Computing Zeta Functions of Curves over Finite Fields

Fré Vercauteren

Katholieke Universiteit Leuven

30 July 2008

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Introduction

p-adic Numbers

Satoh's Algorithm

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields

イロン イロン イヨン イヨン

ъ

The Zeta Function and Weil Conjectures Let \overline{C} be smooth projective curve over \mathbb{F}_q ; zeta function of \overline{C} is

$$Z(T) = Z(\overline{C}; T) = \exp\left(\sum_{k=1}^{\infty} N_k \frac{T^k}{k}\right)$$

with N_k the number of points on \overline{C} with coordinates in \mathbb{F}_{q^k} . Weil Conjectures:

• Z(T) is rational function over \mathbb{Z} and can be written as

$$\frac{P(T)}{(1-T)(1-qT)}$$

• $P(T) = \prod_{i=1}^{2g} (1 - \alpha_i T)$ with g genus of \overline{C} and $|\alpha_i| = \sqrt{q}$ • $P(T) = \sum_{i=0}^{2g} a_i T^i$ with $a_0 = 1$, $a_{2g} = q^g$ and $a_{g+i} = q^i a_{g-i}$

Ultimate Goal

• Given \overline{C} over \mathbb{F}_q of genus g, compute zeta function efficiently (at least polynomial time) for a bounded range of

$$q^g \leq 2^{512}$$

- q^g roughly the size of the group $J_C(\mathbb{F}_q)$
- Current situation:
 - Elliptic curves: efficient solution for all \mathbb{F}_q
 - ► Hyperelliptic curves: good solution for F_{pⁿ} and p small, any genus allowed
 - ► Nondegenerate curves: decent solution for 𝔽_{pⁿ}, p small, small genus

イロト イポト イヨト イヨト

э.

Central Object: Frobenius Endomorphism

- Recall $a \in \overline{\mathbb{F}}_q$ is in \mathbb{F}_q iff $a^q = a$
- ▶ Frobenius automorphism $\varphi_q : \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q : x \mapsto x^q$ induces
 - morphism φ_q on $\mathcal{C}(\overline{\mathbb{F}}_q)$
 - endomorphism φ_q on $J_C(\overline{\mathbb{F}}_q)$
- \mathbb{F}_q -rational points are invariant under φ_q

$$J_{\mathcal{C}}(\mathbb{F}_q) = \operatorname{Ker}(1 - \varphi_q) \qquad \# J_{\mathcal{C}}(\mathbb{F}_q) = \operatorname{deg}(1 - \varphi_q)$$

- Theorem: $P(T) = \chi(1/T)t^{2g}$
- Remark: for q = pⁿ, then φ_q is composition of n morphisms of degree p (easy to handle for p small)

イロト イポト イヨト イヨト

Overview of Existing Approaches

I-adic: Schoof's algorithm and generalisations

- consider the *I*-torsion as first order approximations of *I*-adic cohomology (cfr. representation on Tate module)
- compute characteristic polynomial of Frobenius modulo *l_i*, for various small *l_i* and recover χ(T) mod ∏_i *l_i*.
- p-adic:
 - canonical lift
 - *p*-adic cohomology
 - p-adic deformation

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

p-adic Numbers

• *p*-adic valuation $\operatorname{ord}_{\rho}(r)$ of $r \in \mathbb{Q}$ is ρ with

$$r = p^{\rho}u/v, \quad \rho, u, v \in \mathbb{Z}, \quad p \not\mid u, p \not\mid v$$

▶ Non-archimedian *p*-adic norm $|r|_p = p^{-\rho}$

~~

► Field of *p*-adic numbers Q_p is completion of Q w.r.t. | · |_p,

$$\sum_{m=1}^{\infty} a_i p^i, \quad a_i \in \{0, 1, \dots, p-1\}, \quad m \in \mathbb{Z}.$$

- *p*-adic integers \mathbb{Z}_p is the ring with $|\cdot|_p \leq 1$ or $m \geq 0$.
- Ideal $M = \{x \in \mathbb{Q}_p \mid |x|_p < 1\} = p\mathbb{Z}_p$ and $\mathbb{Z}_p/M \cong \mathbb{F}_p$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

p-adic Numbers in Practice

- ▶ \mathbb{Z}_p : for fixed absolute precision *N*, compute modulo p^N
- \mathbb{Q}_p : write each element as $p^{\operatorname{ord}_p(x)}u_x$ with $u_x \in \mathbb{Z}_p^{\times}$
- \mathbb{Q}_p : for fixed relative precision of *N*, $u_x \mod p^N$
- No rounding off errors occur unlike floating point
- Loss of absolute precision on division by p
- Possible loss of relative precision when subtracting
- ► All operations asymptotically in time O(N log p)^{1+ε}
- For $\log_2 p^N < 512$, schoolbook methods suffice

