of the two poten
surfaces is denoted byDE. The initial and final vibronic
states will be specified in terms of the occupation number
the vibrational modes, i.e.,us&[$ i 1 ,i 2 ,...,i n% and ua&
[$ f 1 , f 2 ,...,f n%, respectively.

The vibrational overlap between the initiali k and final
f k states of the model is

f ~ i k ; f k!5exp~2S/2!~ i ! f ! !1/2

3 (
r50

min~ i , f !
~21! i1 f2rS~ i1 f22r !/2

r ! ~ i2r !! ~ f2r !!
, ~5.10!

where on the rhs of Eq.~5.10! we abbreviateS[Sk , i[ i k ,
and f[ f k . The Franck–Condon vibrational overlaps b
tween the vibronic statesus& and ua& are

f ~s,a!5)
k51

n

f ~ i k ; f k!. ~5.11!

We have performed numerical model calculations for
level structure coupling and dynamics in a four-mode h
monic model of two displaced potential surfaces. The in
data are the harmonic modes frequenciesv>
5(vn ,vn21 ,...,v1) ~with thev j ’s being given in the order
of increasing frequency!, the reduced displacements para
etersS>5(S1 ,S2 ,...,Sn), the energy gapDE between the
minima ofUf andUi (DE5Uf2Ui), and the electronic cou
pling V.

The input parameters taken for our model calculatio
were v> /cm215(117, 75, 35, 27), andS>5(1.0, 1.1, 2.0,
3.0), which givel5350 cm21, and the energy gapDE
5500 cm21. The highest vibrational mode is close to th
intermolecular vibrational motion in theD–A charge trans-
fer complex, while the lower vibrational frequencies mim
solvent modes. The electronic coupling was chosen aV
520 cm21, to give ultrafast dynamics on the time scaletd
;1500 fs. The choice of the energy parameters was gu
J. Chem. Phys., Vol. 107
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by the following constraints:~i! attainment of a vibrationa
quasicontinuumDE@v f for all the vibrational frequencies
~ii ! negligible edge effects, i.e.,DE@2pV2 FD(Es) for all
the doorway states, and~iii ! the direct decay is slower tha
the coherent modulation frequency, i.e., 2pV2 FD(Es)
;2pV2 FD(Es8)&(Es2Es8). Here FD(Es) is the Franck–
Condon density47 around Es , i.e., FD(Es)
5@dE#21(au f (s;a%u2, where thea sum is taken over the
quasicontinuum states in the energy rangeEs2dE/2<Ea

<Es1dE/2.
The zero-order basis set consists ofns(5100) doorway

states $us&% and na(53000) quasicontinuum states. Th
(ns1na)3(ns1na) Hamiltonian matrices were diagona
ized resulting in the molecular eigenstates$u j &% with the ac-
cessibility amplitudes$as

( j )% and the energies$Ej%. The tem-
poral decay of a wave packet of doorway states w
simulated using Eqs.~5.7! and ~5.8!.

Regarding the input data, of considerable interest are
correlation functionshss, Eq. ~3.10!, for the coupling to the
Franck–Condon quasicontinuum. Using Eq.~5.1! these cor-
relations are

hss85
^ f ~s;a! f ~a;s8!&

@^ f ~s;a!2&^ f ~s8;a!2&#1/2
. ~5.12!

Numerical calculations ofhss8 for s,s851–10 ands,s8
51–40~wheres51 denoted the electronic origin! were per-
formed. Figure 3 portrays the absolute values ofuhss8u. The
values ofuhss8u show some dependence on the range ofdE
over which the averaging is performed. For a fixed value
the lower limit ofdE the values ofhss8 show a weak depen
dence ~10%! on the upper limit ofdE ~in the rangedE
1DE5n jdj , wheredj51.5–8,n j being the characteristic
frequencies andDE being the electronic origin energy of th
$us&% manifold!. Thehss8 show a more pronounced sensiti
ity ~in the variance range of;50%! on the lower limit of the
energy domain ~in the range DE2dE5n jdj with dj
50.5–8!. The relative sizes of the largest values ofhss8
(.0.1) are practically invariant with respect to the low
limit of the energy rangedE. As the calculations of the
hss8 are intended to demonstrate the nature of the correla
effects between doorway states, this variance of the value
hss8 is of little concern. The~absolute values of! correlation
parametersuhss8u for pairs (s,s8) of doorway states@Figs.
3~a! and 3~b!# are considerably lower than unity. The highe
values of correlation parameters fall in the regionhss8
50.4–0.2. These relatively high values ofuhss8u correspond
to members of a vibrational progression withs and s8 dif-
fering only by a single vibrational quantum~Fig. 3! i.e.,
Dv j561 ~wherev j is the vibrational quantum number o
mode j !, with the highest value ofuhss8u being;0.4. For
multimode changes betweens and s8 very low values of
uhss8u are exhibited. From this analysis we infer that wea
but nonvanishing, correlations, which are subjected to p
pensity rules, do exist for the coupling of a manifold of doo
way states to a Franck–Condon quasicontinuum. These fi
correlations will preserve some temporal interference effe
, No. 5, 1 August 1997
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1478 M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
in the dynamics. The present estimates ofuhss8u&0.4 were
already utilized in Sec. IV for simple modeling of quantu
beats.

