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Introduction

The ultimate main goal of Galois theory is to describe the structure of the absolute

Galois group Gal(Q) of Q. This structure will be specified as soon as we know which

finite embedding problems can be solved over Q. If every finite Frattini embedding

problem and every finite split embedding problem is solvable, then every embedding

problem is solvable. However, not every finite Frattini problem over Q can be solved.

For example,

(Gal(Q)→ Gal(Q(
√
−1)/Q), Z/4Z→ Gal(Q(

√
−1)/Q))

is an unsolvable Frattini embedding problem. So, one may ask:

Problem A: Is every finite split embedding problem over Q solvable?

More generally, one would like to know:

Problem B: Let K be a Hilbertian field. Is every finite split embedding problem over

K solvable?

An affirmative answer to Problem B will follow from an affirmative answer to the

problem for the subfamily of Hilbertian fields consisting of all rational fields:

Problem C (Débes–Deschamps): Let K be a field and x a variable. Is every finite

split embedding problem over K(x) solvable?

* For more details, including exact references, see “Algebraic Patching”, Springer 2011, by
Moshe Jarden.
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1. Ample Fields

The most significant developement around Problem C is its affirmative solution for

ample fields K. This family includes two subfamilies that seemed to have nothing in

commen: PAC fields and Henselian fields. Indeed, if K is a PAC field and v is a

valuation of K, then the Henselization Kv of K at v is the separable closure Ks of K.

In particular, if a PAC field is not separably closed, then it is not Henselian.

Florian Pop made a surprising yet simple and usefull obsrevation that both PAC

fields and Henselian fields are existentially closed in the fields of formal power series

over them. This property is one of a few equivalent definitions of an ample field.

Proposition 1.1: The following conditions on a field K are equivalent:

(a) For each absolutely irreducible polynomial f ∈ K[X,Y ], the existence of a point

(a, b) ∈ K2 such that f(a, b) = 0 and ∂f
∂Y (a, b) 6= 0 implies the existence of infinitely

many such points.

(b) Every absolutely irreducible K-curve C with a simple K-rational point has infinitely

many K-rational points.

(c) If an absolutely irreducible K-variety V has a simple K-rational point, then V (K)

is Zariski-dense in V .

(d) Every function field of one variable over K that has a K-rational place has infinitely

many K-rational places.

(e) K is existentially closed in each Henselian closure K(t)h of K(t) with respect to the

t-adic valuation.

(f) K is existentially closed in K((t)).

Proof of (f) =⇒ (a): Inductively suppose there exist (ai, bi) ∈ K2, i = 1, . . . , n,

such that f(ai, bi) = 0 and a1, . . . , an are distinct. We choose a′ ∈ K[[t]], t-adically

close to a such that a′ 6= ai, i = 1, . . . , n. Then f(a′, b) is t-adically close to 0 and
∂f
∂Y (a′, b) 6= 0. Since K((t)) is Henselian, there exists b′ ∈ K[[t]] such that f(a′, b′) = 0

and ∂f
∂Y (a′, b′) 6= 0. Since K is existentially closed in K((t)), there exists ai+1, bi+1 ∈ K

such that f(ai+1, bi+1) = 0 and ai+1 6= a1, . . . , an. This concludes the induction.

Corollary 1.2: Every ample field is infinite.
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It is possible to strengthen Condition (b) of Proposition 1.1 considerably.

Lemma 1.3 (Arno Fehm): Let K be an ample field, C an absolutely irreducible curve

defined over K with a simple K-rational point, and ϕ: C → C ′ a separable dominant

K-rational map to an affine curve C ′ ⊆ An defined over K. Then, for every proper

subfield K0 of K, card(ϕ(C(K)) r An(K0)) = card(K).

The proof uses among others a trick of Jochen Koenigsmann that Florian Pop

applied to prove Corollary 1.4(b) below.

Proposition 1.4: Let K be an ample field, V an absolutely irreducible variety defined

over K with a K-rational simple point, and K0 a subfield of K. Then:

(a) K = K0(V (K)).

