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Introduction

Colliot-Thélene [CT] uses the technique of Kollar, Miyaoka, and Mori to prove the

following result.

THEOREM A: Let K be an ample field of characteristic 0, x a transcendental element
over K, and G a finite group. Then there is a Galois extension F' of K (x) with Galois

group G, regular over K. Moreover, F' has a K-rational place .
In fact, Colliot-Thélene proves a stronger version:

THEOREM B: Given a Galois extension L/K with Galois group I" which is a subgroup
of G, one can choose F' and ¢ so that the residue field extension of F//K (x) under ¢ is
L/K.

Case I' = G of Theorem B means that K has the arithmetic lifting property of
Beckmann and Black [BB].

As the results of Kollar, Miyaoka, and Mori are valid only in characteristic 0,
Colliot-Thélene’s proof works only in this case. Nonetheless, Theorem A holds in ar-
bitrary characteristic ([Ha, Corollary 2.4] for complete fields, [Pol, Main Theorem A];
see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extends
Theorem B to arbitrary characteristic.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic.
In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore this
note can be considered a sequel to [HJ1]; a large portion of it recalls the situation and
facts considered there.

We also notice that if K is PAC and F' is an arbitrary Galois extension of K(x)
with Galois group G, regular over K, then, for every Galois extension L/K with Galois
group which is a subgroup of GG, we can choose ¢ so that the residue field extension of
F/K(x) under ¢ is L/K. (After the first draft of this note has been written, P. Débes
informed us that he also made this observation in [De, Remark 3.3].) This answers a

question of Harbater. Notice that this stronger property does not hold for an arbitrary

ample field K [CT, Appendix].



The idea (displayed in our Lemma 2.1) to use the embedding problem G x G — G
in order to obtain the arithmetic lifting property has been used in [Po2]; we are grateful

to F. Pop for making his notes available to us.

1. Embedding problems and decomposition groups

Let K/Kj be a finite Galois extension with Galois group I'. Let x be a transcendental
element over K. Put FEy = Ky(z). Suppose that I' acts (from the right) on a finite
group G; let I' x G be the corresponding semidirect product and n: I' x G — T' the

canonical projection. We call
(1) mI'xG—T=G(K/Ky)

a finite constant split embedding problem. A solution of (1) is a Galois ex-
tension F' of Ey such that K C F, G(F/Ep) =T x G, and 7 is the restriction map
resg: G(F/Ey) — G(K/K)y).

In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Pol]:

PROPOSITION 1.1: Let Ky be an ample field. Then each finite constant split embedding
problem (1) has a solution F such that F has a K-rational place. (In particular, F/K

is regular.)

In this section we show that the proof of Proposition 1.1 in [HJ1] yields a stronger

assertion.

LEMMA 1.2: Let F be a solution of (1). Put Fy = F'. Let ¢: F — K, be a K-
place extending a Ky-place of Ey. Assume that ¢ is unramified in F'/E, and let D,
be its decomposition group in F/Ey. Then ¢(F') O K and the following assertions are

equivalent:

(a) p(F) =K andI' = Dy;

(b) T'2 Dy;

(c) p(Fo) = Ko;

(d) ¢(F) =K and o(f7) = @(f)Y for each v € I and f € F with ¢(f) # oc.
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Proof: As K C F, we have K = ¢(K) C ¢(F). Since the inertia group of ¢ in F/E
is trivial, we have an isomorphism 6: D, — G(¢(F')/Ky) given by

(2) o(f) =o(f)’,  yeD,, feF of)+# 0.

Hence |Dy,| = [p(F') : Ko] > [K : Ko] = |T'|. This gives (a) < (b).

Since ¢ is unramified over Ey, the decomposition field F'P# is the largest inter-
mediate field of F//Ey mapped by ¢ into Ky, and hence (b) < (c).

Clearly (d) = (c). If o(F) = K, apply (2) to f € K to see that 0(y) = ~ for all
v € D,. Hence (a) = (d). |

Remark 1.3: Let Ky be an ample field and let F' be a solution of (1). Suppose that F'
has a K-rational place extending Ky-places of Fy and unramified over Fy such that T’
is its decomposition group in F'/Ey. Then F has infinitely many such places.

