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Chapter 1

Crypto Primitives and
Protocols

1.0.1 Preambula

To ensure a safe environment for data exchange and data storage is a very
complex task involving problems from quite different areas like engineering
and computer science but also “human factors” and legal problems, and as
a small but crucial component, mathematics. It is the task of mathematics
to provide the particles called crypto primitives around which cryptographic
protocols are developed. To estimate the security of these protocols is a
difficult problem which is impossible if one cannot trust the primitives.

In the following lecture we shall try to discuss one special but most impor-
tant family of crypto primitives based on the discrete logarithm problem in
groups. We shall describe how deep methods from arithmetical geometry
and especially the interaction between Galois theory and algebraic geometry
over special fields can be used to construct them and to give estimates (or
hints) for their reliability.

The basic ideas go back to Diffie and Hellman. The main aim is the construc-
tion of a function f mapping the natural numbers N (or, in practice, a finite
subset of N) to a finite set A of N satisfying some “functional equations” and
with the most important properties:

• The function f can be evaluated rapidly at every element of N but

5



6 CHAPTER 1. CRYPTO PRIMITIVES AND PROTOCOLS

• for randomly chosen y ∈ A the effort needed to compute x ∈ N with
f(x) = y is very large, in the ideal case the brute force method “ TRY”
should be the best strategy.

So we have to find functions f together with algorithms to evaluate them
with a proven small complexity, and we have to estimate the probability for
finding the inverse images by proposing possible “attacks”. In contrast to the
first task in almost all cases the second one cannot be solved in a satisfactory
way. What we can get are estimates for this complexity from above which
will lead to reject some functions f and the statement that “ to our best
knowledge” other functions are safe “in the moment”.

Since the security of the whole crypto system depends on this rather vague
statement we would feel much better if we could use for f a one way function
in the sense of information theory, or a trap door one way function (for the
definition cf. [21]).
But since we even don’t know whether such functions exist we have to use
what we have and to be very sensitive to new developments in technology
( e.g. “quantum computers” (cf. [26])) and to new results in mathematics.
We refer to the rather spectacular progress in recent years in factorizing
numbers (by sieve methods in number fields), in counting points on curves
over finite fields (cf. [1] and the references therein) and in applying index-
calculus methods to Discrete Logarithm Systems ([14] and [7]).

1.0.2 Exponential and Discrete Logarithm Systems

Let A be a finite subset of N. For normalization reasons we shall assume
that 1 ∈ A.
Let

e : N× A → A

be a function satisfying a functional equation:
For all n1, n2 ∈ N one has

e(n1, e(n2, 1)) = e(n1 · n2, e(1, 1)).

This is enough to organize a key exchange:
Two parties M1,M2 want to agree on a common secret key based on e. The
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communication uses a public channel.

Key exchange scheme: 1

i) Mi chooses (as randomly as possible) a number ni which never leaves the
secure environment of Mi.

ii) Mi sends yi := e(ni, 1).

iii) M1 computes e(n1, y2), M2 computes e(n2, y1).

Since

e(n1, y2) = e(n1, e(n2, 1)) = e(n1n2, e(1, 1)) = e(n2, e(n1, 1)) = e(n2, y1)

M1 and M2 share the common key

S = e(n1n2, e(1, 1)).

It is obvious that the secrecy of S depends on the secrecy of ni and so on the
difficulty to compute ni from the knowledge of yi = e(ni, 1).

So we assume that the function e(n, a) as function of the first variable behaves
like a one way function. Then we call

(e : N× A → A; e(1, 1))

an exponential system with base point e(1, 1).

For many applications one needs more “structure”. For instance the signature
of a message m can use a scheme of ElGamal type if we have a rapidly
computable function

⊕ : A× A → A

which we require to be associative. In other words we require that A is a
semigroup.

Using this associativity we define in the usual way for n ∈ N and a ∈ A

n ◦ a

as the n− 1 fold application of ⊕ to a.

1We do not go into details of how this protocol has to be refined in order to become as
secure as its primitive, the function e.
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Remark 1.0.1 Of course the actual computation of n◦a uses the well known
method of (for instance) developing n in the binary system and then “adding
and doubling” accordingly. This bounds the number of compositions ◦ by 2 log
n. Several variants can be used to accelerate and sometimes precalculations
speed up even more.

Use this to define
e : N× A → A

by
e(n, a) := n ◦ a.

Obviously the function e satisfies the functional equation:
For all n1, n2 ∈ N , a ∈ A we have

e(n1, e(n2, a)) = e(n1n2, a)

and especially
e(n1, e(n2, 1)) = e(n1n2, e(1, 1)).

Signature

Let e be as above.
e satisfies a second functional equation

e(n1, a)⊕ e(n2, a) = e(n1 + n2, a).

This equation is used for signature schemes of El Gamal type. We shall give
one variant:

Aim: M wants to sign a message m in such a way that everybody can check
the authenticity of m but no one can fake the contents of m or the name of
M .

To initialize the system M chooses, again randomly and secretly, his private
key x ∈ N and publishes his public key Y := e(x, 1).
This number Y identifies M in public.

Signing a message M uses, in addition to the DL-system, a (publicly known)
hash function h which maps N to a set of numbers of bounded size. It has
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to have properties similar to those of one way functions. Especially it has to
be impossible in practice to construct a number z such that h(z) is a given
value. (For hash functions cf. [21].)

Signature 1 M chooses a second random number k and computes

s := h(m)x + h(e(k, 1))k.

The signed message consists of

(m, e(k, 1), s)

To check the authenticity of (M, m) one computes

S = e(s, 1), P = e(h(m), Y )), H = e(h(e(k, 1)), e(k, 1)).

Now the functional equations of e imply:

S = P ⊕H

if the signature is authentic. Otherwise it is rejected.

It is obvious that the security of the signature depends on the quality of
e(., 1) as one-way function, but it is easily seen that this is not enough.

Logarithms

Definition 1.0.2 The notation is as above.
For given a in A and b ∈ {n ◦ a, n ∈ N} the logarithm of b with respect
to a is a number loga(b) := nb ∈ N with nb ◦ a = b.

Complexity Hierarchy

To have a more precise statement on the complexity of algorithms we measure
it by the function

Lp(α, c) := exp(c(log p)α(log log p)1−α)



10 CHAPTER 1. CRYPTO PRIMITIVES AND PROTOCOLS

with 0 ≤ α ≤ 1 and c > 0.

The best case for a cryptosystem is α = 1 – then one has exponential com-
plexity, this means that the complexity of solving the DLP is exponential in
the binary length of the group size log p. The worst case is when α = 0 – then
the system only has polynomial complexity. For 0 < α < 1 the complexity is
called subexponential.

Definition 1.0.3 The notation is as above. Let C be a positive real number.

(⊕ : A× A → A, 1)

is a Discrete Logarithm System (DL-systems) of exponential se-
curity C if for random elements a, b ∈ A the computation of loga(b) has
(probabilistic) complexity 2 ≥ eC·log(|A|).

So DL-systems with exponential security C with C not too small give rise to
exponential systems. We hope that we can find DL-systems with exponential
security 1/2.

But there are important examples which have only sub exponential security.
This does not mean that we cannot use these systems but we have to choose
larger parameters.

1.0.3 Algebraic DL-Systems

Let (G,×) be a finite group.
For our purposes the way how to present the group elements and the com-
position law is essential.

Definition 1.0.4 A numeration (A, f) of G is a bijective map

f : G → A

where A is a finite subset of N containing 1.
A presentation of an abstract finite group G is an embedding of G into a
group with numeration.

2In the whole paper the measure for complexity is the number of needed bit-operations.
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Assume that (A, f) is a numeration of the finite group G and that g0 ∈ G
with f(g0) = 1 is given.

Define
⊕ : A× A → A

by
a1 ⊕ a2 := f(f−1(a1)× f−1(a2)).

Then for n ≥ 1 we have

e(n, a) = f(n ◦ f−1(a))

as one sees easily by induction.
Especially we get: e(n, 1) = f(n ◦ g0).

We want to make one thing completely clear: We require that ⊕ is rapidly
computable without the knowledge of f−1 and that we can think of G as an
abstract group (i.e. we look at it up to isomorphisms) but the security and
the efficiency of the DL-System based on ⊕ will depend crucially on f .

We can refine our signature scheme 1:

Signature 2 Let n be the order of G. Let (A, f) be a numeration of G and
e(., .) as above. The signature procedure of a sender M and a message m is
as described in Subsection 1.0.2 except that we replace in the equation of 1
all numbers by their smallest positive residue modulo n:
The signature of m given by M is (m, e(k, 1), s) with

s ≡ h(m)x + h(e(k, 1))k mod n

and x, k, s, h(.) ∈ {0, · · · , n− 1}.

1.0.4 The Diffie-Hellman Problems

Computational Diffie-Hellman problem
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For random a ∈ A to compute

loga0
(a) (CDH)

is hard.
For many applications an even stronger condition is needed:
Decision Diffie-Hellman problem

For random triples (a1, a2, a3) decide whether

loga0
(a3) = loga0

(a1) loga0
(a2).

(DDH)

1.0.5 Examples

Example 1:

We take a prime number p and the set G := Z/p together with its addition.
Hence we deal with “the” group with p elements.
As numeration we take the map

f : G → {1, · · · , p}

given by

f(r + pZ) := [r]p

where [r]p is the smallest positive representative of the class of r modulo p.
The function ⊕ is given by

r1 ⊕ r2 = [r1 + r2]p

which is easy to compute from the knowledge of ri.

What about security? We can assume that a ∈ {1, · · · , p − 1} and b =
e(n, a) = [na]p. To determine n we have to solve the equation

b = na + kp
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with k ∈ Z. But by using the Euclidean algorithm this task is done in
O(log(p)) operations in Z and so n is computed very rapidly. Hence the
complexity to compute the DL is polynomial (even linear).
We can generalize the example easily to subgroups in the additive group of
fields of characteristic p or to subspaces of vector spaces over Z/p.

Example 2: Again we take G = Z/p. In addition we choose a prime q such
that p divides q − 1. As it is well known this implies the existence of an
element ζ 6= 1 in Z/q with ζp = 1 (i.e. ζ is a primitive p-th root of unity).
Now define for 1 ≤ i ≤ p the number zi := [ζ i]q and for ī = i + pZ ∈ G

f (̄i) := [zi − z1 + 1]q.

Then f defines an injection of G into {1, · · · q} with f(1 + pZ) = 1. Let A
denote the image of f .

Using the addition in G we get for ai = f(xi + pZ) ∈ A

a1 ⊕ a2 = [[ζx1+x2 ]q − z1 + 1]q.

As stressed above it is important that one can compute a1 ⊕ a2 without
knowing x1 and x2. For this purpose we use the rules for addition and
multiplication in Z/p and get:

a1 ⊕ a2 = [(a1 + z1 − 1)(a2 + z1 − 1)− z1 + 1]q

and
e(n, 1) = n ◦ 1 = [zn

1 − z1 + 1]q.

What about security in this system? For fixed a and random b ∈ A we have
to find n in N with

b = e(n, a) = n ◦ a = [an − z1 + 1]q.

Essentially this means that for one fixed p-th root of unity and one random
p-th root of unity in the multiplicative group of Z/q one has to determine
the exponent needed to transform the fixed root of unity into the random
element. This explains the name “discrete logarithm” introduced above.
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Indeed to our knowledge at present a system based on this numeration is quite
safe though for all constants C there is a number p0 such that for all primes
p ≥ p0 the corresponding DL-system it not of exponential security C. The
best known method to compute the discrete logarithm is “subexponential”
(cf. [1]). The suggested size of p is at least 2048 bits.