(b) card(V (K)) = card(K).

Proposition 1.5 (Pop): Every algebraic extension of an ample field is ample.

Problem 1.6: Let L/K be a finite separable extension such that L is ample. Is K

ample?
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2. Examples of Ample Fields

The properties causing a field K to be ample vary from diophantine, arithmetic, to

Galois theoretic.

(a) PAC fields, in particular, algebraically closed fields.

(b) Henselian fields.

More generally, we say that a pair (A, a) consisting of a domain A and an ideal a

of A is Henselian if for each f ∈ A[X] satisfying

f(0) ≡ 0 mod a and f ′(0) is a unit mod a

there exists x ∈ a such that f(x) = 0.

Pop has observed that the proof that Henselian fields are ample can be adjusted

to a proof that if (A, a) is a Henselian pair, than Quot(A) is ample.

(c) If A is complete with respect to a nonzero ideal a, then (A, a) is a Henselian pair,

hence Quot(A) is ample.

For example, K((X1, . . . , Xn)), with n ≥ 1 and K is any field are ample. So is, for

example, the field Quot(Z[[X1, . . . , Xn]]). Note that if n ≥ 2, then F = K((X1, . . . , Xn))

is Hilbertian (by Weissauer), hence F is not Henselian (by Geyer) although the ring

K[[X1, . . . , Xn]] is complete and therfore Henselian.

(d) Real closed fields.

(e) Field satisfying a local global principle.

Let K be a field and K be a family of field extensions of K. We say that K is

PKC (or also that K satisfies a local global principle with respect to K) if every

nonempty absolutely irreducible variety defined over K with a simple K̄-rational point

for each K̄ ∈ K has a K-rational point. In this case, if each K̄ ∈ K is ample, then K is

also ample.

For example, let K be a countable Hilbertian field and S a finite set of local

primes of K. Thus, each p ∈ S is an equivalent class of absolute values whose comple-

tion K̂p is a local field. Let Kp = Ks ∩ K̂p. Consider also an e-tuple σ = (σ1, . . . , σe)

taken in random in Gal(K)e (with respect to the Haar measure). Let Ks(σ) be the

fixed field in Ks of σ1, . . . , σe and let Ks[σ] be the maximal Galois extension of K in
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Ks(σ). Then the field

Ktot,S[σ] = Ks[σ] ∩
⋂
p∈S

⋂
ρ∈Gal(K)

Kρ
p

is ample (Geyer-Jarden).

(f) Fields with a pro-p absolute Galois group (Colliot-Thélène, Jarden).

Problem 2.1: Let K be a field such that the order of Gal(K) is divisible by only

finitely many prime numbers. Is K ample?
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3. Finite Split Embedding Problems

The raison d’etre of ample fields is that they are the only known fields for which Problem

C has an affirmative answer.

Theorem 3.1 (Pop, Haran-Jarden): Let K be an ample field, L a finite Galois exten-

sion of K, and x a variable. Suppose Gal(L/K) acts on a finite group H. Then K(x)

has a Galois extension F that contains L and there is a commutative diagram

Gal(F/K(x))

res

��

γ

vvmmmmmmmmmmmmm

Gal(L/K) nH
α // Gal(L/K)

in which α is the projection on the first component and γ is an isomorphism.

The proof of Theorem 3.1 is done in two steps. First one solves the corresponding

embedding problem over the field K̂ = K((t)) using patching. Then one reduces the

solution obtained over K̂(x) to a solution over K(x), using that K is existentially closed

in K̂.

The most striking application of Theorem 3.1 is a solution of a problem of Field

Arithmetic that stayed open for a long time:

Theorem 3.2: Every PAC Hilbertian field K is ω-free (that is, every finite embedding

problem over K is solvable). In particular, if K is countable, then Gal(K) ∼= F̂ω.

For the next application we need an improvment of Theorem 3.1.