Indeed, put Fy = F'. Recall that Fy is regular over K. By Lemma 1.2,
(a) the assumption is that there is a Ky-place ¢: Fy — Ky unramified over Ky(z), and
(b) we have to show that there are infinitely many such places.

But (a) = (b) is a property of an ample field. i

PROPOSITION 1.4: Let Ky be an ample field. Then each finite constant split embedding
problem (1) has a solution F with a K-rational place of F' extending a Ky-place of Ej

and unramified over Ey such that I" is its decomposition group in F'/Ej.
Proof: Put F = K(z) = KKy(x).

PART A: As in the proof of [HJ1, Theorem 6.4], we first assume that Ky is complete
with respect to a non-trivial discrete ultrametric absolute value, with infinite residue
field and K/Ky is unramified.

In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proof

shows that, for every b € Ky with |[b| > 1, z — b extends to a K-homomorphism

1
r—Cy

to a K-place pp: Q — KU{oo} of the @ = Quot(R). Furthermore, [HJ1, Lemma 1.3(b)]

vp: R — K, where R is the principal ideal ring K{

| i € I'}. From there it extends

gives an F-embedding \: F' — ). The compositum ¢ = ¢ o A is a K-rational place of
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F. Excluding finitely many b’s we may assume that ¢ is unramified over Ey. To verify
that ¢ satisfies condition (d) of Lemma 1.2, we first recall the relevant facts from [HJ1].
(a) [HJ1, Proposition 5.2, Construction B] The group I' = G(K/K)) lifts isomorphically

to G(E/Ey). By the choice of the ¢; we have (- )7 = lcj’ for each vy € I'. It

r—cCy xr—

follows that I' continuously acts on R in the following way

(ao-i-Ziam(x_lci)ny = a] -l-ZiaZn(x_lcz)",

icl n=1 icl n=1

This action induces an action of I on Q).
(b) [HJ1, (7) on p. 334] The above mentioned action of I' on ) defines an action of I"
on the Q-algebra

N:Ind§Q:{Za99\ agEQ}

0ecG

in the following way:

(Zawy:Zagm ag €Q, yeT.

0eG 0eG

Furthermore, the field F is a subring of N [HJ1, p. 332] and T" acts on it by restriction
from N [HJ1, Proof of Proposition 1.5, Part A].

(¢) The embedding A: F' — @ is just the restriction to F' of the projection

Zagﬁ — aq

from N = Ind¥Q — Q [HV, Proposition 3.4].
(d) The place p: @ — KU{oo} is induced from the evaluation homomorphism ¢: R —
K given by [HJ1, Remark 3.5]

¢b<a0+2iam(x%@)n> :ao—i—Ziam(b_lCi)n.

el n=1 icl n=1

In order to prove condition (d) of Lemma 1.2 it suffices to show that both A and ¢y, are

I'-equivariant.



Let f =) ycqpaef € F C N. Then, by (b) and (c),

A=A =ai = (A2 age»7 — \f).

0ecG 0eG

Furthermore, let 7 = ag + Y ;c; Y omey in ( )n € R. By (a) and (d),

Xr—Cj

gpb(rw):gpb<a3+22azn( _1 7)n>:a3+zzazn(b_1 'Y)n
i€l n=1 TG i€l n=1 K
= (a0 + Zzam(b_lc)ny = eelr)”-

i€l n=1
Thus ¢y is I'-equivariant.

PART B: K| is an arbitrary ample field. As in the proof of [HJ1, Theorem 6.4] let K,
be the field of Laurent series over Ky. Then K = KK, is an unramified extension of
K, with Galois group I' and infinite residue field.

By Part A, Ko(z) has a Galois extension F' which contains K(z), such that
G(F/Ko(z)) = T x G and the restriction map G(F/Ky(x)) — G(K/Ky) is the pro-
jection m: I' x G — I. Furthermore, there is b € Ko such that the place x — b of Ky (z)
extends to an unramified K-place ¢: F — K and ¢(FT) = Ky. Put m = |G.