1.0.6 Generic Systems

In the examples in the last subsection we already had more structure available
than necessary for us: The set A was the image of the numeration f of a
finite cyclic group G. This will be so in the following sections, too.

This seems to be reasonable: The part of the numeration we use for key
exchange and signatures is given by the numeration of the group generated
by f−1(1). But it would be interesting to study whether one can win security
by generating this numeration by a more complicated group like a general
matrix group.

Next we used in the signature scheme 2 the order of G. There are crypto
systems which are based on the assumption that one cannot compute this
order or that one can compute it only by using a secret trapdoor function
(RSA-like systems). Here we do not enter into these very interesting discus-
sions but assume that the order of G and even its prime factorization are
given.
An easy application (by some people called “Pohlig-Hellman attack”) of the
Chinese remainder theorem and p-adic expansion shows that the security of
the discrete logarithm attached to G and so a forteriori of the cryptographic
schemes is reduced to the difficulty to compute the DL in the subgroups of
G with prime order. Hence we have to restrict ourselves to cyclic groups of
order p where p is a prime number which is sufficiently large.

We can formulate the mathematical task to be solved more precisely now:
We have to find numerations f of groups Z/p with p large enough which
satisfy:

• Time needed (probabilistically) for the computation of the logarithm
in f(Z/p) is exponential in log(p).
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• Time needed to write down the elements and to execute the composition
⊕ is polynomial in log(p).

But having decided to use the algebraic structure “group” in the construction
of the crypto primitive “DL” we have added a lot of structure to our system.
So it is important which methods are available to attack crypto systems which
use “just” groups and the resulting DL-problems. For a very interesting
discussion of different types of information which can weaken the protocols
we refer to [19].
Of course the worst case is that the discrete logarithm can be computed.
Here the amazing fact is that we can do much better than brute force attacks:
The Baby-Step-Giant-Step method of Shanks as well as the ρ- and Λ-methods
of Pollard work in every finite group. All of them have time-complexity
O(p1/2) and the methods of Pollard need very little storage space (for more
details cf. [21]).

These attacks give a first upper bound for the optimal exponential complexity
of the Discrete Logarithm in finite groups: The constant C = 1/2 is the best
one can hope for, and so we are forced to choose p of a size near to 1080

instead of 1040.

1.0.7 The Index-Calculus Attack

In reality we shall have to use a concrete presentation of our group. In many
examples there are elements in G which are easier to deal with, and this gives
rise to the index-calculus attack.

The principle of index-calculus methods in abelian groups G is to find a
“factor base” consisting of relatively few elements and to compute G as
Z−module given by the free abelian group generated by the base elements
modulo relations.
As next step one has to prove that with high probability every element of G
can be written (fast and explicitly) as a sum of elements in the factor base.
The important task in this method is to balance the number of elements in
the factor base to make the linear algebra over Z manageable and to guaran-
tee “smoothness” of arbitrary elements with respect to this base. Typically
successes give rise to algorithms for the computation of the DL in G which
have subexponential complexity and so, for large enough order of G, the
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DL-systems have a poor exponential security.

The effectiveness of this approach is the reason for the large numbers of bits
required for safe RSA-systems and for DL-systems based on the multiplicative
group of finite fields (Example 2 in the Subsection 1.0.5).

In [7] one finds a very nice discussion of the index-calculus attack in a rather
general frame. The results found there explain why it is so effective in many
cases.

1.1 Bilinear Structures

1.1.1 Definition

Let (A, ◦) be a DL-system.

Definition 1.1.1 Assume that there are abelian groups A′, B and a map

Q : A× A′ → B

satisfying the following requirements

• Q is computable in polynomial time (this includes that the elements in
B need only O(log | A |) space)

• for all n1, n2 ∈ N and random elements a1, a
′
2 ∈ A× A′ we have

Q(n1 ◦ a1, n2 ◦ a′2) = n1 · n2 ◦Q(a1, a
′
2)

• Q(., .) is non degenerate. Hence, for random a′ ∈ A′ we have Q(a1, a
′) =

Q(a2, a
′) iff a1 = a2 .

Then we call (A,Q) a DL-system with bilinear structure.
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Remark 1.1.2 One is used to describe bilinear maps on free modules by
matrices with entries equal to the values on pairs of base vectors. This does
not help in our context. For instance take A = B as cyclic group with n
elements and generator P0 and C := Z/n.
For m ∈ Z prime to n define

Qm : A× A → Z/n

by Qm(P0, P0) := m + nZ.
Without further information the computation of Qm(P, Q) is equivalent with
the Discrete Logarithm in A. So bilinear maps are easy to be defined but it is
much more difficult to find DL-Systems with bilinear structure. As we shall
see one possibility is to use Duality Theorem from Arithmetic Geometry.

Example:

1.)Let V be a vector space over Fp with bilinear map φ which maps V × V
to a Fp vector space W .
Take a0 ∈ V , A =< a0 > and

< a0 >⊥:= {v ∈ V with φ(a0, v) = 0V }.
Take a′0 ∈ V \ < a0 >⊥, A′ :=< a′0 >, B := φ(< a0 >,< a′0 >) und
Q = φ|A×A′ .

2.) A little more general:
Let ϕ : V → V ′ be a (computable(!)) linear map and

φ′ : V × V ′ → W

bilinear. Define
φ := φ′ ◦ (idV × ϕ)

and then proceed as in example 1.

1.1.2 Applications

In the following we always assume that the DL-system (A, ◦) has a bilinear
structure

Q : A× A′ → B.
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Transfer of DL

The DL-system (A, ◦) is at most as secure as the system (B, ◦).

For take random a′ ∈ A′

and denote b0 := Q(a0, a
′).

Then the map

< a0 >→< b0 >

a := n ◦ a0 7→ Q(a, a′)

is a monomorphism of numerated groups, and the claim follows.

DDH

Assume that

A = A′

and hence

Q(a0, a0) 6= 0.

Then for all triples (a1, a2, a3) ∈< a0 > one can decide in polynomial time
(in log(p) whether

loga0
(a3) = loga0

(a1) · loga0
(a2)

holds. For we can use the identities

Q(a1, a2) = loga0
(a1) · loga0

(a2)Q(a0, a0),

Q(a3, a0) = loga0
(a3)Q(a0, a0).
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Tripartite Key Exchange

The following is a nice idea of A. Joux (ANTS 4).
Parties P1, P2, P3 want to create a common secret.
We assume that we have A with bilinear structure Q on A× A.
Each partner Pi chooses a secret number si and publishes

ai := si ◦ a0.

Hence every partner can compute

s1 ◦Q(a2, a3) = s2 ◦Q(a1, a3) = s3 ◦Q(a1, a2),

the common secret. (Semantical) Security needs

1. hardness of the (computational) DL problem in A

2. hardness of the following problem called Bilinear Diffie-Hellman-Problem
(BDH):
For (a, a1 = n1 ◦ a, a2 = n2 ◦ a, a3 = n3 ◦ a) compute
n1n2n3 ◦Q(a, a).

Identity based Protocol

This is an old dream (of Shamir):
One wants to send an encrypted message to a certain person without build-
ing up a public key environment but by the use of one’s identity and
some trusted institution TA which computes a secret key and the related
public one (and the public key does not give information about the identity!)

We shall assume that A =< a0 > and A′ = A.

We shall explain an idea of Franklin and Boneh: how to use it to come
nearer to the dream. We have a sender Q who wants to transmit a message
m to the receiver P . We shall assume that m ∈ (Z/2)n.
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Q uses the service of TA.

Setup:
There are two publicly known hash functions

G : N→ A

and
H : B → (Z/2)n.

TA chooses s, the master key, and publishes apub := s ◦ a0.
Generation of keys:
P sends (after authentification) an element ID ∈ (Z/2)n representing his
identity to TA.
P (or TA, or the sender) computes

aID := G(ID) ∈ A

and then as
“public key” of P

bID := Q(aID, apub).

TA generates the “private key”

sID := s ◦ aID

of P .

Encryption:
The message is m ∈ (Z/2)n.
Q chooses r randomly and computes
r ◦ a0 and r · bID

and sends the ciphertext
C := (r · a0,m⊕H(r · bID)).
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Decryption:
Let (U, V ) be a cyphertext.
P computes
T := H(Q(sID, U)).
Then m = V ⊕ T .

Proof:
Since V = m⊕H(r · bID) we have to show that Q(sID, U) = r · bID.
But

Q(sID, U) = Q(s ◦ aID, r · a0)

= rsQ(aID, a0) = r ·Q(aID, s ◦ a0) = r · bID.

(Semantical) Security
needs again the hardness of (BDH).

Work to do:
Assume that TA has done the original setup and has published
A,B,Q, G, H, a0, apub.
To serve P it has to perform one scalar multiplication in A (with fixed argu-
ment a0).
The sender has to compute bID by one application of Q with one argument
(= apub) independent of P ,one scalar multiplication in A of a fixed element
(a0) and one scalar multiplication in B with argument depending on ID.
P has to get his private key from TA and to compute Q (with one argument
independent of the message and the sender).
In all cases precomputation is possible to accelerate the computation.
Advantage:
For the sender: He can send a message to a receiver who does not have a
public key system before. (But he has to be sure that there is a TA which
will communicate with P .)
For the receiver P : He has not to have a public or private key but only a
ID before a message comes. So for instance TA could become active after a
message arrives.
Big disadvantage:
TA knows everything since it has the master key s.
One case is interesting:
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P is his own TA and creates different public keys with one master key and
different identities, e.g. on laptops.

”The Gap”

The last application we mention is the construction of DL-systems in which
(DDH) is weak (of polynomial complexity) but (CDH) is believed to be
subexponentially hard.
The groups are points of order ` in supersingular elliptic curves E over fields
Fq of odd degree over the prime field. The curves E have to be chosen in
such a way that the order of E/(Fq) is not a smooth number.
Explicit examples have been given by A. Joux and K. Nguyen.



Chapter 2

Duality in Arithmetic

2.1 Dual Groups

2.1.1 Pairings in the world of functions

Let S be a (non-empty) set and C an abelian group.

F (S,C) := {f : S → C}
becomes, in a natural way, an abelian group, and the evaluation map

S × F (S, C) → C

is non-degenerate and Z-linear in the second argument.1 The group F (S, C)
is in a natural way isomorphic to CS.
The restricted product C(S) consists of all functions g0 with the property
that g0(s) = 0C for almost all s ∈ S.
It is obvious that C(S) is a subgroup of F (S, C).

Example 2.1.1 Z(S) is the group of functions g0 from S to Z for which
g0(s) = 0 for almost all s ∈ S.
S is embedded into Z(S) by sending s to fs with f−1(1) = {s} and f−1(0) =

1In many contexts both S and C are endowed with a topology. In this case we tacitly
assume that all functions are continuous.

23
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S \ {s}.
Z(S) is the free abelian group generated by S.

A function f from S to C can be extended “linearly” to Z(S) to by

F : g0 7→
∑
s∈S

g0(s) ◦ f(s).

Then F ∈ Hom(Z(S), C)).
We get the pairing

Q : Z(S) × F (S, C) → C

by

Q(g0, f) 7→ F (g0) =
∑
s∈S

g0(s) ◦ f(s).

An important special case is that C = Z.
For fixed f ∈ F (S,Z) we define

degf : Z(S) → Z

by

degf (g0) := Q(g0, f) =
∑
s∈S

g0(s)f(s) = F (g0).

