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1. Algebraic Function Fields of One Variable

When we speak about a function field of one variable over a field K, we mean
a finitely generated regular extension F' of K of transcendence degree 1. We briefly
recall the definitions of the main objects attached to F'//K and their properties. See the
books [Cheb1] or [Sti93] for details. A more comprehensive survey can be found [FrJO8,
Sections 3.1-3.2].

A K-place of F is a place ¢: F — K U {oco} such that ¢(a) = a for each a € F.
A prime divisor p of F/K is an equivalence class of K-places of F. Let ¢, be a
place in that class, v, the corresponding discrete valuation of F'/K, and Fp the residue
field. The latter field is a finite extension of K which is uniquely determined by p up to
K-conjugation. We set deg(p) = [F}, : K]. A divisor of F/K is formal sum a = > kyp,
where p ranges over all prime divisors of F'//K, for each p the coefficient k, is an integer,
and k, = 0 for all but finitely many p’s. The degree of a is deg(a) = > k, deg(p).
The divisor attached to an element f € F* is defined to be div(f) = > v,(f)p, where
p ranges over all prime divisors of F//K. This makes sense, since v,(f) = 0 for all
but finitely many p’s. Further, one attaches to f the divisor of zeros divy(f) =
va(f)>0 vp(f)p and the divisor of poles div.(f) = _va(f)<0 vp(f)p. If f ¢ K,
the degrees of each of these divisors is equal to [F' : K(f)]. Hence, deg(div(f)) =
deg(divo(f)) —deg(divee(f)) = 0. If a = > kpp is a divisor of F'/K, we write v, (a) = k;
for each prime divisor p of F//K and note that v, (div(f)) = vy(f) for each f € F*.
Given two divisors a,b of F'/K, we write a < b if vy(a) < v,(b) for each prime divisor
p of F//K. Finally, one attaches to each divisor a a finitely generated vector space L(a)

over K consisting of all f € F with div(f) + a > 0 and write dim(a) for dim(L(a)).
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Note that f € L(a) if and only if divo(f) + a > divee(f). Since divo(f) and dive(f)
have no common prime divisors, the latter condition is equivalent to a > divy(f). If
a < b, then L(a) C L(b).

The Riemann-Roch theorem gives a nonnegative integer g, called the genus of
F/K, such that if deg(a) > 2¢g — 2, then dim(L(a)) = deg(a) + 1 — g. In the general
case dim(a) = deg(a) — 1 + g + dim(tv — a), where tv is a canonical divisor of F/K
[FrJ08, Thm. 3.2.1]. To this end recall that all canonical divisors of F'/K are linearly
equivalent (i.e. differ from each other by a divisor of an element of F'*), deg(w) = 2g—2
and dim(to) = g [FrJ08, Lemma 3.2.2].

As an example for the application of the Riemann-Roch theorem we consider a
function field F//K of genus 0 with a prime divisor p of degree 1. Since 1 > 2-0 — 2,
we have dim(L(p) = 2, so there exists x € L(p) ~ K. It satisfies p > dive(z). Hence,
1 <[F:K(z)] <deg(p) =1,s0 F = K(z) is a rational function field over K.

2. Curves

Let F/K be a function field of one variable. By assumption, F//K is a separably
generated extension, that is there exists x € F' such that x is transcendental over K
and F/K(x) is a finite separable extension. By the primitive element theorem, there
exists y € F with F' = K(z,y). Moreover, y can be chosen to be integral over K|[z].
Thus, there exists a polynomial f € K[X,Y] such that f(z,Y) = irr(x, K(y)). The
assumption that F/K is regular implies that f is absolutely irredicible. It defines an
absolutely irreducible affine plane curve I' that may be defined as a functor L ~» I'(L)
from the category of all field extension L of K to the category of sets given by

I'(L) = {(a,b) € L?| f(a,b) = 0}.

Writing f(X,Y) = 37, i 4ai; X'Y7 with d = deg(f), we may also consider the homo-
geneous polynomial f*(Xy, X1, Xs) = Zm.gd aing_i_in"Xg, of degree d. Associated
with f* is the projective plane curve I'*, where now

F*(L) = {(aozal:ag) S ]P)Z(L) | f*<a0,a1,a2) = 0}
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Here (ag:a;:a2) is the equivalence class of all nonzero triples (af, ab, as) for which there
exists ¢ € L* satisfying (a, ab,a5) = (cay, caz, cas).

A point (a,b) of I'(L) (also called an L-rational point of I') is simple if
aa—gz(a,b) # 0 or g—){(a,b) # 0. Likewise, an L-rational point a = (agp:a;:a2) is sim-
ple if gix*i(a) =# 0 for at least one i between 0 and 2. The advantage of a simple point
over singular (=nonsimple) points is that its local ring

Or-a = {850 g € K[Xo X2, X
are homogeneous of the same degree and h(a) # 0}
(assuming that ag # 0) is a valuation ring of F'. If L = K, then the local ring corresponds
to a K-rational place ¢, (with a = ¢,(1,z,y)), so to a prime divisor p, of degree 1.