Use Weak Approximation to find y € FT mapped by the m distinct extensions of
x — bto FT into m distinct elements of the separable closure of K: then FT = K (z,y).

Thus there exist polynomials f € K, (X, Z], g€ K, [X,Y], elements z € F,yeFT,
and elements b, ¢ € K 0, such that the following conditions hold:

(3a) F = Ky(x,2), f(x,Z) = irr(z, Ko(z)); we may therefore identify G(f(x, Z), Ko(z))
with G(F/Ko(z));
(3b) FT' = Koy(x,y), whence F = K(z,y), and g(z,Y) = irr(y, Ko(z)); therefore

g(X,Y) is absolutely irreducible;

(3¢) discrg(b,Y) # 0 and g(b,c) = 0.

All of these objects depend on only finitely many parameters from Ky. So, there

are uy, ..., u, € Ko So, let uq, ..., u, be elements of K such that the following condi-

tions hold:



(4da) F = Ky(u,x, z) is a Galois extension of Ky(u, ), the coefficients of f(X, Z) lie in

Ko[ul, f(z, 2) = irr(z, Ko(u, ), and G(f (&, 2), Ko(w,2)) = G(f (2, Z), Ko(%));
(4b) the coefficients of g lie in K[u]; hence g(z,Y) = irr(y, Ko(u,z)); furthermore,

Ko(u,z,y) = F';

(4c) b,c € Kolu] and discrg(b,Y") # 0 and g¢(b, c) = 0.

Since K, has a K-rational place, namely, x — 0, the field K, and therefore also
Ky(u) are regular extensions of K. Thus, u generates an absolutely irreducible variety
U = Spec(Ky[u]) over Ky. By Bertini-Noether [F.J, Proposition 8.8] the variety U has
a nonempty Zariski open subset U’ such that for each u’ € U’ the Ky-specialization
u — u’ extends to a K-homomorphism ": K|u,z,z,y] — K[u',z,2,y'] such that the
following conditions hold:

(5a) f'(x,z") =0, the discriminant of f’'(z,Z) is not zero, and F’' = Ky(u’, z, 2") is the
splitting field of f/(z, Z) over Ky(u’,x); in particular F'/Ky(u', z) is Galois;
(5b) ¢'(X,Y) is absolutely irreducible and ¢'(z,y’) = 0; so ¢'(x,Y) = irr(y/, K(u0, x));

furthermore, Ko(u', z,y') = (F')';

(5¢) b, € Ko[u'] and discrg’(b',Y) # 0 and ¢'(V/, ) = 0.

As K is existentially closed in Ky, and since u € U(Kj), thereis u’ € U(Kj). Now

repeat the end of the proof of [HJ1, Lemma 6.2] (from “By (5a), the homomorphism. ..”

to conclude that F’ is a solution of (1).

F' F F
e
7 P : - ‘
K(z) — |— K(u,2) —|— K(x)
e - L7
K ———— K(u) | K ‘
K()(ZIT) - | Ko(u,l’) | IA{O(w)
% —~ s
KO KO(u) KO

Condition (5c) ensures that the place z — b’ of Ko(x) is unramified in in (F),
hence in F’, and extends to a Ky-rational place of (F’)Y'. This ends the proof by
Lemma 1.2. |



2. Lifting property over ample fields

Let I" be a subgroup of a finite group G. Let I" act on G by the conjugation in G

9 =~""g7.

and consider the semidirect product I" x G. To fix notation, ' x G = {(v,9)| v €T, g €
G} and the multiplication on I' x G is defined by

(71791)(72792) = (7172;9?292)-

Notice that I'x G = T' x G by (v, g) — (7,79). However, the above presentation gives a
different splitting of the projection I' x G — I'. In particular, we have an epimorphism

p: I'x G — G given by (v, g) — vg. Let N denote its kernel.