Take f ≡ 1. In this case we denote degf by deg and its kernel by Z(S)0, the
subgroup of elements of degree 0.

2.1.2 Pairings in the World of Homomorphisms

Now assume that S is an abelian group.
By restricting from F (S,C) to Hom(S, C), the group of homomorphisms
from S to C the evaluation map gives rise to a map

D : S ×Hom(S, C) → C.

D is a pairing that is non-degenerate in the second argument.
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The algebraic duality theorem

Take C = R/Z with the discrete topology.
Functions from S to R/Z are continuous if they are locally constant. For a
homomorphism from S to R/Z this means that its kernel is open.
Example:
If S is compact then a function is locally constant iff its image is finite.

The (topological) group Hom(S,R/Z) is called the Pontryagin dual S∗ of S.
If S is locally compact (finite) then S∗ is locally compact (finite).
If S is compact then S∗ is discrete.
The group R/Z has a very special property: It is an injective Z-module.
For injective

ι : S1 ↪→ S

the restriction map

ι∗ : Hom(S,R/Z) → Hom(S1,R/Z)

is surjective.
Consequence: The pairing

D : S × S∗ → R/Z

is non-degenerate in both variables.
We have an embedding of S into (S∗)∗, and if S is compact (finite) then S ∼=
(S∗)∗in a canonical way (by evaluating functions).

2.2 Arithmetical Duality

Let K be a field of characteristic p ≥ 0.
For simplicity we shall assume in the following that group orders are prime
to p.
Let Ks be the separable closure of K and GK = AutK(Ks) the absolute
Galois group of K. This is a topological group with profinite topology and
hence it is compact.
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A Galois module M is a discrete Z-module with continuous GK-action. In
particular, this implies that

M =
⋃
U

MU

where U runs over subgroup of G which have finite index. The Galois module
M determines a functor

M : { fields between K and Ks}
7→ { Abelian groups }

sending L to MGL .

Example 2.2.1 Take M = K∗
s .

The corresponding functor is called Gm.
It has a further nice property: It is representable.
This means: There is a scheme,also denoted by Gm, defined over K such that
for commutative algebras R over K we have

Gm(R) = R∗, the group of

invertible elements in (R, ·).
It is the spectrum of the coordinate ring

K[X, Y ]/(XY − 1).

This example is generalized in the following way.
Assume that A is a commutative group scheme defined over K.
Then A = A(Ks) is a GK-module. Caution: In general, A is not determined
by A(Ks).

But this is so if A is smooth (i.e. reduced).
If A is a finite commutative group scheme with order prime to p then it is
smooth and even étale over K.

Remark 2.2.2 A finite Galois module is always represented by an (affine)
étale commutative group scheme, and conversely, the Ks-rational points of a
finite étale commutative group scheme are a finite Galois module.
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Remark 2.2.3 Let A,B be GK-modules. Then

Hom(A,B)

is a GK-module in a natural way: For ϕ ∈ Hom(A,B) and σ ∈ GG define

σ(ϕ) = ϕσ := σ ◦ ϕ ◦ σ−1.

The subgroup of GK-invariant homomorphisms (ie σ ◦ ϕ = ϕ ◦ σ) is denoted
by HomK(A,B).
If A,B are étale group schemes defined over K we denote by Hom(A,B) the
homomorphisms of the group schemes.
To

φ ∈ Hom(A,B)

there is associated a homomorphism

ϕ : A(Ks) → B(Ks)

in HomK(A(Ks), B(Ks)).
For finite étale commutative group schemes and all fields L between K and Ks

we get a one-to-one correspondence between Hom(AL,BL) and HomL(A(Ks), B(Ks)).

Galois Duality

A pairing between the GK-modules A,B in a GK-module C is a Z-bilinear
map

Q : A×B → C

with
Q(σ ◦ a, σ ◦ b) = σQ(a, b)

for all (a, b, σ) ∈ A×B ×GK .

The key example is that C = K∗
s and B = Hom(A,K∗

s ) := Â, the Cartier
dual of A.

Theorem 2.2.4 The evaluation pairing A × Â → K∗
s is a non-degenerate

Galois pairing. If A is a finite étale group scheme with order prime to p then

Â := Hom(A, Gm) is the Cartier dual of A and Â(Ks) = Â(Ks).
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Gm(Ks)tor is (non-canonically) isomorphic as abstract group to (R/Z)′tor,
where ′ means that we restrict ourselves to elements of order prime to p.
For finite étale group schemes with order prime to p we get

Â(Ks) ∼= A(Ks)
∗.

Key Examples

1. Take A = µn, the group of roots of order dividing n with (as always,)
n prime to p.
Then A = ker(n ◦ idGm) =: Gm[n] and we have the Kummer sequence

1 → Gm[n] → Gm → Gm → 1

of group schemes yielding the exact sequence of Galois modules

1 → µn → K∗
s → K∗

s → 1.

The Cartier dual of Gm[n] is the constant group scheme Z/n (with triv-
ial Galois action) since every endomorphism of µn is an exponentiation.

2. Let A be be an abelian variety defined over K. Take

A[n] := ker(n ◦ idA).

Again we have a Kummer sequence

0 → A[n] → A→ A→ 0

yielding the exact sequence

0 → A(Ks)[n] → A(Ks) → A(Ks) → 0

of Galois modules.
There is an abelian variety Â dual to A such that, in a canonical way,

(̂A[n]) is isomorphic to Â[n].
In particular, we get a non-degenerate Galois pairing between the points
of order dividing n of A(Ks) and Â(Ks).
An important special case is that A is principally polarized (eg., A
a Jacobian of a curve). Then A is isomorphic to Â, and so A[n] is
self-dual.
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Computational Aspects

• In general it is not clear how to compute the evaluation pairing fast.

• In special cases (ie. if A is a subscheme of an abelian variety) there is
an explicit and fast evaluation function, the Weil pairing.

• But even in this case one has to deal with objects in large extension
fields L of K in general (eg., L = K(A[n](Ks)) even though one is
interested in the group of K-rational points. In general it is not true
that the restriction of the pairing to A(K)×A(K) is non-degenerate.

• Caution: Assume that the exponent of A is n and that K contains the
n-th roots of unity hence µn is isomorphic to Z/n. Assume that we
can compute the duality fast (E.g. take A = µn) . Then this does not
imply that we can transfer the discrete logarithm from A to Z/n but
only to the multiplicative group of K.

Some of the items can be repaired by using “derived” pairings.

2.2.1 Galois Cohomology and Induced Pairings

In this section we take G as profinite group. Of course G = GK is the
motivating example.

Galois Cohomology

Let A,B, C be G-modules such that

0 → A
α→ B

β→ C → 0

is exact. Then

0 → AG αG→ BG βG→ CG

is exact but in general βG is not surjective: the functor

H0(G, .)



30 CHAPTER 2. DUALITY IN ARITHMETIC

sending A to AG is left-exact but not right-exact.
To repair this “defect” one notes that there are “enough” injective modules
and uses either a general machinery or an explicit construction to show that
there is one derived cohomology functor H∗ (Hn(G,A), n = 0 . . . i, . . . ) with

1.
H0(G, A) = AG

2. The exact sequence

0 → A
α→ B

β→ C → 0

induces maps α(n), β(n) and δn such that there is an exact sequence of
G-modules

· · · δn−1→ Hn(G,A)
α(n)→

Hn(G,B)
β(n)→ Hn(G,C)

δn→ Hn+1(G, A) . . .

First take a standard projective resolution (chain complex ) of Z (regarded
as G-module with trivial action) and then take the cohomology of the com-
plex obtained by replacing a module Pi by Hom(Pi, A) (cochain complex) to
define Hn(G, A).

Remark 2.2.5 Since HomG(Z, A) = AG we can see Galois cohomology as
derived from the Hom-functor:

Hn(G,A) = Extn(Z, A).

Hn(G,M) is a quotient of the group of n-cocycles ζ(σ1, . . . , σn) ∈ Cn(G,A) ⊂
F (Gn, A) satisfying a combinatorial condition modulo the subgroup of n-
coboundaries Bn(G,A).

Example 2.2.6 1. 1-cocycles are maps

c1 : G → A
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such that for all σ, τ ∈ G we have

c1(στ) = c1(σ) + σc1(τ).

1-coboundaries are maps
b1 : G → A

such that there exists an element a ∈ A with

b1(σ) = σ · a− a

for all σ ∈ G.

2. 2-cocycles are maps
c2 : G×G → A

such that for all σ, τ, µ ∈ G we have

σc2(τ, µ)− c2(στ, µ) + c2(σ, τµ)− c2(σ, µ) = 0.

2−coboundaries are maps b2 : G × G → A such that there exists a
function f : G → A with b2(σ, τ) = σf(τ)− f(στ) + f(σ).

α ∈ Hom(A,B) induces by composition elements α
′(n) ∈ Hom(Cn(G,A), Cn(G, B))

which map coboundaries to coboundaries and so induce α(n) ∈ Hom(Hn(G,A), Hn(G,B)).
The maps δn are given in a very explicit way. We shall see examples soon.
For closed subgroups U of G we can restrict functions from Gn to A to
functions of Un to A and get

resU : Hn(G, A) → Hn(U,A).

For normal closed subgroups U < G we can compose the quotient map

G → G/U

with cocycles and get the inflation map

infG/U : Hn(G/U,AU) → Hn(G,A).

Because of continuity one gets

Hn(G,A) = lim
→U

infG/U(Hn(G/U,AU)

where U runs over normal subgroups of G of finite index.

Example 2.2.7 We can compute cohomology groups of GK acting on A by
computing the cohomology groups of the finite quotients G(L/K) of GK acting
on AGL where L runs over finite Galois extensions of K.
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Etale Cohomology around the Corner Take X = Spec(K). Etale
(connected) covers of X are separable extension fields L of K with the in-
duced map

Spec(L) → Spec(K).

They define the “open” sets of the étale topology of Spec(K). Galois modules
A define sheaves via the section functor

Γ(Spec(L), A) := AGL .

The functor Γ is left-exact and there are enough flask sheaves (injective mod-
ules) and so we get a sheaf cohomology Hn

et(X, A) resp. Hn
et(X,A) which is

nothing but the Galois cohomology of A(= A(Ks)).
In general we have to begin with a scheme X replacing Spec(K) and abelian
sheaves with respect to unramified covers T of S, e.g. A(T ) := Hom(Spec(T ),A)
for a smooth commutative group scheme A defined over S. As functor Γ take
again A(S). The functor Γ is left-exact and there are enough flask sheaves
and so we get a sheaf cohomology Hn

et(X,A).
So we can embed Galois cohomology into a much wider and flexible frame.

Pairings in Cohomology

Let A and B be two G−modules.
The tensor product (over Z)

A⊗B

becomes, in a natural way, a G-module.
We have a natural (and functorial) homomorphism ∪0,0

from AG ⊗BGto (A⊗B)G.
Fact: ∪0,0 induces a unique family of homomorphisms

∪p,q : Hp(G,A)×Hq(G,B) → Hp+q(G,A⊗B)

with functorial properties with respect to cohomology functors (especially
δn, this implies uniqueness).
∪p,q is called the cup product.
Explicit formulas can be found, eg., in the book of Cartan-Eilenberg. There
the existence is proved by defining a product on the level of cochaines.
Now assume that there is a G-pairing

Q : A×B → C.
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Q defines a G-homomorphism φQ from A⊗B to C by sending a⊗b to Q(a, b).
Hence we get a bilinear pairing

Qp,q = φ
(n)
Q ◦ ∪p,q.