The curve I'* has two more affine open subsets I'y,I's with coordinate rings
K [%, 1, %} and K [%, %,1], respectively. They have the same function field F' over
K as I'. The three affine pieces I',I'1, s together cover T'.

The curve I'* has only finitely many singular points. In an attempt ‘to get rid
of them’, we first consider the integral closure K|z, y|" of K[z,y| in F. It is a finitely
generated ring over K|[x,y], so has the form Klz,...,x,] for some z;,...,2, € F.
Assuming that K is perfect (e.g. char(K) = 0 or K is finite), then every local ring
of K[x1,...,x,] is a valuation ring. Thus, K|z1,...,z,] is the coordinate ring of a
smooth affine curve A in A™. Similarly, it is possible to normalize I'; and I's to affine
smooth higher dimensional affine curves A; and A,. Finally, one patches A, Ay, and
A, together to obtain a projective normalization A* of A. The curve A* has the same
function field as A and there is a surjective morphism 7: A* — A.

The advantage of the projective smooth model A* of F/K on A is that every
K-place ¢ of F gives rise to a point a € A*(K) (where K denotes the algebraic closure
of K) whose local ring is the valuation ring of ¢. This gives a bijective correspondance
between A*(K) and the set of prime divisors of F/K of degree 1. In particular, A*(K)
bijectively corresponds to the set of prime divisors of FK / K. Tt follows that the group
Div(FK/K) of divisors of FK/K is isomorphic to the free additive Abelian group

Div(A*) generated by the points in A*(K). The subgroup of all K-rational divisors of
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A* (i.e. those that are fixed by Gal(K) = Gal(K/K)) is isomorphic to Div(F/K).

3. Elliptic Curves and Jacobians

As before, let F' be a function field of one variable over a field K (that we assume to be
perfect whenever necessary) and let C' be a smooth projective model of F//K such that
C(K) # (. We choose a point o € C(K).

First we consider the case where g = genus(F/K) = genus(C') is 1. Then there
is a bijective correspondance, p — [p — o] between C'(K) and the set of equivalence
classes (modulo principal divisors) of divisors of degree 0. For example, if a is a divisor
of degree 0, then, by Riemann-Roch, dim(L(a 4+ o)) = 1, so there exists f € F* with
div(f) + a+ o > 0. Since the degree of the left hand side is 1, there exists p € C(K)
such that div(f) + a+ o = p. In other words, [a] = [p — o]. Thus, our map is indeed
surjective.

The set of equivalent K-rational classes of C of degree 0 forms a group. It is
therefore possible to apply the bijective correspondance of the preceding paragraph to
define addition on C'(K') making it an additive Abelian group with o as the zero point.
Anothe application of Riemann-Roch shows that three points py, p2, ps € C(K) lie on
the same line if and only if p; + p2 + p3 = 0 (in the group C(K)).

Another application of the Riemann-Roch theorem allows us to choose C as a
projective plane curve (called an elliptic curve) defined by one homogeneous equation

of degree 3. If char(K) # 2,3, that equation can be chosen to be
X3 = XoX? + AX2X, + BX{,

where A, B € K satisfy 442 +27B3 # 0 and o = (0:1:0). The geometric rule of addition
on C(K) leads to explicit formulas of addition and negation that are often used for
computations.

In the general case, where g > 1, there is a smooth projective variety J (called
the Jacobian of C') of dimension g defined over K with two morphisms J x J — J

and J — J, also defined over K, making J(K) an additive Abelian group such that

the first morphism gives the addition and the second one gives the negation. Thus, J
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is an Abelian variety. In addition, there is a unique rational morphism ~: C' — J
defined over K satisfying v(o) = 0 and having the following universal property: If « is
a rational map of C into an Abelian variety A defined over K such that (o) = 0, then
there exists a unique morphism map (3: J — A such that a = fo~.

One proves that the image v(C) is Zariski closed in J, the map v: C(K) — J(K)
is injective, and the set v(C(K)) generates J(K). The map -y extends linearly to a

homomorphism 3: Div(C) — J(K) (that is (>, kipi) = > kiv(pi)). A theorem
of Abel says that the restriction Gy of 3 to Divg(C') gives a short exact sequence:

0 — div((FK)*) — Divo(C) 2% J(K) — 0.

Finally we note that when g = 1, J coincides with the elliptic curve C' equipped with

the addition law described above. In this case, «v is the identity map.