LEMMA 2.1: Let K be a field, K a Galois extension of Ky with Galois group I', and x

a transcendental element over K. Assume that (1) has a solution F with a K-rational

place ¢ of F' extending a Ky-place of Ko(x) and unramified over Ky(z) such that I" is

its decomposition group in F/Ky(z). Let F = FN and let ¢ be the restriction of ¢ to

F. Then

(6a) F' is a Galois extension of Ko(z) and G(F/Ky(z)) = G;

(6b) F/Ky is a regular extension;

(6¢) @ represents a prime divisor p of F'/Ky with decomposition group I" in F/K(x)
and residue field K.

Proof: By assumption, F is a Galois extension of Ko(x) containing K, with Galois
group I'x G such that the restriction G(F'/Ko(z)) — G(K/Ky) is the projection I'x G —
I', and a /K is regular. Furthermore, ¢: F->Kisa K-place unramified over Ky(x),
with decomposition group A = {(,1)| v € T} = I in F/Ky(z) and residue field
extension K /K. In particular, Fis regular over K.

From the definition of F we get (6a) and p(A) = I' < G is the decomposition
group of the restriction ¢: F' — K of ¢ to F. As |A] = [K : Ky], the residue field of
0is K. AsT x G = NG, the fields F = FY and K(z) = FG are linearly disjoint over
Ky(x). Therefore F' is regular over Kj. |



Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following
result, originally proved by Colliot-Thélene [CT, Theorem 1] in characteristic O:

THEOREM 2.2: Let Ky be an ample field, G a finite group, I' a subgroup, K a Galois

extension of Ky with Galois group I', and x a transcendental element over Ky. Then

there is F' that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F'/ Ky with decomposition group I" in
F/Ky(x) and residue field K.

Remark 2.3: 1In case of I' = G, Theorem 2.2 says that an ample field Ky has the
so-called arithmetic lifting property of Beckmann-Black [BB]. |

If Ky is a PAC field, an even stronger property holds.

THEOREM 2.4: Let Ky be a PAC field, G a finite group, F a function field of one
variable over Ky, and E a subfield of F such that F/E is Galois with Galois group G.
Let T' be a subgroup of G and K a Galois extension of Ky with Galois group I". Then
there are infinitely many prime divisors p of F'/ Ky with decomposition group I" in F//E
and residue field K.

Proof: By definition, F' is a regular extension of K. In particular, F' is linearly disjoint

from K over Ky. Hence,
G(FK/E)=G(FK/F)x G(FK/EK) =T x G.

Consider the subgroup A = {(v,7) € I' x G| v € '} of G(FK/E). It satisfies the
following conditions:
(7a) A-(I'x1)=T'xTand AN(I'x1)=1.
(7Th) A-(1xG)=T'xGand AN(Gx1)=1.

Denote the fixed field of A in FFK by D and the fixed field of the subgroup I' of
G = G(F/E) by Fy. Condition (7) translates via Galois theory to the following one:
(8a) DNF = F and DF = FK.
(8b) DN EK = E and DK = FK.

As F/K, is regular, so is FK/K. Hence, by (8b), D/Kj is a regular extension.
Since K is PAC, there exist infinitely many Ky-places ¢: D — Kj. Use (8b) to extend
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each such ¢ to a K-place ¢: FK — K. As [FK : D] = |A| = |T'| = [K : Ky|, D is
the decomposition field of v in FK/E. By (8a), Fy is the decomposition field of 1|z in
F/E. §

COROLLARY 2.5: Let Kq be a PAC field, E a function field of one variable over K, and
G a finite group. Fori=1,...,n let I'; be a subgroup of G and K,; a Galois extension
of Ky with Galois group I';. Then E has a Galois extension F' such that

(9a) G(F/F) = @G.

(9b) F/Ky is a regular extension.

(9¢) For each i there exists a prime divisor p,; of F//Ky with decomposition group over

E equal to I'; and with residue field K;. Moreover, p1,...,p, are distinct.

Proof:  The existence of F' with the properties (9a) and (9b) is well known [HJ2,
Theorem 2]. Now apply Theorem 2.4 successively to I'; and K; instead of to I and K.
|
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