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Unramified Extensions of *p*-adics

- K extension of Q_p of degree n with valuation ring R and maximal ideal M_R = {x ∈ K | |x|_p < 1} of R</p>
- *K* is called unramified iff its residue field $R/M_R \cong \mathbb{F}_q$
- K denoted with \mathbb{Q}_q and its valuation ring with \mathbb{Z}_q
- $\operatorname{Gal}(\mathbb{Q}_q/\mathbb{Q}_p) \cong \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$ and $\operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p) = <\sigma >$ with

$$\sigma: \mathbb{F}_q \to \mathbb{F}_q: \mathbf{X} \mapsto \mathbf{X}^p$$

- Gal(Q_q/Q_p) =< Σ > generated by Frobenius substitution
- Note: Σ is not simple *p*-powering !

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Representation of \mathbb{Q}_q

• Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{f}(t))$ then \mathbb{Q}_q can be constructed as

 $\mathbb{Q}_q \cong \mathbb{Q}_p[t]/(f(t)),$

with f(t) any lift of $\overline{f}(t)$ to $\mathbb{Z}_{\rho}[t]$.

- Different choices of f(t) have different advantages
- ▶ Valuation ring $\mathbb{Z}_q \cong \mathbb{Z}_p[t]/f(t)$; $a \in \mathbb{Z}_q$ represented as

$$a=\sum_{i=0}^{n-1}a_it^i\,,\quad a_i\in\mathbb{Z}_p\,.$$

► Reduction mod p^m gives $(\mathbb{Z}/p^m\mathbb{Z})[t]/(f_m(t))$ with $f_m(t) \equiv f(t) \mod p^m$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Frobenius Substitution

• Let
$$\mathbb{Z}_q \cong \mathbb{Z}_p[\theta] \cong \mathbb{Z}_p[t]/(f(t))$$
 with $f(t) = \sum_{i=0}^{n-1} f_i t^i$

$$0 = \Sigma(f(\theta)) = \sum_{i=0}^{n-1} f_i \Sigma(\theta)^i = f(\Sigma(\theta)).$$

- Compute $\Sigma(\theta)$ as zero of f(t) from $\Sigma(\theta) \equiv \theta^p \mod p$.
- Frobenius of $a = \sum_{i=0}^{n-1} a_i \theta^i \in \mathbb{Q}_q$ is $\Sigma(a) = \sum_{i=0}^{n-1} a_i \Sigma(\theta)^i$
- ▶ If θ is (q-1)-th root of unity (Teichmüller lift), then

$$\Sigma(\theta) = \theta^p$$

• Occurs when $f(t)|t^q - t$, i.e. is Teichmüller modulus

ヘロン 人間 とくほ とくほ とう

-

Newton Lifting

▶ Theorem: Let $g \in \mathbb{Z}_q[X]$ and assume that $a \in \mathbb{Z}_q$ satisfies

$$\operatorname{ord}_{\rho}(g'(a)) = k$$
 and $\operatorname{ord}_{\rho}(g(a)) = n + k$

for some n > k, then exists a unique root $b \in \mathbb{Z}_q$ of f with $b \equiv a \pmod{p^n}$.

- ► *a* is called an approximate root of *g* known to precision *n*.
- Newton iteration: compute

$$z=a-rac{g(a)}{g'(a)}$$

then $z \equiv b \pmod{p^{2n-k}}$, $g(z) \equiv 0 \pmod{p^{2n}}$ and $\operatorname{ord}_p(g'(z)) = k$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Newton Lifting: Minimal Precision

- z has to be correct modulo p^{2n-k}
- $g'(a) \mod p^n$, so $g'(a)/p^k$ is a unit known $\mod p^{n-k}$
- ▶ $g(a) \mod p^{2n}$, then $g(a) \equiv 0 \mod p^{n+k}$ and $g(a)/p^{n+k}$ known $\mod p^{n-k}$
- Finally compute

$$z \equiv a - p^n rac{g(a)/p^k}{g'(a)/p^k} mod p^{2n-k}$$

where inversion and multiplication is computed mod p^{n-k}

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Frobenius Endomorphism

- ▶ Let *E* be an elliptic curve over a finite field \mathbb{F}_q with $q = p^n$
- Recall the q-th power Frobenius endomorphism

$$\varphi_q: E \to E: (x, y) \mapsto (x^q, y^q)$$

• Characteristic polynomial of φ_q was of the form

$$\chi(T) = T^2 - \operatorname{Tr}(\varphi_q)T + \operatorname{Deg}(\varphi_q) = T^2 - tT + q = 0$$

and $\#E(\mathbb{F}_q) = \chi(1) = q + 1 - t$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Factorisation of $\chi(T)$ over *p*-adic's