Theorem 3.3 (Harbater-Stevenson, Pop, Haran-Jarden): Let K be an ample field and

x a variable. Then every finite split embedding problem over K(x) has as many solutions

as the cardinality of K.

In particular, this theorem applies whenK is algebraically closed. Since Gal(K(x))

is projective, we get the following generalization of a theorem that was proved in char-

acteristic 0 with the help of Riemann existence theorem.
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Corollary 3.4 (Harbater, Pop, Haran-Jarden): Let K be an algebraically closed field

of cardinality m. Then Gal(K) ∼= F̂m.

Actually, Theorem 3.3 was proved in a stronger form, in which K(x) is replaced

by an arbitrary function field E of one variable over K and the solution field is regular

over the field of constants of E.

Harbater-Stevenson proved that every finite split embedding problem over

K((t1, t2)) has as many solutions as the cardinality of K. Moreover, this property

is inherited by K((t1, t2))ab. Finally, the absolute Galois group of the latter field is

projective. Together, this proves the following result:

Theorem 3.5: Let K be a separably closed field and E = K((t1, t2)). Then Gal(Eab)

is isomorphic to the free profinite group F̂m of cardinality m = card(E).

Theorem 3.3 can be improved even more.

Theorem 3.6 (Bary-Soroker, Haran, Harbater; Jarden): Let E be a function field of

one variable over an ample field K. Then Gal(E) is semi-free. That is, every finite

split embedding problem over E

(res: Gal(E)→ Gal(F/E), α: G→ Gal(F/E))

has card(E)-linearly disjoint solution fields Fα (i.e. the fields Fα are linearly disjoint

extensions of F .)

Combining this proposition with results of Bary-Soroker-Haran-Harbater, Efrat,

and Pop, we were able to prove the following result.

Theorem 3.7 (Jarden): Let K be a PAC field of cardinality m and x a variable. For

each irreducible polynomial p ∈ K[x] and every positive integer n satisfying char(K) - n

let n
√
p be an nth root of p such that ( mn

√
p)m = n

√
p for all m,n. Let F = K( n

√
p)p,n.

Then, F is Hilbertian and Gal(F ) ∼= F̂m.

Here is a special case:
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Corollary 3.8 (Jarden): Let K be an PAC field of cardinality m and x a variable.

Suppose K contains all root of unity. Then Gal(K(x)ab) ∼= F̂m.

And here is another example of a semi-free absolute Galois group:

Theorem 3.9 (Pop): Each of the following fields K is Hilbertian and Ample. More-

over, Gal(K) is semi-free of rank card(K).

(a) K = K0((X1, . . . , Xn)), whre K0 is an arbitrary field and n ≥ 2.

(b) K = Quot(R0[[X1, . . . , Xn]]), where R0 is a Noetherian domain which is a not a

field and n ≥ 1.

More about Theorem 3.9 can be found in Chapter 12 of “Algebraic Patching”.

Problem 3.10: Give an example of non-ample field K such that every finite split

embedding over K(x) is solvable.

Note that the existence of example as in Problem 3.10 will give a negative answer

to Problem C. Conversely, a positive answer to Problem C is a negative answer to

Problem 3.10.

4. Axioms for Algebraic Patching

Let E be a field, G a finite group, and (Gi)i∈I a finite family of subgroups of G that

generates G. Suppose for each i ∈ I we have a finite Galois extension Fi of E with

Galois group Gi. We use these extensions to construct a Galois extension F of E (not

necessarily containing Fi) with Galois group G. First we ‘lift’ each Fi/E to a Galois

field extension Qi/Pi, where Pi is an appropriate field extension of E (that we refer to

as “analytic”) such that Pi ∩ Fi = E and all of the Qi’s are contained in a common

field Q. Then we define F to be the maximal subfield contained in
⋂
i∈I Qi on which

the Galois actions of Gal(Qi/Pi) combine to an action of G.

Pi
Gi

Qi Q

E
Gi

Fi
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The construction works if certain patching conditions on the initial data are sat-

isfied.