We now utilize the complete numerical information o
the molecular eigenstates and the initial conditions for
wave packet expressed byA> s(0), together with Eqs.~5.7!
and ~5.8!, for the numerical calculation of the time-resolve
dynamics. Typical data for the time-dependent reactants
cay probabilityP(t) are presented in Figs. 5 and 6.P(t) for
the decay of the initial wave packet of two statesC(0)
5u0&1u1&, where u0& is the electronic origin and
u1&5un1&527 cm21 is the single vibrational excitation~Figs.
4 and 5! exhibits regular, but weak, temporal coherence w
the single period and with the largest modulation amplitu
uj(t)u>0.042~insert to Fig. 4!. This largest modulation am
plitude of uju50.042 is in good agreement with the analys
of the model system in Sec. IV. For this two-doorw
states system~Fig. 5! t51900 fs (G52.8 cm21) and
G/DE50.103, so that Eq.~4.6! ~i.e., ujhu>0.103uhu)
accounts for these data with the reasonable correla

FIG. 4. The time-dependent population probability of the reactantsP(t) for
the decay of the two-doorway states initial wave packetC(0)5u1&1u2&
defined in the text~the solid line!. The dashed line showsAv@P(t)#. The
insert shows the time dependence ofDP(t)5P(t)2Av@P(t)# ~the solid
line! and ofj(t), Eq. ~4.1! ~the dashed line!.

FIG. 5. The time dependence ofṖ(t) ~upper curve! and of 2k(t)
5P(t)21Ṗ ~lower curve! for the dynamics of the two-doorway states sy
tem of Fig. 4.
J. Chem. Phys., Vol. 107
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parameter uhu50.4 @while the numerical value of the
@0,n4527 cm21# correlation parameter in Fig. 3~a! is h
50.29#. These lowuj(t)u values originate from an intrinsi
cally small contribution to the off-diagonal matrix elemen
of the nonradiative decay matrix, i.e.,;G/DE according to
Eq. ~4.6!, in conjunction with low value~s! of correlation
parameters. For this two-doorway states systemk(t) shows a
more pronounced modulation with the largest modulat
amplitude ofuw(t)u50.4 ~Fig. 5!, which is still considerably
lower than the maximal value of unity, reflecting the redu
tion of h, according to Eq.~4.8!. In Figs. 6 and 7 we display
the dynamics of a multistate wave packet initially containi
the seven lowest states in the$us.% manifold and spanning
the energy range of 75 cm21, i.e.,C(0)5A> s(0)us> &, where
us> &5(0,n1 ,n2,2n1 ,n11n2,2n2 ,n3), with the amplitudes
which are given by the vibrational overlap integrals from t
electric origin of the lowest manifold, i.e.,A> s(0)5~0.0287,
20.0498, 20.0406, 0.0609, 0.0704, 0.0406,20.0301!.
These data show a somewhat less regular modulation
the largest values ofuj(t)u ~50.06 for the maximal value of

FIG. 6. The time-dependent population probabilityP(t) of the reactants for
the seven-doorway states initial wave packetC(0)5A> s(0)us> &1 defined in
the text~the solid line!. The dashed line showsAv@P(t)#. The insert shows
the time dependence ofD(P)5P(t)2Av@P(t)# ~the solid line! and of
j(t), Eq. ~4.1! ~the dashed line!.