- \mathbb{Q}_p is field of *p*-adic numbers, with valuation ring \mathbb{Z}_p
- Assume that $t \neq 0 \mod p$, then

$$\chi(T) \equiv T^2 - tT \equiv T(T - t) \mod p$$

• Conclusion: $\chi(T)$ splits over \mathbb{Z}_p as

$$\chi(T) = (T - \lambda)(T - \frac{q}{\lambda})$$

with λ the unique root such that $\lambda \equiv t \mod p$ (λ is unit)

► Conclusion: $t = \lambda + q/\lambda$, since $|t| \le 2\sqrt{q}$ only need approximation of λ modulo p^N with N > n/2 + 2

・ロト ・ 理 ト ・ ヨ ト ・

э.

How to Compute λ ?

- Since $\lambda \in \mathbb{Z}_p$, need to lift the situation to *p*-adic integers
- Given elliptic curve *E* over \mathbb{F}_q , can we find \mathcal{E} over \mathbb{Z}_q s.t.
- Reduction of *E* modulo *p* equals *E*
- *E* comes with "lifted Frobenius endomorphism *F_q*" with the same characteristic polynomial

$$\chi(\varphi_q; T) = \chi(\mathcal{F}_q; T)$$

► Assume that we could compute *E* and *F_q*, then how to proceed?

ヘロン 人間 とくほ とくほ とう

э.

How to Compute λ ?

Let E : f(x, y) = 0 over field K, then there exists an invariant differential

$$\omega = \frac{dx}{\partial f/\partial y}$$

▶ Morphism $\phi : E_1 \rightarrow E_2$ induces by pullback a map $\Omega_2 \rightarrow \Omega_1$

$$\phi^*(gdh) = \phi^*(g)d\phi^*(h) = (g \circ \phi)d(h \circ \phi)$$

• Invariant: since
$$\tau_P^* \omega = \omega$$

• Linearization: ϕ, ψ 2 isogenies from $E_1 \rightarrow E_2$ then

$$(\phi \oplus \psi)^* \omega = \phi^* \omega + \psi^* \omega$$

Pullback of regular differential by isogeny again regular, so

$$\phi^*\omega = \mathbf{C}\omega\,, \mathbf{C} \in \mathbb{K}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

How to Compute λ ?

Since \mathcal{F}_q satisfies $T^2 - tT + q = 0$, the constant $\mathcal{F}_q^* \omega = c\omega$ satisfies

$$c^2 - tc + q = 0$$

- Conclusion: *c* is either λ or q/λ but which one?
- Use that $\mathcal{F}_q \equiv \varphi_q \mod p$ and clearly $\varphi_q^* \overline{\omega} \equiv 0 \mod p$, so

$$c = rac{q}{\lambda}$$

- Efficiency: would need extra *n* precision to recover λ and trace t
- Solution: consider the dual $\widehat{\mathcal{F}}_q$ of \mathcal{F}_q , then $\widehat{\mathcal{F}}_q^* \omega = \lambda \omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Canonical Lift

- ► The canonical lift *E* of an ordinary elliptic curve *E* over F_q is an elliptic curve over Q_q which satisfies:
- the reduction of \mathcal{E} modulo p equals E,
- ► the ring homomorphism End(*E*) → End(*E*) induced by reduction modulo *p* is an isomorphism.
- Deuring showed that the canonical lift *E* always exists and is unique up to isomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Canonical Lift: Alternative Characterisation

- \mathcal{E} is the canonical lift of E.
- ► Reduction modulo *p* induces an isomorphism End(*E*) ≃ End(*E*).
- ► The *q*-th power Frobenius F_q ∈ End(E) lifts to an endomorphism F_q ∈ End(E).
- The *p*-th power Frobenius isogeny *F_p* : *E* → *E^σ* lifts to an isogeny *F_p* : *E* → *E^Σ*, with Σ the Frobenius substitution.