Example 2.2.8 The evaluation pairing induces a pairing

Ep,q : Hp(GK , A)×Hq(GK , Â) → Hp+q(GK , K∗
s ).

If A = A(Ks) we can interpret this as a pairing between étale cohomology
groups:

Ep,q : Hp
et(Spec(K),A)×Hq

et(Spec(K), Â) → Hp+q
et (Spec(K), Gm).

The Tate Pairing

Let J be an abelian variety (principally polarized for simplicity). We have
the long exact sequence

0 → J(K)/nJ(K)
δ0→ H1(GK , J [n](Ks)) → H1(GK , J(Ks))[n] → 0

yielding

E1,1 : H1(GK , J [n](Ks))×H1(GK , J [n](Ks)) → H2(GK , K∗
s ).

Fact: J(K)/nJ(K) is isotrop w.r.t E1,1 and so E1,1 induces the Tate-pairing

Tn : J(K)/n · J(K)×H1(GK , J(Ks))[n] → H2(GK , K∗
s ).

2.3 Duality for Local and Global Fields

2.3.1 Class Field Theory

One of the most fascinating objects in number theory is class field theory
ruling over the extensions of number fields which are Galois with abelian
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Galois groups. The essentials of this theory are formulated in a very elegant
way by a fundamental duality theorem involving étale cohomology. For a
nice introduction we refer to B. Mazur’s paper [20].
Let O be a ring of integers of a number field and X = Spec(O), let F be a
constructible abelian sheaf (i.e. there are finitely many points {x1, . . . , xn}
such that the pullback of F to X \ {x1, . . . , xn} and to {x1, . . . , xn} is locally
constant.
With Gm we denote the group scheme attached to the multiplicative group.

Theorem 2.3.1 For 0 ≤ i ≤ 3 we have a perfect pairing

H i
et(X,F )× Ext3−i

X (F, Gm) → H3
et(X, Gm) ∼= Q/Z

of finite groups.

From this pairing we get duality theorems both for local fields (e.g. finite
algebraic extensions of p−adic fields) and for global fields (here we consider
finite algebraic extensions of Q).

2.3.2 Duality over Local Fields

We apply Theorem 2.3.1 to finite Galois modules A over local fields K with
residue field Fq. We assume that the order of A is prime to q. In the language
of Subsection 2.3.1 we interpret OK , the ring of integers of K, as localization
of the ring of integers of a number field, and look at abelian sheaves F trivial
outside of Spec(OK).
Spec(OK) is a one-dimensional scheme with a closed point corresponding to
the maximal ideal p, i.e. to Spec(Fq), and a generic point corresponding to
Spec(K) as open subscheme of X.
Galois modules over X consist of a generic fiber, i.e. a Galois module over
GK , a special fiber, which is a Galois module over the residue field, and a
reduction map.
Etale neighborhoods are given by unramified extensions of OK , by Galois
extensions of K and by Galois extensions of k.
The duality theorem takes care of these data. Restricting to the generic fiber
we come home to Galois cohomology.
We get the Duality Theorem of Tate:
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Theorem 2.3.2 1. H3
et(X,Gm) is isomorphic (in a natural way) to the

Brauer group H2(GK , K∗
s ) = Br(K) and hence this group is isomorphic

to Q/Z.

2. Let A be a finite GK-module with Cartier dual Â.
Then for 0 ≤ i ≤ 2 the cohomology groups H i(GK , A) are finite and
the evaluation pairing induces non-degenerate pairings

H i(GK , A)×H2−i(GK , Â) → Br(K).

As a consequence of this duality theorem Tate proves in [30]

Theorem 2.3.3 Let J be an abelian variety (for simplicity principally po-
larized). The Tate pairing

Tn : J(K)/nJ(K)×H1(GK , J(Ks))[n] → Br(K)

is a non-degenerate pairing.

2.3.3 Duality over Global Fields

If we would like to get equivalent results like in the local case we would have
to replace the multiplicative group by the idele group of K.
Here we restrict ourselves to cite consequences of the duality theorem.
Let K be a global field, i.e. either a finite extension of Q or a function field
of one variable over a finite field. To simplify we shall assume that K is a
number field but the function field case can be treated analogously and is
very interesting (key word: function field sieve).
An important method in Number Theory is to relate global objects to local
ones.
Let ΣK be the set of all places of K (including archimedean places). For
p ∈ ΣK we denote by Kp the completion of K at p. We choose an extension
p̃ of p to Ks and identify the decomposition group of p̃ with GKp .
Let A be a GK-module.
We have restriction maps

ρp : Hn(GK , A) → Hn(GKp , A).
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Define

fn(A) : Hn(GK , A)
Q

ρp→
∏

p∈ΣK

Hn(GKp , A).

The key questions are: Describe the kernel and the cokernel of fn!
Here are consequences of Theorem 2.3.1( cf.[24]).
Assume that A is finite.

• The kernel of f1(A) is compact and dual to the kernel of f2(Â). In
particular, the kernel of f2(A) is finite.

• We have an exact 9-term sequence, the Duality Theorem of Tate-Poitou

0 → AGK →
∏

H0(Kp, A) → H2(K, Â)∗ → H1(K,A) →
′∏

H1(Kp, A)

→ H1(K, Â)∗ → H2(K,A) →
∑

H2(Kp, A) → H0(K, Â)∗ → 0.

(Here GK is replaced by K, and
∏′ is the restricted product with

respect to the unramified cohomology.)

• The Hasse-Brauer-Noether Sequence:
For all natural numbers n the sequence

0 → Br(K)[n]
⊕p∈ΣK

ρp−→
⊕
p∈ΣK

Br(Kp)[n]
Σp∈ΣK

invp−→ Z/n → 0

is exact.
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Pairings on Class Groups of
Curves

DL-systems in Class Groups

Let O be a commutative noetherian ring with unit element 1 without zero
divisors.
Two ideals A,B of O can be multiplied:

A ·B = {Σai · bi; ai ∈ A, bi ∈ B}.
Clearly · is associative.
We generalize the notion of ideals slightly. Let F be the quotient field of O
and M ⊂ F . The set M is an O-ideal if M is an O-module and if there is
an element f ∈ F ∗ with fM ⊂ O. If we can take f = 1 then M is an ideal
of O in the usual sense. We can multiply ideals in this generalized sense by
using the definition made above for usual ideals.
The ideal M is called invertible if there is an ideal M ′ with M ·M ′ = O.
The set I(O) of invertible ideals is a commutative group called the ideal group
of O.

Definition 3.0.4 Let M1,M1 be elements of I(O).
M1 is equivalent to M2 (M1 ∼ M2) if there is an element f ∈ F ∗ with

M1 = f ·M2.

37
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Pic(O) is the set of equivalence classes of invertible ideals of O, it is an
abelian group called the ideal class group of O.

The idea is now to find suitable rings O such that Z/` can be embedded into
Pic(O), that the elements in Pic(O) can be described in a compact way and
that the composition in the ideal class group has complexity O(log(`)).

There are only two types of rings O used today:

1. O is an order or a localization of an order in a number field, or

2. O is the ring of holomorphic functions of a curve defined over a finite
field Fq with q elements.

We shall restrict ourselves to the second case but we remark that most of
the considerations done in the following have analogues for the number field
case.

3.0.4 Ideal Classes of Function Rings

Let K be a field and F/K a (conservative) function field of one variable over
K. Let CO be an absolutely irreducible curve defined over K with function
field F and let O be the ring of holomorphic functions on CO. We assume
that Quot(O) = F and so CO is an affine curve. Let C̃O be its desingular-
ization with ring of holomorphic functions Õ. So O is contained in Õ and Õ
is a Dedekind domain. There is a unique projective irreducible regular curve
C with function field F containing C̃O as affine part.
To see better the geometric situation in terms of points we enlarge the ground
field from K to Ks, the separable closure of K. For simplicity we assume that
all singular points on CO become rational over Ks. (In most applications K
is perfect and so Ks is equal to the algebraic closure of K.) We denote by C
the projective curve defined over Ks and obtained by constant field extension
from K to Ks from C. Its function field is F = FKs.

The integral closure of O (resp. Õ) in F is denoted by O (resp. Õ), it is the

ring of holomorphic functions of the curve CO (resp. C̃O) obtained from CO
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(resp. C̃O) by constant field extension.

The set of points rational over Ks of C contains the finite set T∞ consisting

of points not lying on C̃O. Let S be the set of points on C̃O which correspond
to singular points on CO. The Galois group GK acts on points of C. The
sets T∞ and S are mapped by GK into themselves.

We assume from now on that there is a K-rational point P∞ ∈ T∞. The

singularities of CO are reflected by the conductor mO of Õ/O. In geometric
language mO corresponds to a divisor also denoted by mO on C with support
in S (cf. [27]). For cryptographical purposes it is sufficient to look at the
case that there is at most one singular point on CO and that its conductor is
square free, hence equal to mO =

∑
P∈S P . We shall assume this from now

on.

Remark 3.0.5 mO is invariant under the action of GK and so it corresponds
to an ideal in Õ which is equal to the conductor of Õ/O.

Denote by UT∞ the functions in F which have no zeros or poles outside of
T∞. These functions are called T∞-units.
By F 1

S we denote the functions f ∈ F for which f(P ) = 1 for all P ∈ S.
Obviously both sets of functions are invariant under the natural GK-action.
The sets of fixed functions UT∞ resp. F 1

S lie in F .
For a given Galois invariant subring R ⊂ F with Quot(R)= F and a function
f ∈ F we denote by (f)R the ideal f · R. For H ⊂ F we define (H)R =
{(f)R; f ∈ H}. If it is clear which ring R is meant we ease notation and
write (H) for (H)R.
The set (F

∗
)R ∩ I(R) is called the group of principal ideals of R and is

denoted by PrincR.

Examples 3.0.6 1. Take for R the ring OP∞ of meromorphic functions
on C which have no poles outside of P∞.
Take f ∈ F

∗
. For a point P ∈ C denote by vP (f) the order of vanishing

of f at P , i.e. the order of zero if f in P if f is holomorphic, and the
negative of the order of the pole of f at P else. Let mP be the ideal of
functions in OP∞ which vanish at P . Then (f)R =

∏
P∈C\{P∞} m

vP (f)
P .
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2. We continue to take R = OP∞. Take the set of T∞-units UT∞. It
is well known that (UT∞)R =: (UT∞) is a Z-sublattice in the group
of ideals DT∞ in I(OP∞) generated by the ideals mP corresponding to
points P ∈ T∞ \ {P∞}. Define

CT∞ := DT∞/(UT∞).

3. Take for R the ring Õ and f ∈ F
∗
. Then (f)R =

∏
P∈C\T∞(mP ·Õ)vP (f).

By definition we have the exact sequence of Galois modules

1 → PrincR → I(R) → Pic(R) → 0.

Using the approximation theorem we get the exact sequence of GK-modules

0 → CT∞ → Pic(OP∞) → Pic(Õ) → 0.

Next we want to describe Pic(O).
Let I ′(O) be the group generated by ideals of O which are prime to mO. Then

(F 1
S) is contained in I ′(O) and we get the exact sequence of GK-modules

1 → (F 1
S) → I ′(O) → Pic(O) → 0.

Using the approximation theorem for functions in F we get:

1. In every class c ∈ Pic(Õ) there is an ideal which is prime to S. So

we have a natural surjective map ϕ : Pic(O) → Pic(Õ) which is GK-
invariant.