Definition 4.1: Patching data. Let I be a finite set with |I| ≥ 2. Patching data

E = (E,Fi, Pi, Q;Gi, G)i∈I

consists of fields E ⊆ Fi, Pi ⊆ Q and finite groups Gi ≤ G, i ∈ I, such that the following

conditions hold.

(1a) Fi/E is a Galois extension with Galois group Gi, i ∈ I.

(1b) Fi ⊆ P ′i , where P ′i =
⋂
j 6=i Pj , i ∈ I.

(1c)
⋂
i∈I Pi = E.

(1d) G = 〈Gi | i ∈ I〉.

(1e) (Cartan’s decomposition) Let n = |G|. Then for every B ∈ GLn(Q) and each i ∈ I

there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′i ) such that B = B1B2.

We extend E by more fields. For each i ∈ I let Qi = PiFi be the compositum

of Pi and Fi in Q. Conditions (1b) and (1c) imply that Pi ∩ Fi = E. Hence Qi/Pi is

a Galois extension with Galois group isomorphic (via restriction of automorphisms) to

Gi = Gal(Fi/E). We identify Gal(Qi/Pi) with Gi via this isomorphism.

Definition 4.2: Compound. The compound of the patching data E is the set F of all

a ∈
⋂
i∈I Qi for which there exists a function f : G→

⋂
i∈I Qi such that

(2a) a = f(1) and

(2b) f(ζτ) = f(ζ)τ for every ζ ∈ G and τ ∈
⋃
i∈I Gi.

Note that f is already determined by f(1). Indeed, by (1d), each τ ∈
⋃
i∈I Gi

can be written as τ = τ1τ2 · · · τr with τ1, . . . , τr ∈
⋃
i∈I Gi. Hence, by (2b), f(τ) =

f(1)τ1···τr .

We call f the expansion of a and denote it by fa. Thus, fa(1) = a and fa(ζτ) =

fa(ζ)τ for all ζ ∈ G and τ ∈
⋃
i∈I Gi.

We list some elementary properties of the expansions:
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Lemma 4.3: Let F be the compound of E . Then:

(a) Every a ∈ E has an expansion, namely the constant function ζ 7→ a.

(b) Let a, b ∈ F . Then a+ b, ab ∈ F ; in fact, fa+b = fa + fb and fab = fafb.

(c) Let 0 6= a ∈ F , then a−1 ∈ F . More precisely: fa(ζ) 6= 0 for all ζ ∈ G, and

ζ 7→ fa(ζ)−1 is the expansion of a−1.

(d) Let a ∈ F and σ ∈ G. Then fa(σ) ∈ F ; in fact, ffa(σ)(ζ) = fa(σζ).

Proof: Statement (a) holds, because aτ = a for each τ ∈
⋃
i∈I Gi. Next observe that

the sum and the product of two expansions is again an expension. Hence, Statement (b)

follows from the uniqueness of the expansions and from the observations (fa+b)(1) =

a+ b = fa(1) + fb(1) = (fa + fb)(1) and fab(1) = (fafb)(1).

Next we consider a nonzero a ∈ F and let τ ∈ G. Using the notation of Definition

4.2, we have fa(τ) =
(
(aτ1)τ2···

)τr 6= 0. Since taking the inverse in
⋂
i∈I Qi commutes

with the action of G, the map ζ 7→ fa(ζ)−1 is the expansion of a−1. This proves (c).

Finally, we check that the map ζ → fa(σζ) has the value fa(σ) at ζ = 1 and it

satisfies (2b). Hence, that map is an expansion of fa(σ), as claimed in (d).

Definition 4.4: G-action on F . For a ∈ F and σ ∈ G put

(3) aσ = fa(σ),

where fa is the expansion of a.

Lemma 4.5: The compound F of the patching data E is a field on which G acts by

(6) such that FG = E. Moreover, for each i ∈ I, the restriction of this action to Gi

coincides with the action of Gi = Gal(Qi/Pi) on F as a subset of Qi.