Conclusion: last property implies that the *j*-invariant of \mathcal{E} has to satisfy

 $\Phi_{\mathcal{P}}(j(\mathcal{E}), \Sigma(j(\mathcal{E}))) = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Canonical Lift: Lubin-Serre-Tate

- ► Let *E* be an ordinary elliptic curve over \mathbb{F}_q with *j*-invariant $j(E) \in \mathbb{F}_q \setminus \mathbb{F}_{p^2}$.
- Then the system of equations

$$\Phi_p(X,\Sigma(X)) = 0 \text{ and } X \equiv j(E) \pmod{p},$$

has a unique solution $J \in \mathbb{Z}_q$, which is the *j*-invariant of the canonical lift \mathcal{E} of *E* (defined up to isomorphism).

- ► Example: $\Phi_2(X, Y) = x^3 + y^3 x^2y^2 + 1488(Xy^2 + x^2y) 162000(x^2 + y^2) + 40773375XY + 874800000(X + Y) 157464000000000$
- When *j*(*E*) ∈ 𝔽_{*p*²}, then isomorphic to curve over 𝔽_{*p*} or 𝔽_{*p*²}, so can use simple enumeration.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Canonical Lift: Satoh's Algorithm

- ► To compute *j*(*E*) mod *p^N*, Satoh considered *E* together with all its conjugates *E_i* = *E^{σⁱ*} with 0 ≤ *i* < *n*
- Let F_{p,i} denote the p-th power Frobenius isogeny, then

$$E_0 \xrightarrow{F_{\rho,0}} E_1 \xrightarrow{F_{\rho,1}} \cdots \xrightarrow{F_{\rho,n-2}} E_{n-1} \xrightarrow{F_{\rho,n-1}} E_0.$$

Satoh lifts cycle $(E_0, E_1, \ldots, E_{n-1})$ simultaneously

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Canonical Lift: Weierstrass Model

E DQC

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given *j*-invariant $j(\mathcal{E})$ of the canonical lift of *E*, a Weierstrass model for \mathcal{E} is given by

$$\begin{array}{rll} p=2 & : & y^2+xy=x^3+36\alpha x+\alpha, & \alpha=1/(1728-j(\mathcal{E}))\\ p=3 & : & y^2=x^3+x^2/4+36\alpha x+\alpha, & \alpha=1/(1728-j(\mathcal{E}))\\ p>5 & : & y^2=x^3+3\alpha x+2\alpha, & \alpha=j(\mathcal{E})/(1728-j(\mathcal{E})) \end{array}$$

How to compute λ ?

- From before: the dual $\widehat{\mathcal{F}}_q$ of \mathcal{F}_q , then $\widehat{\mathcal{F}}_q^* \omega = \lambda \omega$
- The diagram implies

$$\widehat{\mathcal{F}}_{q} = \widehat{\mathcal{F}}_{p,0} \circ \widehat{\mathcal{F}}_{p,1} \circ \cdots \circ \widehat{\mathcal{F}}_{p,n-1}$$

• Consider $\omega_i = \omega^{\Sigma^i}$ for $0 \le i < n$ and let c_i be defined by

$$\widehat{\mathcal{F}}_{p,i}^*(\omega_i) = c_i \, \omega_{i+1},$$

- Conclusion: $\lambda = \prod_{0 \le i < d} c_i$
- Commutative squares are conjugates, so $c_i = \Sigma^i(c_0)$ and

$$\lambda = \operatorname{No}_{\mathbb{Q}_q/\mathbb{Q}_p}(c_0)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

How to compute c_0 ?

- ► Know equations of \mathcal{E}_0 and \mathcal{E}_1 , assume we know $\operatorname{Ker} \widehat{\mathcal{F}}_{p,0}$
- ► Vélu's formulas: compute an equation of *E*₁/Ker(*F*_{p,0}) and isogeny *v*₀
- Since $\operatorname{Ker}(\nu_0) = \operatorname{Ker}(\widehat{\mathcal{F}}_{\rho,0})$, there exists an isomorphism $\lambda_0 : \mathcal{E}_1 / \operatorname{Ker}(\widehat{\mathcal{F}}_{\rho,0}) \to \mathcal{E}_0$ that makes diagram commutative

・ 回 ト ・ ヨ ト ・ ヨ ト

How to compute c_0 ?

- Vélu's construction: choses holomorphic differential such that action of v₀ is trivial
- Conclusion: it is sufficient to compute the action of λ_0 on ω_0

Computing $\operatorname{Ker}(\widehat{\mathcal{F}}_{p,0})$?