FIG. 7. The time dependence ofṖ(t) ~upper curve! and of k(t)
5P(t)21Ṗ(t) ~lower curve! for the dynamics of the seven-doorway stat
system of Fig. 6.
, No. 5, 1 August 1997
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1479M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
Fig. 5! and of uw(t)u ~50.33 for the maximal value!. The
time-resolved reactants, which decay into a typical Franc
Condon quasicontinuum, exhibit modest effects on the te
poral modulation, with maximal values of the modulatio
amplitudes, Eq.~4.5!, of uj(t)u;0.04–0.06, which are clos
to theuj(t)u values obtained for the two-doorway states s
tem. A more pronounced effect of temporal coherence
exhibited for the~time-dependent! decay ratek(t), with a
maximal modulation amplitude ofuw(t)u>0.3–0.4, which is
considerably lower than the upper limit of unity~for
uhss8u51!, reflecting@according to Eq.~4.8!# the effects of
the low correlation parameters. A cursory comparison
these results for the Franck–Condon quasicontinuum w
the model calculations, based on the effective Hamilton
formalism ~Sec. IV!, indicates that the Franck–Condon sy
tem is characterized by weak correlation, i.e.,hss8<0.4.
This conclusion concurs with the direct analysis ofhss8 ~Fig.
3!. For nonadiabatic dynamics the temporal modulation
the reactants and products is of the same form, as is evi
from Eqs.~2.6! and ~2.8!.

VI. CONCLUDING REMARKS

We explored temporal vibrational coherence effects
nonadiabatic radiationless transitions between two electr
states in a large molecule or in the condensed phase.
nonadiabatic time-resolved dynamics is determined by
microscopic rates~the diagonal elements of the decay m
trix!

ks52pV2FD~Es!/\, ~6.1!

while the off-diagonal matrix elements of the decay matr
Eq. ~3.10!, are

Gss85hss8~\/2!~ksks8!
1/2. ~6.2!

The time dependence of the nonradiative decay probabilit
obtained from Eqs.~2.6!, ~2.15!, and~2.16! ~for the limit of
interest when quantum beats are manifested, i.e.,Gss8!uEs

2Es8u! in the form

P~ t !>(
$s%

uAs~0!u2 exp~2kst !

1 ((
$s%Þ$s8%

As*As8F i\hss8~ksks8!
1/2

2~Es2Es8!
G

^ @exp~ i ~Es2Es8!!t/\#exp@2~ks1ks8!t/2#, ~6.3!

where$s%5us&,us8&,..., represent the doorway states with
the laser bandwidth. The first term in Eq.~4.3! represents
dynamics of population changes of the doorway states w
the second term denotes the coherence effects. Another
tinent observable is the photon counting rate, Eqs.~2.9!,
~2.15!, and~2.16! ~for uEs2Es8u)@Gss8@G rad! which is

I ~ t !5(
$s%

uAs~0!u2umgsu2 exp~2kst !

1 ((
$s%Þ$s8%

As* ~0!As8~0!mgs* mgs8

^exp@ i ~Es2Es8!t#exp@2~ks1ks8!t/2#. ~6.4!
J. Chem. Phys., Vol. 107
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On the basis of these results we address the following iss
~1! How are quantum beats manifested in the time

pendence of different observables, i.e., nonradiative pop
tion probabilities and photon counting rates? While the pe
ods Tp5h/uEs2Es8u of the quantum beats are, of cours
invariant for the nonradiative and radiative decay, their a
plitudes qualitatively and quantitatively differ for the nonr
diative and for the radiative decay channels. As is appa
from Eqs. ~6.3! and ~6.4! two major differences betwee
P(t) and I (t) emerge. First, as noted in Sec. II and as
apparent from Eqs.~4.2!, ~4.3!, and~4.4! for a simple model
system of two-doorway states, as well as from Eqs.~6.3! and
~6.4!, the amplitude of the temporal interference terms
much larger for the ratesI (t) or k(t) than for the population
probabilityP(t). ForP(t) the amplitude ratios for the quan
tum beats@i.e., the ratios of the amplitudes in the seco
term and in the first term in Eq.~6.3!# are Gss/uEs2Es8u
!1, while the ratio of the amplitudes for the quantum be
for I (t), Eq. ~6.4!, are of the order of unity. Second, th
amplitudes of the temporal coherence terms for the nonr
ative probability, Eq.~6.3!, are determined by the molecula
or condensed phase parameters for nonradiative coupling
relaxationhss(ksks8)