Proof: By Lemma 4.3(a),(b),(c), F is a field containing E. Furthermore, (6) defines

an action of Ḡ on F . Indeed, a1 = fa(1) = a. Moreover, if ζ is another element of G,

then by (3) and Lemma 4.3(d), (aσ)ζ = fa(σ)ζ = ffa(σ)(ζ) = fa(σζ) = a(σζ).

Claim: FG = E. Indeed, by Lemma 4.3(a), elements of E have constant expansions,

hence are fixed by G. Conversely, let a ∈ FG. Then for each i ∈ I we have a ∈ QGii = Pi.

Hence, by (1c), a ∈ E.
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The action of G on F maps G onto a subgroup Ḡ of Aut(F ). It follows from

Galois theory that F/E is a Galois extension with Galois group Ḡ. In particular,

[F : E] = |Ḡ| ≤ |G|.

Finally, let τ ∈ Gi and a ∈ F . Then, fa(τ) = fa(1)τ = aτ , where τ acts as an

element of Gi = Gal(Qi/Pi). Thus, that action coincides with the action given by (6).

The next goal is to prove that |Ḡ| = G, i.e Gal(F/E) ∼= G. To achieve this goal

we introduce more objects and invoke Cartan’s decomposition. Let

(3) N =
{∑
ζ∈G

aζζ | aζ ∈ Q
}

be the vector space over Q with basis (ζ | ζ ∈ G), where G is given some fixed ordering.

Thus, dimQN = |G|. For each i ∈ I we consider the following subset of N :

(4) Ni =
{∑
ζ∈G

a
ζ
ζ ∈ N | a

ζ
∈ Qi, aηζ = a

ζη
for all ζ ∈ G, η ∈ Gi

}
.

It is a vector space over Pi.

Ni N

Pi
Gi

Qi Q

F

||
||

||
||

E
Gi

Fi

Lemma 4.6: For each i ∈ I. the Q-vector space N has a basis which is contained in

Ni.

Proof: Let Λ = {λ1, . . . , λm} be a system of representatives of G/Gi and let η1, . . . , ηr

be a listing of the elements of Gi. Thus, G = {λkην | k = 1, . . . ,m; ν = 1, . . . , r}. Let

z be a primitive element for Qi/Pi. The following sequence of |G| elements of Ni( r∑
ν=1

(zj−1)ην λkην | j = 1, . . . , r; k = 1, . . . ,m
)
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(in some order) is linearly independent over Q, hence it forms a basis of N over Q.

Indeed, let ajk ∈ Q such that
∑r
j=1

∑m
k=1 ajk

(∑r
ν=1(zj−1)ην λkην

)
= 0. Then

m∑
k=1

r∑
ν=1

( r∑
j=1

ajk(zj−1)ην
)
λkην = 0.

This gives
∑r
j=1 ajk(zj−1)ην = 0 for all k, ν. Thus, for each k, (a1k, . . . , ark) is a solution

of the homogeneous system of equations with the Vandermonde matrix
(
(zj−1)ην

)
. Since

this matrix is invertible, ajk = 0 for all j, k.

Lemma 4.7 (Common lemma): N has a Q-basis in
⋂
i∈I Ni.

Proof: Consider a nonempty subset J of I. Using induction on |J |, we find a Q-basis

in
⋂
j∈J Nj . For J = I this gives the assertion of the lemma.

For each i ∈ I, Lemma 4.6 gives a Q-basis vi of N in Ni, so the result follows

when |J | = 1. Assume |J | ≥ 2 and fix i ∈ J . By induction N has a Q-basis u in⋂
j∈J r{i}Nj . The transition matrix B ∈ GLn(Q) between vi and u satisfies

(3) u = viB.

By (1e), there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′i ) ⊆
⋂
j∈J r{i}GLn(Pj). such

that B = B1B2. Then uB−1
2 = viB1 is a Q-basis of N in

⋂
j∈J Nj . This finishes the

induction.