2. The kernel of ϕ is in a canonical way isomorphic to
∏

P∈S (K∗
s )P /∆(K∗

s )
where GK acts on

∏
P∈S (K∗

s )P by σ(. . . , xP , . . . ) = (. . . , σ(xP )σ(P ), . . . )
and ∆(K∗

s ) is the diagonal embedding.

A more geometric way to express this is

Proposition 3.0.7 There is a torus TS of dimension | S | −1 defined over
K such that we have the exact sequence of GK-modules

1 → TS(Ks) → Pic(O) → Pic(Õ) → 0.
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Remark 3.0.8 The isomorphism class of TS is determined by its character
group X, and this group is determined by the set S as GK-set. So Proposi-
tion 3.0.7 (applied to K = Fq) gives a tool to realize discrete logarithms in
subgroups of multiplicative groups of extension fields of Fq as subgroups of
ideal class groups of rings of holomorphic functions of affine curves.

In Proposition 3.0.7 we have described the relation between ideal classes of

rings O and their desingularization Õ.

Now we investigate the relation between Pic(Õ) and the points on the Jaco-
bian variety JC of C.
Divisors D of C (or of F ) are formal sums with integer coefficients

D =
∑

P∈C

zP · P

with almost all zP = 0. Using formal addition the set of divisors forms a
group denoted by D. Recall the discussion in Subsection 2.1.1 to see that
D = Z(C(Ks)) and D corresponding to the function g0 : P 7→ zP .
The degree of D is deg(D) =

∑
P∈C zP . This is consistent with the definition

in Subsection 2.1.1.
The subgroup D0 consists of the divisors of C of degree 0. It contains the
group of principal divisors (f) attached to functions f ∈ F

∗
by

(f) =
∑

P∈C

vP (f)P.

The quotient is the divisor class group of degree 0 of C (or of F ) denoted by
Pic0(C).
The connection to the ideal class groups considered above is given by

Lemma 3.0.9 There is a natural group isomorphism from D0 to I(OP∞)
given by the map ϕP∞ sending the divisor D =

∑
P∈C zP · P to the ideal∏

P∈C\{P∞} mzP
P .

This way, ϕP∞ maps principal divisors of FK to PrincOP∞
and induces an

isomorphism between Pic0(C) and Pic(OP∞) which is compatible with the
action of GK.
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To prove this lemma we observe that every ideal M of OP∞ is given in a
unique way as M =

∏
P∈C\{P∞} mzP

P and the inverse image of M under ϕ is

D =
∑

P∈C\{P∞} zP · P − (
∑

P∈C\{P∞} zP ) · P∞.

Corollary 3.0.10 We have the exact sequence of GK-modules

0 → CT∞ → JC(Ks) → Pic(Õ) → 0.

3.1 The Lichtenbaum Pairing

3.1.1 The Regular Complete Case

Let C be an absolutely irreducible non-singular projective curve defined over
K with function field F with a K−rational point P∞ (for simplicity). By
C we denote the curve obtained from C by extending scalars to Ks. The
function field of C is F = F ·Ks.
GK is acting in a natural way on F and C(Ks) with fixed sets F and C(K).
We apply the discussions in Subsection 2.1.1 to subsets T ⊂ C(Ks) which
are assumed to be GK-invariant, and interpret F T ∈ F , defined as the group
of functions on C without zeroes and poles in T , as Galois invariant subset
in F (T,K∗

s ), the set of all maps from T to K∗
s .

The evaluation pairing

ET : Z(T ) × F T → Ks

is a Galois pairing inducing (for p + q = 2) a pairing

Ep,q
T : Hp(GK ,Z(T ))×Hq(GK , F T ) → Br(K).

Since C is assumed to be regular we can identify Z(T ) with the group DT of
divisors on C with support in T . For T = C(Ks) we get D, the divisor group
of C.
It is easy to see that H1(GK , DT ) = 0.
In this paper we shall be interested in

ET := E0,2
T : H0(GK ,Z(T ))×H2(GK , F T ) → Br(K)

where H0(GK ,Z(T )) := DT can be identified with the group of K-rational
divisors on C with support in T (Caution: This is not the free abelian group
generated by K-rational points on C!).
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Key Example

We assume that L/K is a cyclic extension of order n with Galois group
G =< τ > .
Because of Hilbert’s Theorem 90 the inflation from H2(G, (F ·L)T ) to H2(GK , F T )
is injective.
We have the following explicit description of H2(G, (F · L)T ): every coho-
mology class c contains a cocycle given by

ζf (τ
i, τ j) := 1 if i + j < n

ζf (τ
i, τ j) := f if i + j ≥ n

with f ∈ FT . ζf lies in the same class as ζg iff

f · g−1 ∈ NormF ·L/F (F · L).

Hence the restriction of ET to DT ×H2(GK , (F · L)T ) is given by

(D, c) 7→ [f(D)]

where [f(D)] is the inflation of the class of the cocycle ζ(τ i, τ j) with

ζ(τ i, τ j) = 1 if i + j < n

and
ζ(τ i, τ j) = f(D) if i + j ≥ n.

This cocycle is a factor system for a cyclic algebra split by L.

The Brauer Group of C

We would like to extend the pairing ET to a pairing with F
∗

as domain for
the second argument. The idea is to use that for a given finite set S of points
on the projective non-singular C and a given K-rational divisor D on C we
can always find a function h ∈ F with principal divisor (h) such that D+(h)
is prime to S.
Beginning with c ∈ H2(GK , F

∗
) we represent c by a cocycle ζ determined by

finitely many functions f(σ, τ) as values. This is possible since because of
continuity there is a finite Galois extension L/K such that c is the inflation
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of an element c0 ∈ H2(G(L/K), F · L). Let S be the finite set of points on
C which occur as zeroes of these functions, and take T = C \ S.
Next, for given K-rational divisor D on C we choose a function h ∈ F such
that Dh := D + (h) is, as divisor on C, prime to S. So Dh ∈ DT and
ET (Dh, c) is an element in Br(K).
But this element may depend on the choice of h!
The question is: Let h ∈ F be a function such that the principal divisor (h)
is in DT . Is the class of the cocycle ζ0 given by

ζ0(σ, τ) := f(σ, τ)((h)); σ, τ ∈ G(L)

trivial?
We use Weil’s reciprocity law and get

f(σ, τ)((h)) = h((f(σ, τ))

and, since h is invariant under GK , the class of ζ0 is trivial if the class of

ζ1 : G(L/K)×G(L/K) → D
given by

ζ1(σ, τ) = (f(σ, τ))

in H2(GK ,D) is trivial.

Definition 3.1.1 The Brauer group Br(C) of C is the kernel of the map

α : H2(GK , F
∗
) → H2(GK ,D)

induced by sending a function f on C to its principal divisor (f).

By the discussion above we see that we can define a pairing from D×Br(C)
in Br(K) by using appropriate pairings ET and changing elements in D by
principal divisors. By definition the resulting pairing depends only on the
divisor class of the K-rational divisors on C and so get

Proposition 3.1.2 Let C be a non-singular absolutely irreducible curve over
K with divisor class group Pic(C).
Then the evaluation map induces a pairing

E : Pic(C)× Br(C) → Br(K).



3.1. THE LICHTENBAUM PAIRING 45

In many cases one is interested in Pic0(C).We observe that the evaluation of
a function f at a divisor of degree 0 depends only on (f), and so E induces a
pairing, also denoted by E, from Pic0(C)×Br(C) where Br(C) is the image
of Br(C) in H2(GK , Princ(C)) induced by the map f 7→ (f).

Corollary 3.1.3 The evaluation pairing induces a pairing

E : Pic0(C)× Br(C) → Br(K).

It remains to describe elements in Br(C).
We use the exact GK-module sequence

0 → Princ(C) → D0 → Pic0(C) → 0

and get (since H1(GK ,D0
) = 0)

0 → H1(GK , Pic0(C))
δ1→ H2(GK , Princ(C)) → H2(GK,D0

))

where δ1 is the connecting homomorphism from H1(GK , Pic0(C)) to H2(GK , Princ(C))
resulting from cohomology.
It follows that Br(C) = δ1(H1(GK , Pic0(C))).

Proposition 3.1.4 Let C be a non-singular absolutely irreducible projective
curve.
The evaluation pairing between points and functions on C induces a pairing

TL : Pic0(C)×H1(GK , Pic0(C)) → Br(K).

This pairing is called the Lichtenbaum pairing.

Explicit Pairing Since for computational purposes it is important to de-
scribe the pairing explicit we do this here.
Take c ∈ H1(GK , Pic0(C)), represent it by a cocycle

ζ : GK → Pic0(C) with ζ(σ) = D̄(σ)

and choose
D(σ) ∈ D̄(σ).
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The divisor

A(σ1, σ2) = σ1(D(σ2)) + D(σ1)− (D(σ1 · σ2))

is a principal divisor (f(σ1, σ2)) and δ1(c) is the cohomology class of the
2-cocycle

γ : (σ1, σ2) 7→ (f(σ1, σ2)).

For c ∈ H1(GK , Pic0(C(Ks)) choose D0 :=
∑

P∈C(Ks)
zP · P ∈ D̄0 ∈ Pic0(C)

such that δ1(c) is presented by a cocycle (f(σ1, σ2)) prime to D0.
Then TL(D̄0, c) is the cohomology class of the cocycle

ζ(σ1, σ2) =
∑

P∈C(Ks)

f(σ1, σ2)(P )zP

in H2(GK , K∗
s ) = Br(K).

Example

We give the analogue of Example 3.1.1 for the Lichtenbaum pairing.

Example 3.1.5 Let L/K be cyclic of degree n and G(L/K) =< τ >.
By Pic0(CL) we denote the divisor class group of degree 0 of C × L.
Let ζ be a 1-cocycle from < τ > into Pic0(CL) representing the cohomology
class c ∈ H1(G(L/K), Pic0(CL)).
ζ is determined by the value ζ(τ) =: z since the cocycle condition implies
that ζ(τ j) =

∑j−1
i=0 τ iz for 1 ≤ j ≤ n. In particular,we get

TraceL/K(z) = 0.

Choose a divisor D ∈ z and D(τ j) :=
∑j−1

i=0 τ iD. Then

TraceL/K(D) = (fD) with fD ∈ F.

Hence δ1(c) is presented by the cocycle

f(τ i, τ j) = 1 for i + j < n
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and
f(τ i, τ j) = (fD) for i + j ≥ n.

Next choose in the divisor class D̄0 ∈ Pic0(C) a divisor D0 with D0 =∑
P∈C(Ks)

zP · P prime to the set of zeroes and poles of fD.

Then TL(D̄0, c) ∈ H2(G(L/K), L∗) is presented by the cocycle

η(τ i, τ j) = 1 for i + j < n

and
η(τ i, τ j) =

∏

P∈C(Ks)

fD(P )zP ∈ K∗ for i + j ≥ n.

This is a cocycle defining a cyclic algebra with center K and splitting field L.

Comparison Theorem

We have defined two pairings attached to Jacobian varieties, namely the
Tate pairing Tn which uses crucially the Weil pairing on torsion points of the
Jacobian of order n, and the Lichtenbaum pairing TL which uses evaluation of
functions on the curve. A priori, no number n appears in the latter pairing
but we can look at it modulo n and get for all natural numbers prime to
char(K)

TL,n : Pic0(C)/n · Pic0(C)×H1(GK , Pic0(C))[n] → Br(K)[n].

Lichtenbaum proves in [18]

Theorem 3.1.6 Up to a sign, the pairing TL,n is equal to Tn.

We shall call TL,n the Lichtenbaum-Tate pairing. For most purposes its
interpretation by evaluation of functions on C is used.