- ▶ Note that $\operatorname{Ker}(\widehat{\mathcal{F}}_{\rho,0})$ is a subgroup of order ρ of $\mathcal{E}_1[\rho]$.
- ▶ Let $H_0(x)$ be $H_0(x) = \prod_{P \in (Ker(\widehat{\mathcal{F}}_{p,0}) \setminus \{\mathcal{O}\})/\pm} (x x(P))$
- $H_0(x)$ divides the *p*-division polynomial $\Psi_{p,1}(x)$ of \mathcal{E}_1
- Lemma: H₀(x) ∈ Z_q[x] is the unique monic polynomial that divides Ψ_{p,1}(x) and such that H₀(x) is squarefree modulo p of degree (p − 1)/2
- Need to modify Hensel since reduction mod *p* of H₀(x) not coprime with Ψ_{p,1}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

How to compute c_0 ?

- For p > 3, \mathcal{E}_1 has equation $y^2 = x^3 + a_1x + b_1$
- Vélu: $\mathcal{E}_1/\text{Ker}(\widehat{\mathcal{F}}_{p,0})$ has equation $y^2 = x^3 + \alpha_1 x + \beta_1$

$$\alpha_1 = (6 - 5p)a_1 - 30(h_{0,1}^2 - 2h_{0,2})$$

$$\beta_1 = (15 - 14p)b_1 - 70(-h_{0,1}^3 + 3h_{0,1}h_{0,2} - 3h_{0,3}) + 42a_1h_{0,1}$$

where $h_{0,k}$ is coefficient of $x^{(p-1)/2-k}$ in $H_0(x)$ λ_0 to $\mathcal{E}_0: y^2 = x^3 + a_0 x + b_0$ is $\lambda_0: (x, y) \rightarrow (u_0^2 x, u_0^3 y)$ with

$$u_0^2 = \frac{\alpha_1}{\beta_1} \frac{b_0}{a_0}$$

• Let $\omega_0 = dx/y$ then $\lambda_0^*(\omega_0) = u_0^{-1}\omega_{1,K}$ with $\omega_{1,K} = dx/y$

• Conclusion: $c_0 = u_0^{-1}$

イロト イポト イヨト イヨト

Satoh's Algorithm: Example

- Let p = 5, d = 7, $\mathbb{F}_{p^d} \simeq \mathbb{F}_p(\theta)$ with $\theta^7 + 3\theta + 3 = 0$
- Elliptic curve $E: y^2 = x^3 + x + a_6$

$$a_6 = 4\theta^6 + 3\theta^5 + 3\theta^4 + 3\theta^3 + 3\theta^2 + 3.$$

The j-invariant of canonical lift with precision 6 then is

 $J_0 \equiv 6949\,T^6 + 6806\,T^5 + 14297\,T^4 + 2260\,T^3 + 13542\,T^2 + 13130\,T + 15215,$

with $\mathbb{Z}_q \simeq \mathbb{Z}_p[T]/(G(T))$ and $G(T) = T^7 + 3T + 3$.

- Values for *a*, *b* of $\mathcal{E} : y^2 = x^3 + ax + b$
- $a \equiv 6981 T^6 + 8408 T^5 + 1033 T^4 + 8867 T^3 + 15614 T^2 + 3514 T + 675$
- $b \equiv 4654 \, T^6 + 397 \, T^5 + 5897 \, T^4 + 703 \, T^3 + 5201 \, T^2 + 7551 \, T + 450$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Satoh's Algorithm: Example

Polynomial H describing the kernel of F_p

 $\begin{aligned} T(x) &\equiv x^2 + (1395T^6 + 7906T^5 + 3737T^4 + 9221T^3 + 9207T^2 + 5403T + 7401)x \\ &\quad + 6090T^6 + 206T^5 + 5259T^4 + 7576T^3 + 3863T^2 + 8903T + 7926 \end{aligned}$

• Recover α and β as

- $\alpha \quad \equiv \quad 11086 T^6 + 2618 T^5 + 6983 T^4 + 13192 T^3 + 15324 T^2 + 13544 T + 10550 T^4 +$
- $\beta \equiv 4940 T^6 + 3060 T^5 + 14966 T^4 + 6589 T^3 + 7934 T^2 + 6060 T + 12470$

• Norm of $(\alpha b)/(\beta a)$ and taking the square root,

 $Tr(\varphi_q) = 433$ and $|E(\mathbb{F}_{p^d})| = 77693$

(ロ) (同) (三) (三) (三) (○)