Lemma 4.8: Let G be a finite group that acts on a field F and set E = FG. If

[F : E] ≥ |G|, then F/E is a Galois extension whose Galois group is G.

Proof: Denote the quotient of G by the kernel of the action of G on F . Then Ḡ

is a finite group of automorphisms of F with fixed field E. By a lemma of Artin

[Lang, Algebra, Lemma VI.1.8], F/E is a Galois extension with Gal(F/E) = Ḡ. By

assumption, |G| ≥ |Ḡ| = |Gal(F/E)| = [F : E] ≥ |G|. Hence, G = Ḡ = Gal(F/E).

Now we are in a position to improve Lemma 4.5.
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Proposition 4.9: The compound F of the patching data E is a Galois extension of E

with Galois group G acting by (3). Moreover, Qi = PiF for each i ∈ I.

Proof: We define a map T : F → N by

T (a) =
∑
ζ∈G

fa(ζ)ζ.

By Lemma 4.3(a),(b), T is an E-linear map. By (2b), fa(ζ)τ = fa(ζτ) for all ζ ∈ G and

τ ∈
⋃
i∈I Gi, so Im(T ) =

⋂
i∈I Ni. By Lemma 4.7, Im(T ) contains |G| linearly indepen-

dent elements over Q, hence over E. Therefore, [F : E] = dimE F ≥ dimE Im(T ) ≥ |G|.

By Lemma 4.5, F/E is a Galois group and E = FG. Hence, by Lemma 4.8, Gal(F/F ) =

G.

Finally, by what we have just proved and by Lemma 4.5, the restriction Gal(Qi/Pi)→

Gal(F/E) is injective. Hence, Qi = PiF .

5. Galois Action on Patching Data

Knowledge of the finite groups that can be realized over a field K does not determine

Gal(K). For that we need control on the finite embedding problems that can be solved

over K. Unfortunately, our methods can handle only “finite split embedding problems”.

However, in some cases (like those that appear in our main results), being able to solve

all finite embedding problem suffices.

A finite split embedding problem over a field E0 is an epimorphism

(1) pr: Γ nG→ Γ

of finite groups, where Γ = Gal(E/E0) is the Galois group of a Galois extension E/E0,

G is a finite group on which Γ acts from the right, ΓnG is the corresponding semidirect

product, and pr is the projection on Γ. Each element of ΓnG has a unique representation

as a product γζ with γ ∈ Γ and ζ ∈ G. The product and the inverse operation are given

in ΓnG by the formulas γζ ·δη = γδ·ζδη and (γζ)−1 = γ−1(ζγ
−1

)−1. A solution of (1) is

a Galois extension F of E0 that contains E and an isomorphism ψ: Gal(F/E0)→ ΓnG

such that pr ◦ ψ = resE . We call F a solution field of (1).
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Suppose the compound F of patching data E (§4) realizes G over E. A ‘proper’

action of Γ on E will then ensure that F is even a solution field for the embedding

problem (1).

Definition 5.1: Let E/E0 be a finite Galois extension with Galois group Γ. Let

E = (E,Fi, Pi, Q;Gi, G)i∈I

be patching data (Definition 4.1). A proper action of Γ on E is a triple that consists

of an action of Γ on the group G, an action of Γ on the field Q, and an action of Γ on

the set I such that the following conditions hold:

(2a) The action of Γ on Q extends the action of Γ on E.

(2b) F γi = Fiγ , P γi = Piγ , and Gγi = Giγ , for all i ∈ I and γ ∈ Γ.

(2c) (aτ )γ = (aγ)τ
γ

for all i ∈ I, a ∈ Fi, τ ∈ Gi, and γ ∈ Γ.

The action of Γ on G defines a semidirect product Γ nG such that τγ = γ−1τγ for all

τ ∈ G and γ ∈ Γ. Let pr: Γ nG→ Γ be the canonical projection.