3.1.2 The Non-complete Case

We can use Theorem 3.1.6 to see what is happening if T∞ is not equal to
{P∞} but contains more elements.
In Subsection 3.0.4 we have found the exact sequence

0 → CT∞ → Pic(OP∞)
ϕ→ Pic(Õ) → 0.
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We want to define an analogue of the Lichtenbaum pairing for Pic(Õ) resp.

H1(GK , Pic(Õ)). But we encounter two difficulties.

First it is not true in general that H0(GK , Pic(Õ)) is equal to the group
Pic(Õ) = ϕ(Pic(OP∞)) in which we want to realize a DL-system.
Secondly the map from F̄ to Princ

Õ
has as kernel the group of functions UT∞ .

Hence we cannot evaluate the image of δ1 : H1(GK , Pic(Õ)) → H2(GK , Princ
Õ
)

at points on C \ T∞.

To overcome these difficulties we look at the sequence

H1(GK , CT∞) → H1(GK , Pic(OP∞))
ϕ→ H1(GK , Pic(Õ)).

We would like to lift elements from H1(GKPic(Õ)) to H1(GK , Pic(OP∞)) and
then use the Lichtenbaum recipe from above.
The kernel CT∞ of ϕ is a finitely generated Z-module. A straightforward
computation shows that the interesting case is that CT∞ is finite. We denote
its order by n.

We can interpret Pic(Õ) as the group of Ks-rational points of the abelian
variety A = JC/CT∞ which is defined over K and isogenous to JC . There is
a map ψ : A → JC with C ′T∞ = kernel(ψ) = ϕ(JC [n]).
So we have a map

ψ1 : H1(GK , A((Ks)) → H1(GK , JC(Ks))

whose kernel is a quotient of H1(GK , C ′T∞).
We use now that the Lichtenbaum pairing restricted to elements of order n in
H1(GK , JC(Ks)) resp. A(K)/nA(K) is the Tate pairing and the functoriality
of the Weil pairing to get

Lemma 3.1.7 The group ϕ(JC(K)) is orthogonal to the image of H1(GK , C ′T∞)
in H1(GK , A(Ks))[n] under the Tate pairing.

Corollary 3.1.8 The Lichtenbaum pairing induces a pairing, also denoted

by TL from Pic(Õ)/nPic(Õ)× ψ1(H1(GK , Pic(Õ)))[n] to Br(K)[n].

To come to the most general situation we have to do the last step and to
allow singularities in the set S.
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To make things not too complicated we assume that T∞ = {P∞}. We recall
the exact sequence

1 → TS(Ks) → Pic(O) → Pic(OP∞) → 0.

where TS is a torus determined by the conductor
∑

MP ,P∈S P and Pic(OP∞) =
JC(Ks).
From this sequence we get the exact sequence

1 → TS(K) → Pic(O) → JC(Ks) → H1(GK , TS(Ks))

and since H1(GK , TS(Ks)) = 0 by Hilbert’s theorem 90 we have the exact
sequence

1 → TS(K) → Pic(O) → JC(Ks) → 0

as well as
1 → H1(GK , Pic(O)) → H1(GK , JC(Ks)).

We can apply δ1 to H1(GK , Pic(O)) and we get a pairing as above but we
cannot expect to get any information about TS(K). We shall show in the
next subsection how one can overcome this difficulty in the case which is
relevant for cryptography, namely that the ground field K is equal to a finite
field Fq.
A first trivial observation is that in this case all occurring Galois modules are
torsion modules. We are interested in elements of order dividing n in Pic(O),
which is, since this is a finite group, isomorphic to Pic(O)/n · Pic(O) which
fits better into our frame. We want to apply the duality theorem 2.3.1 from
Subsection 2.3.1. For this, it is convenient to work over local fields instead
over finite fields. Moreover we shall see that the geometric situation can be
made simpler.

3.1.3 p-adic Lifting

Assume that O is the ring of holomorphic functions of an affine curve CO

defined over Fq with corresponding projective curve C of genus g0. We assume
that CO has only one singular point with square free conductor. Let S be
the set of points on C corresponding to the singular point.
Let K be a local field with residue field Fq.
We can lift CO to an affine non-singular curve C l

O defined over K embedded
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in the projective curve C l which is a lift of C such that all relevant data are
preserved.
In particular, for n prime to q,

Pic(Ol)/[n]Pic(Ol)

is canonically isomorphic to Pic(O)/[n]Pic(O), the genus of C l is

g0+ | S | −1

and there exists a torus TS/K of dimension | S | −1 and an exact sequence

1 → T l
S(UK)/(T l

S(UK))n → Pic(Ol)/[n]Pic(Ol) → Pic(Õ)/[n]Pic(Õ) → 0

with UK the units of K.

Instead of a proof I give an example.

Example 3.1.9 Take

CO : Y 2 + XY = X3/Fq.

Then T∞ = {(0, 1, 0)}, the singular point (0, 0) corresponds to two points on
the desingularization and Pic(O) ∼= F∗q.
Take K = W(Fq) as field of Witt vectors over Fq and choose π ∈ K with
wp(π) = 1.
Then

C l := E : Y 2 + XY = X3 + π

is a Tate elliptic curve with

E(K) ∼= K∗/ < QE >∼= UK .



Chapter 4

Bilinear Structure on Class
Groups

4.1 The Lichtenbaum-Tate Pairing over Lo-

cal Fields

Motivated by the results of the last chapter we assume now that CO is an
affine curve without singularities defined over a local field K with residue
field Fq. By Knr we denote the maximal unramified extension of K. The
normalized valuation on K is denoted by wp.
As always we assume that n is prime to q.
The fundamental result following from the local duality theorem is worth-
while to be stated again.

Theorem 4.1.1 (Lichtenbaum-Tate) Let K be a local field, CO an affine
regular curve over K with ring of holomorphic functions O.
For every natural number n the Lichtenbaum-Tate pairing

TL,n : Pic(O)/nPic(O)×H1(GK , Pic(O))[n] → Br(K)[n]

is non-degenerate.

As already said the group Pic(O)/nPic(O) is isomorphic to Pic(O)[n] and so
in the center of our interest.

51
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This motivates to discuss the other groups occurring in the Lichtenbaum-Tate
pairing both from the theoretical and algorithmic point of view.

4.1.1 H1(GK , Pic(O))[n]

We assume (and this is so for all cryptographically interesting cases cf.[9])
that we can replace Pic(O) by A(Ks) where A is an abelian variety defined
over K and isogenous to JC .
A extends to a group scheme over OK , its Néron model.
As always we assume that n is prime to q and to simplify the situation we
assume in the whole section in addition that n is prime to the number of
connected components of the special fiber of A1.
It follows that

H1(G(Knr/K), Pic(OKnr)) = 0.

Via restriction we embed H1(GK , Pic(O)) into H1(GKnr , Pic(O)), and the
image is equal in the subgroup of elements which are φq-invariant (φq acts
by conjugation on GKnr). Let Ln be the unique extension of Knr of degree n
which is totally ramified. It is equal to Knr(π

1/n) where π is a uniformizing
element of K.
So G(Ln/Knr) =< τn > with τn(π1/n) = ζn · π1/n for an n-th root of unity
ζn. The Frobenius automorphism φq acts by conjugation on τ sending τ to
τ q since q is the value of the cyclotomic character applied to φq.
These datas are sufficient to describe H1(GK , P ic(O))[n] in all concrete cases.
Here are two examples. First assume that JC and hence A has good reduc-
tion. In this case A[n] := A(Ks)[n] = A(Ln)[n] = A(Knr)[n] and hence

H1(GK , P ic(O))[n] = Hom<φq>(< τ >,A[n]).

Definition 4.1.2 Let Pic(O)[n](q) be the subgroup in Pic(O)[n] consisting of
elements c with φq(c) = q · c.

Proposition 4.1.3 Assume that O is the ring of holomorphic functions of
a regular affine curve with good reduction. Let n be prime to q.
Then H1(GK , P ic(O))[n] is isomorphic to Hom(< τ >, Pic(O)[n](q)), and so,
non-canonically since depending on the choice of τ , to Pic(O)[n](q).

1It can be interesting to study what happens if the last condition is not satisfied.
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Corollary 4.1.4 i) If ζn ∈ K then H1(GK , P ic(O))[n] is isomorphic to
Pic(O)[n].

ii) Let L be any extension field of K totally ramified of degree n.
Then H1(GK , Pic(O))[n] is equal to the kernel of the restriction map
from GK to GL.

For general curves CO it is more complicated to describe the result. One
complication is that the torus part of the special fiber of JC is in general
not split. A complete treatment is possible in principle but not in the frame
of this survey. So we restrict ourselves to an important example and take
as ring O the holomorphic functions on Tate elliptic curves given by affine
equations

EQ : Y 2 + XY = X3 + Q.

with wp(Q) = m ∈ N.
Since only one point is missing we get that Pic(O) is Galois isomorphic to
EQ(Ks).
We assume that n is prime to m. Then EQ(K) contains elements of order n
iff ζn ∈ K, and hence by duality

H1(GK , EQ(Ks))[n] 6= 0 iff ζn ∈ K,

and in this case it is cyclic of order n.
So we assume that ζn ∈ K.
We take a special cyclic extension of degree n, namely LQ := K(Q1/n). By
Tate’s theory this field is equal to K(EQ[n]).

Proposition 4.1.5 Let τ be a generator of G(LQ/K), let P ∈ EQ[n] be any
point of order n which is not K-rational, and let ζ be the cocycle from < τ >
to EQ[n] determined by ζ(τ) = P .
Then H1(GK , EQ(Ks))[n] is cyclic of order n and generated by the class of
ζ.
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4.1.2 The Local Brauer Group

Cyclic Algebras

For the moment let K be any field of characteristic prime to n.
The elements in the Brauer group Br(K) of K can be identified with classes of
central simple algebras with center K. The group composition is the tensor
product, and the trivial class consists of all algebras which are isomorphic to
full matrix algebras over K.

Because of Hilbert’s theorem 90 one sees that for Galois extensions L/K the
inflation map from H2(G(L/K), L∗) to Br(K) is injective.
For any L/K the restriction map from Br(K) to Br(L) corresponds to base
field extension applied to algebras, and its kernel consists of the classes of
algebras which become, after tensoring with L, isomorphic to full matrix
algebras. In this case L is called a splitting field of K. We have been
confronted at different places with the special case that L/K is cyclic of
degree n, for instance in Example 3.1.5 as result of the Lichtenbaum-Tate
pairing.
In this case H2(G(L/K), L∗) consists of classes of cyclic algebras with 2-
cocycles given in the following way:
Let σ is a generator of G(L/K) and take a in K∗.
The map fσ,a : G×G → L∗, given by

fσ,a(σ
i, σj) =

{
1 for i + j < n
a for i + j ≥ n

The cocycles fσ,a and fσ,a′ are in the same cohomology class if and only if
a · a′−1 ∈ NL/KL∗. We denote the corresponding class of cyclic algebras by
(L, σ, a ·NL/KL∗).

Invariants

Now we return to the case that K is a local field with residue field Fq and
that n is prime to q.
Because of the local duality theorem we know already that Br(K)[n] ∼= Z/n.
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The unramified case: the invariant Let Lu be the unique unramified
extension of K of degree n. It is cyclic.
G(Lu/K) has as canonical generator a lift of the Frobenius automorphism
φq of Fq.
We represent elements c ∈ H2(G(Lu/K), L∗u) by a triple

(Lu, φq, a ·NLu/K(L∗u)).