1/2, while the amplitudes of the tempo
ral coherence terms in the radiative decay rate are de
mined by the products of themgs* mgs8 and do not depend on
the nonradiative parameters. The radiative decay rateI (t) of
a wave packet of doorway states into a radiative continu
is characterized by complete correlation~i.e.,hss851 for all
s,s8!, while the nonradiative decay of such a wave pac
into a Franck–Condon quasicontinuum is subjected only
partial intramolecular correlations (hss8<0.4), further re-
ducing the modulation amplitudes forP(t) and k(t) in the
nonradiative decay. It is important to realize that the lo
modulation amplitudes in coherent nonradiative decay refl
the intramolecular correlation effects, while the large mod
lation amplitudes in the radiative decay just manifest
signature of the ‘‘preparation’’ conditions. While the qua
tum beats in the radiative decay rate are much more p
nounced than for the nonradiative probability, the latter
much more interesting, manifesting information on nonra
ative correlation effects, while the former just provides sp
troscopic information for the energy differencesuEs2Es8u.
Thus novel dynamic information emerges from the~weak!
quantum beats in the nonradiative population probability,
not from the photon counting rate.

~2! What determines the characteristics of quantum be
for the nonradiative decay of an~initial! wave packet of
doorway states into a Franck–Condon quasicontinuum?
manifestation of the quantum beat terms inP(t) is deter-
mined by the spectroscopic, energetic, and dynamic pro
ties of the doorway states~within the laser bandwidth!
us&,us8&,us9&,..., which are characterized by:~i! large prepa-
ration amplitudesAs(0), As8(0),..., for excitation from the
ground state;~ii ! the periodsTp5h/uEs2Es8u, according to
relation ~6.3!, i.e., t/Tp>1; ~iii ! modulation amplitudes de
termined by Gss8 /uEs2Es8u;(\/2)hss8(ksks8)

1/2/uEs

2Es8u, whereGss8 is the off-diagonal matrix element of th
nonradiative decay matrix, which is proportional tohss8 ,
, No. 5, 1 August 1997
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and ~iv! sufficiently large values of the correlation param
etershss8 , which constitute a novel feature of the Franck
Condon quasicontinuum. While features~i! and ~ii ! provide
the signature of the laser excitation~‘‘preparation’’! condi-
tions, features~iii ! and ~iv! constitute intrinsic properties o
the nonadiabatic nonradiative coupling and dynamics. O
analysis provides the distinction between the experime
conditions of wave packet ‘‘preparation,’’ which reflect th
level structure and ‘‘excitation’’ amplitudes of doorwa
states, and the intrinsic aspects of intramolecular coup
and dynamics, as manifested in the amplitudes of the qu
tum beats for nonradiative decay.

~3! What are the general properties of the Franc
Condon quasicontinuum? This central issue, which perta
to the features of the correlation parameters introduced
explored herein, transcends the problem of quantum b
and addresses broad features of intramolecular and
densed phase radiationless transitions. From the poin
view of general methodology, the most significant result
the occurrence of finite, though low, correlations for the co
pling of the manifold of doorway states into a Franck
Condon quasicontinuum~i.e., hss8<0.4!, in contrast to the
idealized model system of constant coupling41 (hss51) and
of random coupling44,45 (hss850). These finite correlations
ensure the realization of nonvanishing off-diagonal ma
elements of the decay matrixG< , Eq.~3.10!, resulting in quan-
tum beats in the temporal nonradiative decay of an initia
prepared wavepacket of doorway states.

~4! Does a coherent excitation of a wave packet of do
way states modify the nonadiabatic ET dynamics? The
swer to this question rests on the nature of the temp
modulation and on its magnitude for a given dynamic o
servable. Only when the temporal modulation amplitudes
pend on the molecular or condensed phase parameter
nonradiative coupling can we assert that the quantum b
in the dynamic variable modify the nonadiabatic dynami
This is the case for the nonradiative population probabi
P(t). The temporal modulation amplitudes inP(t) are weak
;Gss8 /uEs2Es8u, as is apparent from a cursory examinati
of Figs. 2~a!, 4, and 6. Thus, the overall influence of th
coherent excitation on the nonradiative dynamics is sm
On the other hand, the amplitudes of the pronounced qu
tum beats in the photon counting rateI (t) do not provide
information on nonradiative coupling, just reflecting rad
tive interference effects. Vibrational coherence effects in
electronically excited bacteriochlorophyll dimer (1P* ) of the
bacterial photosynthetic reaction center were experiment
studied by induced and spontaneous fluorescence,27 i.e., by
the interrogation ofI (t). These quantum beats inI (t) just
provide spectroscopic-type information on the excitation a
plitudes$A,(0)% within the laser bandwidth and the energ
gaps uEs2Es8u of the doorway states, while the primar
charge separation dynamics@determined by the microscopi
ratesks , Eq. ~6.1!# is unmodified by the coherent excitatio
of the wavepacket of doorway states.