4. Zeta Functions

The Riemann zeta function is defined for each complex number s with Re(s) > 1 by the

convergent series:
=1
((s)=) v
n=1

Its relation to number theory goes over the Euler product:

R et

p

where p ranges over all prime numbers. The zeta function satisfies a functional equation
that extends the definition of {(s) to a meromorphic function in the whole complex plane.
One of the most intriguing open questions in Mathematics is the Riemann Hypothesis:
If ((s) = 0 and Re(s) > 0, then |s| = 3. The Riemann Hypothesis has legion of
applications.

Likewise one defines a zeta function for a function field F' of genus g over a finite

field K of g elements.
1
Cryc(s) =) Nas

a>0



where Re(s) > 1, a ranges over all nonnegative divisors of F/K, and Na = ¢4°&(®), The

C ( ) H — S
/ 1 Np ’

where p ranges over all prime divisors of F/K.

It is usefull to make a change of variables ¢t = q—*

Z(t) =" ti&®

a>0

in order to get a Zeta function:

that converges for |t| < ¢~!. If we write A,, for the number of nonnegative divisors of

F/K of degree n, we may rewrite Z(t) as a power series:
o0
Z(t)=> Ant™.
n=0

In particular, A; is the number of prime divisors of F//K of degree 1. We set N = Aj;.

It turns out that Z(t) is a rational function:

L(t)
1-t)(1—qt)’

where L(t) = ag + ait + - - + as4t?9 € Q[t]. Here ag = 1 and a; = N — (¢ + 1). Thus,

Z(t) =

Z(t) has two poles at t = 1 and t = ¢~ !. The zeros of Z(t) are the zeros of L(t).
Writing their inverses as wy, . .., wa,, we find that L(t) = H?il(l —w;t). One version of

the Rieman Hypthesis for F'//K asserts that

(1) \wi| = /4, i=1,...,2g.
It was proved by André Weil in 1948 and reproved with elementary methods by Bombieri
[FrJ08, Chapter 4]. Condition (1) is equivalent to the statement that the zeros of

Cr/k(s) lie on the line Re(s) = % Thus, the Riemann Hypothesis holds for (p/ k.

Another extremely important consequence of (1) follows from the observation that a; =

2
- Ziil Wi

(2) N —(¢+ 1] <294
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As an application of (2) consider an absolutely irreducible polynomial f € F,[X,Y]
of degree d. Let I' be the affine plane curve defined by f(X,Y) = 0. Then

(8) g+l (d-1)(d-2y7-d<[T(F) <q+1+(d—1)(d -2V

It follows that if ¢ is sufficiently large (in fact, if ¢ > (d — 1)%), then I'(F,) # 0.
Consequently, if M is an infinite extension of F,, then M is PAC, that is every absolutely

irreducible variety defined over M has an M-rational point.

5. l-adic Representations

Consider an Abelian variety A of dimension g over a field K. Let n be a positive integer
with char(K) {n. Then A, (K) = {a € A(K)| na =0} is an Abelian group isomorphic
to (Z/nZ)?9. In particular, for each prime number [ # char(K) and every positive
integer i, we have Ay (K) = (Z/1'Z)%9. The map a — la is an epimorphism of A1 (K)
onto A (K). Thus, we may pass to a limit to get 7; = T;(A) = lim A & ng. The free
Z;-module T; is called the Tate-module of A. Tensoring with QQ; gives a vector space
Vi =T, ®z, Q; over Q; of dimension 2g.

Now note that Gal(K) leaves each A;i (K) invariant. The action of Gal(K) com-
mutes with multiplication by [, so it induces an action of Gal(K) on 7;. Choosing a

Zj-basis of T;, this action leads to the [-adic representation
pPl: Gal(K) — GLQQ(Zl)

of Gal(K) associated with A.

Next we turn our attention to the case where K is the field IF, of ¢ elements. Let
4 be the Frobenius automorphism of IF‘q defined by ¢, (z) = z9. As in Section 3, we
consider an absolutely irreducible curve C' defined over F, of genus g > 0 having an
[F, rational point o. Let J be the Jacobian variety of C. Then ¢, acts on C (Fq) and

on J(F,). The latter action makes ¢, an endomorphism of J defined over F,. As such
J(Fy) = Ker(idy — ¢4) and |J(F,)| = deg(ids — ¢4) [Mum?74, p. 180, Thm. 4].
Considering ¢, as an element of Gal(FF,), hence also as an element Aut(V;), we

have for each prime number [ relatively prime to ¢ the characteristic polynomial of
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Pl(SOq):
X(t) = xc(t) = det(id - t — @)

It is a monic polynomial of degree 2g with coefficients in Z;. Indeed, x(t) does not
depend on [ and its coefficients are in Z. Moreover, x;(1) = det(id; — ¢q) = |J(Fy)|.

Finally let L(t) be the nomerator of the Zeta function descdribed in Section 6. It
turns out that L(t) = t29x (1), so L(1) = |J(F,)|.
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