Since

K∗/NLu/K(L∗u) ∼=< π > / < πn >

the class of c is uniquely determined by wp(a) mod n.

Definition 4.1.6 wp(a) ∈ Z/nZ is the invariant invK(c) of c.

The general case: the invariant From the paragraph it follows that

Br(K)[n] = infLu/Ks(H
2(G(Lu/K), L∗u)).

Definition 4.1.7 The map

invK : Br(K)[n] → Z/n

is defined as follows:
For c ∈ Br(K)[n] take c0 ∈ H2(G(Lu/K), L∗u) with infLu/Ks(c0) = c and
represent c0 by the triple (Lu, φq, a ·NLu/K(L∗u)).
Then invK(c) := wp(a) mod n is well defined and determines c uniquely.

Though the invariant is defined in a seemingly very explicit way for cyclic
algebras split by unramified extensions it may be difficult to compute it even
in this case. To see this assume that τ is another generator of G(Lu/K) and
the cyclic algebra representing c is given by the triple (Lu, τ, a ·NLu/K(L∗u)).
We know that there exists k ∈ Z with τ k = φq. Then invK(c) = k · wp(a)
mod n.
So we have to determine k, and this is a discrete logarithm problem.
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The Tamely Ramified Case

The relation to Discrete Logarithms in finite fields becomes even more evident
in the ramified case.
Let Ln a totally ramified Galois extension of degree n of K. It follows that
Ln/K is cyclic and that µn ⊂ K. Let τ be a fixed generator of G(Ln/K).
Since

K∗/NLn/K(L∗) ∼= F∗q/F∗nq

the element c ∈ H2(G(Ln/K), L∗n) is determined by the triple

(Ln, τ, a ∈ F∗q/F∗nq ).

Proposition 4.1.8 For a1, a2 ∈ Fq

ak
1 ≡ a2 mod F∗nq

iff

k · (invK((Ln, τ, a1 · F∗nq ))) ≡ inv((Ln, τ, a2 · F∗nq )) modulo n.

Hence the computation of Discrete Logarithms in F∗q is equivalent with the
computation of invariants of cyclic algebras.

The Frobenius Case

The most important case for applications is that c ∈ Br(K) is represented as
algebra split by an extension L of K which is totally ramified of degree n and
which becomes Galois only after adjoining the n-th roots of unity. This is
exactly the situations which occurs when one applies the Lichtenbaum-Tate
pairing.
A description useful for algorithmic purposes is, at the moment, only available
if one restricts c to K(ζn) and then uses the results obtained for cyclic ramified
extensions over K(ζn) instead of K. Hence one has to pass to a field which
will be, in general, much larger than K!
It is a challenge to do better.
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4.1.3 Algorithmic Description of the Lichtenbaum-Tate
Pairing

The Pairing over Local Fields

We continue to assume that K is a local field with residue field Fq.
To make the situation not too complicated we discuss as example the case
that the curve C has good reduction (hence is the lift of a nonsingular curve
C0 over Fq) and that only one point “at infinity” is missing on CO. So we
have a non-degenerate pairing

TL,n : JC(K)/nJC(K)×H1(GK , JC(Ks))[n] → Br(K)[n].

Let k be the smallest number with qk ≡ 1 mod n. k is called the “embedding
degree”.
Define K(ζn) := Kn. It is a local field with residue field Fqk .
We choose a uniformizing element π ∈ K define L := Kn(π1/n) and take τ
as generator of G(L/Kn).
As seen in Subsection 4.1.1 we can identify H1(GK , JC(Kn))[n] with group
of homomorphisms

{ϕ ∈ Hom(GK , JC(Kn)[n]) with ϕ(τ) = P and φq(P ) = q ◦ P}.
We use the explicit description of the Lichtenbaum pairing given in Example
3.1.5.
Take c ∈ H1(GK , JC(Ks)) corresponding to ϕ with ϕ(τ) = P and n·P = (fP ).
Take Q ∈ Q ∈ JC(K) such that fP (Q) is defined.
Then TL,n(Q, c) is the class of cyclic algebra (L, τ, fP (Q) ·NL/Kn(L∗)).
Hence we get a non-degenerate pairing

Tn,0 : JC(K)/n · JC(K)× JC(Ks)[n](q) → F∗qk/(F∗qk)
n

by the evaluation modulo p of the functions fP with (fP ) = n · P and
P ∈ JC(Ks)[n](q) on JC(K).

4.1.4 The Pairing over Finite Fields

Now begin with a curve CO defined over Fq. Since we evaluate functions on
a p-adic lift C l of CO modulo the maximal ideal p ⊂ OK we get an explicit
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description of the Lichtenbaum-Tate pairing in the case of good reduction
which only uses objects attached to the curve CO. Using Corollary 3.1.8 we
can generalize and get

Theorem 4.1.9 Assume that CO is an affine curve with one singular point
over Fq whose conductor is square free. Let O be the ring of holomorphic
functions O. Take n prime to q (and satisfying some “innocent” extra con-
ditions).
Then we get a non-degenerate pairing

Tn : Pic(O)/n · Pic(O)× JCl(Ks)[n](q) → F∗qk/(F∗qk)
n

which is given by the evaluation modulo p of a function fP with (fP ) = n ·P
and P ∈ JCl(Ks)[n](q) on Pic(O). If CO is regular P and fP can be replaced
by their reduction modulo p, i.e by points and functions over Fq, and we get
a pairing

Tn,0 : Pic(O)/n · Pic(O)× JC(Fqs)[n](q) → F∗qk/(F∗qk)
n.

4.1.5 Evaluation

To get a bilinear structure on class groups of rings of holomorphic functions
on curves over Fq there is a last step to be done. One has to show that the
computation of the pairing is fast.

As we have seen in Subsection 4.1.4 one has to evaluate a function fP con-
tained in the function field F · Fqk at a divisor D on C defined over Fq to
compute Tn.
A naive approach is, because of the high degrees needed in practice, not pos-
sible. The way to reduce the problem to a square-and-multiply algorithm
in a group was found by V. Miller for elliptic curves (applied to the Weil
pairing). The general method uses as background the theory of Mumford‘s
Theta groups which describe extensions of (finite subgroups of) abelian va-
rieties by linear groups.
The basic step for the computation is:
For given positive divisors A1, A2 of degree g find a positive divisor A3 of
degree g and a function h on C such that

A1 + A2 − A3 − gP0 = (h).
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Define the following group law on 〈c〉×K∗: We begin with a divisor class c in
JC(Ks)[n] and choose divisors Ak ∈ k ◦ c. We assume that D is a K-rational
divisor of degree O prime to all Ai. (In fact one can weaken this condition).
Define

(i · c, a1) ◦ (j · c, a2) := ((i + j) · c, a1a2 · hi,j(E)),

with Ai + Aj − Ai+j − gP0 = (hi,j). The assumptions on D guarantee that
each hi,j(D) ∈ K∗. The degree of hi,j is at most g. It can be easily seen by
induction that l ·(c, 1) = (lc, hl−1(D)) where hl−1 is a function on C satisfying
lA− Al−1 − (l − 1)gP0 = hl−1. Hence the n-fold application gives the result
(0, f(D)), where f is a function on C with (f) = nA1.

Now we can use the group structure on 〈c〉 ×K∗ and apply the square- and
multiply algorithm to evaluate f at E in O(log(n)) basic steps.

Corollary 4.1.10 The Tate- Lichtenbaum pairing eT,n can be computed in
O(log(n)) basic steps over Fqk .

CONSEQUENCE:
We can reduce the discrete logarithm in JC(K)/nJC(K) to the discrete log-
arithm in Br(K)n with the costs O(log(| Fqk) |).
This result is of practical importance only if k is small. In general, the
conditions that Fq, contains `-th roots of unity and that Pic0

C has elements
of order ` rational over Fq with ` in a cryptographically interesting range will
not be satisfied at the same time.
Let χ(φq)C(T ) be the characteristic polynomial of φq. Its zeroes (λ1, . . . , λ2g)
are integers in a number field K and they can and will be ordered such that
λiλg+i = q for 1 ≤ i ≤ g.
Now assume that Fq contains `-th roots of unity and so q ≡ 1 mod `. Then

(1− λi)(1− λg+i) ≡ 2− (λi + λi+g) mod `.

So Pic0
C has elements of order ` if and only if there is an eigenvalue λi of φq

such that a prime ideal of K dividing (`) divides simultaneously(1− λi) and
(1− λi+g).

For elliptic curves this yields
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Proposition 4.1.11 Let E be an elliptic curve defined over Fq and ` a prime
such that ` divides |E(Fq)|. Let φq be the Frobenius endomorphism acting on
E[`]. The corresponding discrete logarithm in E(Fq)[`] can be reduced to the
discrete logarithm in F∗

qk [`] by the use of the Tate-Lichtenbaum pairing if

and only if the characteristic polynomial of φk
q on E is congruent to T 2 − qk

modulo `.

Avoiding elliptic curves with small k is easy. For randomly chosen elliptic
curves k we can expect that k will be large.
But there is an important class of special elliptic curves for which k is always
small: the supersingular elliptic curves. The crucial facts one uses are that
the characteristic p of Fq divides the trace of the Frobenius acting on super-
singular elliptic curves E and that their absolute invariant jE lies either in
Fp or in Fp2 .

Let us discuss the easiest case in detail. We assume that p > 3 and jE ∈ Fp.
Let E0 be an elliptic curve defined over Fp with invariant jE. Let T 2−aT +p
be the characteristic polynomial of φp on E0. One knows that a = λ · p with
Λ ∈ Z. By the estimate

|1− λ · p + p| ≤ 2
√

p + (p + 1) with λ ∈ Z
we get that λ = 0. Hence the eigenvalues λ1, λ2 of φp acting on E0 satisfy

λ1 = −λ2 and λ1 · λ2 = p

and so λi = ±√−p.
Assume now that q = pd. Since E becomes isomorphic to E0 over Fq2 the
characteristic polynomial χ(φq2(T ) of the Frobenius endomorphism on E over
Fq2 is equal to

T 2 − (λ2d
1 + λ2d

2 ) + q2 = T 2 − 2λ2d
1 + λ4d

1 )2 = (T − λ2d
1 )2.

Since, by assumption, E(Fq) has elements of order ` we get that ` divides
(1− λ2d

1 ).
Since λ2

1 = −λ1 ·λ2 = −p it follows that ` divides 1− (−p)d. But this implies
that k = 1 if d is even, and k = 2 if d is odd.

The other cases can be treated by similar considerations. As result we get



4.1. THE LICHTENBAUM-TATE PAIRING OVER LOCAL FIELDS 61

Proposition 4.1.12 Let E be a supersingular curve over Fq with q = pd.
Assume that E has a Fq-rational point of order `.
Let k be the smallest natural number such that `|qk − 1.
Then k ≤ 6.
If jE ∈ Fp and p > 3 then k ≤ 2.
If p = 2 then k ≤ 4.

In general one has the

Theorem 4.1.13 Let A be a supersingular abelian variety of dimension g
over Fq, then there exists an integer k(g) such that, for all natural numbers
r, the degree k is bounded by k(g).

One finds the number k(g) in papers of S. Galbraith.

It is easy to implement the algorithm, and one can find it at many places
including various tricks which speed up the pairing.
For the constructive applications it is necessary to have an embedding degree
∼ 12 · g. It is a very nice problem in computational number theory to find
such k. For elliptic curves the situation is not so bad. But for g > 1 not
much is known if JC is not supersingular.
A successful approach to this problem could be interesting since one can
speed up the computation of Tn by a factor g in interesting protocols.