We have performed model calculations for the tim
resolved nonradiative decay of an initially prepared wa
packet of doorway states into a Franck–Condon quasic
J. Chem. Phys., Vol. 107
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tinuum, based on the dynamics of wave packets for a rea
tic Franck–Condon level structure, which originates fro
coupling between two coupled manifolds of zero-order h
monic states. Our treatment rests, in principle, on the ex
diagonalization of the entire Hamiltonian of the syste
without considering a separation of the relevant system fr
the bath. In practice we treated a four-mode system, w
other degrees of freedom~which can be considered as a bat!
~which will contribute to relaxation and ‘‘dephasing’’! were
not taken into account. Indeed, a four-mode~harmonic! sys-
tem is of sufficient size to provide relevant information o
vibrational coherence effects in nonradiative decay. Rega
ing additional hidden assumptions in our treatment, we n
that an additional effect not considered by us, which m
diminish the modulation amplitudes in real life, pertains
static inhomogeneous broadening effects on the energy
ferencesuEs2Es8u between doorway states. In addition, c
herent excitation of a large number of low frequency vib
tional modes, as is the case for a condensed phase sy
will also smear out the quantum beats. Accordingly, our
sults concerning the amplitudes of the quantum beats
their modulation, constitute an upper limit.

Nonadiabatic dynamics in the condensed phase, e.g.
transfer of type~1.1!, is amenable to the theoretical descri
tion in terms of nonradiative decay into a Franck–Cond
quasicontinuum. Our theoretical and numerical analysis
the temporal coherence effects in nonadiabatic dynamic
the Franck–Condon system can be confronted with the
perimental results of Hochstrasseret al.34 for ET in
Mulliken-type charge transfer complexes,35 Eq. ~1.1!. Our
theoretical analysis predicts the following.

~a! Low amplitude of coherent temporal modulation. Th
appearance of quantum beats in the temporal decayP(t) of
the reactants, Eq.~6.3!, and in the buildupPa(t), Eq. ~2.8!,
of the products is characterized by a modest modulation w
j being in the range of a few percent. This feature reflects
characteristics of nonradiative decay probabilities in
Franck–Condon system. The experimental data of Ho
strasseret al. for the dynamics of the nonradiative decay
the doorway states of the pyrene1–TCNE2 complex34~b! give
Tp5200 fs for the period of the beats andt
51400–1200 fs for the decay time. Accordingly,Np , Eq.
~4.1!, is Np56–7 and Eq.~4.4! predicts the maximal value
of the modulation amplitudes ofuj (h)u5(0.17–0.14)h. For
the reasonable value of the correlation parameterh
50.3–0.4~Fig. 3!, uj (h)u>0.05–0.06, which concurs with
the experimental results.34~b! We should note that we did no
consider effects of static inhomogeneous broadening an
additional smearing of the quantum beats due to a contr
tion of a large number of vibrational modes~not taken into
account in our four-mode system!.

~b! Dominating contributions to temporal coherenc
The most pronounced temporal modulation~reflected in the
largest values ofuhss8u! originated from coherence betwee
doorway states, e.g.,s,s8, which correspond to members of
single vibrational progression withDv51. Thus the peri-
od~s! Tp8 of the pronounced quantum beats is dominated
single-mode vibrational frequencies. The propensity r
, No. 5, 1 August 1997
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1481M. Bixon and J. Jortner: Vibrational coherence in nonadiabatic dynamics
Dv j561 for the dominant contribution to temporal cohe
ence is borne out in the experimental data forP(t) and
Pa(t) of charge transfer complexes34 where the vibrational
temporal coherence is determined byuEs2Es8u, which cor-
responds to the intermolecularD1–A2 ~or D–A! vibra-
tional frequency of the complex.34~b!
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