4.1.6 Acceleration for Genus > 1

Let C be a (hyperelliptic) curve of genus g defined over Fq with a rational
Weierstraß point which we take as point P∞ at infinity. Let O be the ring of
holomorphic functions on CO := C \ {P∞}.
We recall that the addition law on

Pic(O)× Fqk

can be computed by Cantor’s algorithm, or, more efficiently for g ≤ 4, by
explicit formulas.
There is a special subset in Pic(O)×Fqk corresponding to points P ∈ CO(Fqk).
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It is well known that the additions of two ideal classes is considerably faster
if one of the summands is in CO(Fqk).

We look at the following situation which is desirable for cryptographic use.
Assume that n = ` a prime number which does not divide q, and that there
are exactly `− 1 elements of order ` in Pic(O).
Let k be as above, minimal with

` | qk − 1.

For many cryptographic applications one needs a point P ∈ Pic(O)[`] and a
point Q ∈ Pic(O × Fqk) with

T`(Q, P ) 6= 1.

Proposition 4.1.14 (For q large enough we have:) For any random point
Q ∈ C(Fqk) we get

T`(Q, P ) 6= 1.

The proof and applications are given in [11].

Choosing Q according to the proposition will reduce the evaluation of the
pairing by a factor g, and since for k large enough this evaluation is rather
expensive it is worthwhile to do so.



Chapter 5

Globalization of Brauer Groups

In the previous chapter we have seen that DL-problems related with class
groups of curves over Fq are, at least in principle, related with the com-
putation of invariants of elements in the Brauer groups of local fields, and
Proposition 4.1.8 states that this computation is equivalent with the com-
putation with the classical Discrete Logarithm in finite fields. We try to go
further by interpreting the local field as completion of a global field. The
key tools for this are delivered by the global duality theorem and its conse-
quences, in particular the Hasse-Brauer-Noether sequence for Brauer groups
which we recall:

Theorem 5.0.15 Let K be a global field and n ∈ N odd and prime to
char(K).

0 → Br(K)[n]
⊕p∈ΣK

ρp−→
⊕
p∈ΣK

Br(Kp)[n]
Σp∈ΣK

invp−→ Z/n → 0

is exact.

5.1 Reciprocity Laws

We use the sequence of Hasse-Brauer-Noether.

63
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Proposition 5.1.1 Assume that we have a curve CO defined over K with
properties as above.
Take c ∈ Pic(O) and ϕ ∈ H1(GK , Pic(O))[n] with localizations cp respectively
ϕp.
Then ∑

p∈ΣK

invp(TL,n(c, ϕ)) = 0.

Hence we have relations between local discrete logarithms modulo different
places both on abelian varieties, e.g. elliptic curves, and in the multiplicative
group.

The hope is that by these reciprocity laws we can compute discrete logarithms
in geometrically defined groups Aq defined over Fq by first lifting them to
groups Ap over a local field Kp with residue field Fq, then lifting further to
a global field K and finally passing to other places {p′} ⊂ ΣK where this
computation is easier.
To realize this idea we have to find global geometric objects over K with
given reduction modulo p which are arithmetically accessible. And then we
need “enough” test functions ϕ to exploit Proposition 5.1.1. This leads to
hard problems in global number theory, and in the moment it is totally open
whether anything useful will come out of this approach for abelian varieties.
The situation is much better if we look at the classical Discrete Logarithm in
the multiplicative group of Fq. Our global geometric object is the algebraic
group Gm, and we are working with the duality theorem 2.3.1 with p = q = 1
(i.e. we use evaluation pairings with Dirichlet characters).
This approach is taken in the paper of Huang and Raskind in [15]. In the
light of their results a realistic hope is that one can shift the computation
of discrete logarithms in roots of unity of order n in arbitrary fields Fq with
n | q − 1 to fields Fq′ with q′ not much larger than n.
Here we give an obvious result.

Proposition 5.1.2 Let m be a divisor of K. We assume that there is a
cyclic extension L of odd degree n of K which is unramified outside of the
set Tm of places in the support of m.
Let τ be a generator of G(L/K). For p /∈ Tm let φp be a Frobenius automor-
phism at p in G(L/K). By fp we denote a number for which τ fp = φp holds.
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For all elements a ∈ K∗ we have

∑
p∈Tm

invp(A)p ≡ −

 ∑

p/∈Tm

wp(a))fp


 mod n

where wp is the normalized valuation in p and A is the cyclic algebra (L, τ, a·
NL/K(L∗)).

5.1.1 Application

If we can compute (enough of) the numbers fp we can compute

• the order of the ideal class group of the order in K with conductor m,
in particular Euler’s totient function ϕ(m)

• the discrete logarithm in F∗q if m is a prime with residue field Fq,

and

• get a very subtle descriptions of of cyclic extensions of K

5.1.2 Index-Calculus in Global Brauer Groups

Motivated by Proposition 5.1.2 we search for (heuristic) algorithms to de-
termine the numbers fp which characterize the Frobenius automorphisms at
places p of K related to cyclic extensions with conductor dividing an ideal
m.
A possible method to do this (with subexponential complexity) is an index-
calculus algorithm of the type one is used to see in factorization algorithms.
A possible method to do this (with subexponential complexity) is an index-
calculus algorithm of the type one is used to see in factorization algorithms.
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For simplicity we restrict ourselves in the following to the case K = Q and so
Fq = Fp. It is obvious that we can extend our considerations to all number
fields in which we have a fairly explicit arithmetic at hand which allows to
compute principal ideals with only “small” prime divisors.

The equations in Proposition 5.1.2 can be seen as a system of linear equations
relating the indeterminates fp for p prime to m and invp(A) for p | m. The
basic task is to compute fp and for this we use cyclic algebras with trivial
invariants at primes dividing m.
At the other primes we want to have wp(a) 6= 0 in a certain distinguished set
which is on the one hand big enough such that many elements a satisfying
the local conditions can be found, and which is on the other hand not small
enough to make linear algebra feasible.

5.1.3 Smooth Numbers

The key concept is the notion of smooth numbers.
Let B be a natural number.

Definition 5.1.3 A number n ∈ N is B-smooth if all prime numbers divid-
ing n are bounded by B.

The following result states how many smooth numbers are to be expected.

Theorem 5.1.4 (Theorem of Canfield-Erdös-Pomerance)
Let x, y be natural numbers which grow asymptotically such that (for some
fixed ε ∈]0, 1[) we have

(log x)ε < u < (log x)1−ε

with u = log x/ log y and x large enough.
Let ψ(x, y) be the number of numbers n < x which are y-smooth.
Then

ψ(x, y) = xu−u(1−o(1))

asymptotically for x →∞.
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Example 5.1.5 Assume that y = Lx(1/2, c). Then

ψ(x, y)/x ∼ Lx(1/2,−1/2c).

Hence the heuristic probability to find a smooth number with smoothness
bound B = Lx(1/2, c) in a random walk in [1, x] is Lx(1/2,−1/2c).
If we want to find B such numbers we have (again heuristically) to make
∼ Lx(1/2, c)Lx(1/2,−1/2c) = Lx(1/2,

2c−1
2c

) trials.

We are now ready to state the most simple version of the index-calculus
algorithm we have in mind.

5.1.4 Example: K = Q

Take K = Q. We use the notation and assumptions of Proposition 5.1.2.
The congruence in this proposition can be seen as solution of a system of
linear equations relating the variables fp for p prime to m and invp(A) for
p | m. Note that the system is solvable modulo n since a cyclic extension
unramified outside of m exists by assumption.
Let d be the smallest natural number ≥ √

m.
For small δ take a1(δ) := d + δ, a2(δ) := c0 + 2δ · d + δ2 with c0 = d2 −m.
Then at primes dividing m the invariants of the cyclic algebras attached to a2

1

and a2 are equal, and so for primes p prime to m the corresponding numbers
fp are solutions modulo n of the equations

Lδ :
∑

p∈P,p prime to m

(2wp(a1(δ))− wp(a2(δ)))Xp = 0.

We want to get equations with coefficients equal to 0 for p > B for a certain
convenient bound B1, i.e. the numbers a1 and a2 have to be B-smooth. Let
S be the number of primes ≤ B.
Now choose a relatively small number L and search δ ≤ L (using sieves)
yielding such smooth pairs (a1(δ), a2(δ)).
Assume that we have found a system L of S Z-independent equations.

Proposition 5.1.6 det(L) is a multiple of ϕ(m).

1B has to be large enough so that we can expect that not all primes ≤ p are split in L
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In general this multiple will be rather big.
In a master thesis in Essen (2006) A. Timofeev did many experiments.
The nice result was that after applying the algorithm twice in all experiments
the gcd of the two determinants was equal to ϕ(m).

5.1.5 A Variant: Relations Arising from Quadratic Fields

We are interested in cyclic extensions L of odd degree ` with conductor m
over Q and generator τ of G(L/Q). The composite of such an extension with
a quadratic extension field K of Q has the same properties. So we can use
cyclic algebras over K given by a pair A = (τ, c) with c ∈ K∗. For places
p ∈ ΣK we have numbers fp such that τ fp = φp. If p ∈ p is inert in K then
fp = 2fp. Else we get fp = fp for p ∈ p.
We need that the sum of the invariants of A taken over all places dividing m
is zero. This is certainly the case if c is prime to m and if the norm of c is
congruent to 1 modulo m. If we assume that all primes dividing m are split
in K and that the class number of K is prime to ` we get that there is an
extension cyclic of degree ` and unramified outside of m if and only ` | ϕ(m).
So we can use relations by cyclic algebras over K for our system of equations
of the type described in Proposition 5.1.2.
We choose ε ∈ N and d ∈ Z such that d is not a square, d is prime to ε and
d ≡ ε2 mod m. To simplify matters we shall assume that ε is odd and d
even. We denote by Kd the field Q(

√
d).

We take u ∈ Z with gcd(εd, 1− u4) = 1. (This implies that u is even.)
The element

c =
1 + u2

2u
+

1− u2

2εu

√
d

has norm
ε2(1 + u2)2 − (1− u2)2d

4ε2u2
≡ 1 mod m

and so we get ∑
p∈ΣK

wp(ε(1 + u2) + (1− u2)
√

d)fp

≡
∑

p∈ΣK

wp(2εu)fp mod `.
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Some computations yield:
∑

p∈P; p split in Kd

wp(ε
2(1 + u2)2 − (1− u2)2d)fp

−
∑

p∈P; p split in Kd

wp(2εu)fp

≡ 0 mod `.

Assume that both εu and

ε2(1 + u2)2 − (1− u2)2d

are B-smooth. Then we have found an equation of the wanted form.

5.2 Construction of Elements in the Brauer

Group of Global Fields

Motivated by the reciprocity laws and index-calculus, we are looking for
more methods to construct elements in the Brauer group of global fields.
The theoretical background for the success (or failure) is the duality theorem
of Tate-Poitou. We can try to use

• Pairings with Dirichlet Characters [15]

• Pairings with Principal Homogenous Spaces with abelian varieties in-
stead of using the multiplicative group. The arithmetic of abelian va-
rieties predicts that this is much more difficult than using characters.
Perhaps Euler systems attached to Heegner points could be interesting
sources.

• As variant one could study Cassel’s Pairing using Tate-Shafarevich
groups and ending in the second cohomology group of the idele class
group which is in fact the right global object from the point of view of
class field theory.

• Instead of Brauer groups of curves one could try to use Brauer groups
of higher dimensional varieties. Interesting beginnings for this can be
found in [17].
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