Proposition 5.2: In the notation of Definition 5.1 suppose that Γ = Gal(E/E0) acts

properly on the patching data E given in Definition 5.1. Let F be the compound of E .

Then Γ acts on F via the restriction from its action on Q and the actions of Γ and G on

F combine to an action of Γ nG on F with fixed field E0. This gives an identification

Gal(F/E0) = ΓnG such that the following diagram of short exact sequences commutes:

1 // G // Γ nG
pr // Γ // 1

1 // Gal(F/E) // Gal(F/E0) res // Gal(E/E0) // 1

Thus, F is a solution field of the embedding problem (1).

Proof: We break the proof of the proposition into three parts.

Part A: The action of Γ on F .

Let i ∈ I and γ ∈ Γ. Then Qi = PiFi, so by (2b), Qγi = Qiγ . Moreover, we

have identified Gal(Qi/Pi) with Gi = Gal(Fi/E) via restriction. Hence, by (2b), for all
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a ∈ Pi and τ ∈ Gi we have τγ ∈ Giγ and aγ ∈ Piγ , so (aτ )γ = aγ = (aγ)τ
γ

. Together

with (2c), this gives

(3) (aτ )γ = (aγ)τ
γ

for all a ∈ Qi and τ ∈ Gi.

Consider an a ∈ F and let fa be the expansion of a (Definition ). Define fγa : G→⋂
i∈I Qi by fγa (ζ) = fa(ζγ

−1
)γ . Then fγa is the expansion faγ of aγ . Indeed, fγa (1) =

fa(1γ
−1

)γ = aγ and if ζ ∈ G and τ ∈ Gi, then τγ
−1 ∈ Giγ−1 . Hence, by (4) with

iγ
−1
, fa(ζγ

−1
), τγ

−1
, respectively, replacing i, a, τ , we have

fγa (ζτ) = fa(ζγ
−1
τγ
−1

)γ =
(
fa(ζγ

−1
)τ
γ−1 )γ

=
(
fa(ζγ

−1)γ
)τγ−1γ

=
(
fa(ζγ

−1
)γ
)τ = fγa (ζ)τ .

Thus aγ ∈ F . It follows that the action of Γ on Q restricts to an action of Γ on F .

Part B: The action of Γ nG on F . Let a ∈ F and γ ∈ Γ. We claim that

(4) (aσ)γ = (aγ)σ
γ

for all σ ∈ G,

where aσ = fa(σ) (Definition 4.4). Indeed, write σ as a word in
⋃
i∈I Gi. Then (4)

follows from (4) by induction on the length of the word. If σ = 1, then (4) is an identity.

Suppose (4) holds for some σ ∈ G and let τ ∈
⋃
i∈I Gi. Using the identification of the

action of each τ ∈ Gi on F as an element of Gi with its action as an element of G

(Lemma 4.5(a)) and (4) for aσ rather that a, we have

(aστ )γ =
(
(aσ)τ

)γ =
(
(aσ)γ

)τγ =
(
(aγ)σ

γ)τγ = (aγ)σ
γτγ = (aγ)(στ)γ .

Now we apply (4) to aγ
−1

instead of a to find that
((
aγ
−1)σ)γ = aσ

γ

. It follows that

the actions of Γ and G on F combine to an action of Γ nG on F .

(5) Pi Qi Q

F

}}
}}

}}
}}

E0 E Fi P ′i
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Part C: Conclusion of the proof. Since FG = E (Lemma 4.5) and EΓ = E0, we have

FΓnG = E0. Furthermore, [F : E0] = [F : E] · [E : E0] = |G| · |Γ| = |Γ nG|. By Galois

theory, Gal(F/E0) = Γ nG and the map res: Gal(F/E0) → Gal(E/E0) coincides with

the canonical map pr: Γ nG→ Γ.

6. Normed Rings

In Section we construct patching data over fields K(x), where K is a complete

ultrametric valued field. The ‘analytic’ fields Pi will be the quotient fields of certain

rings of convergent power series in several variables over K. At a certain point in a

proof by induction we consider a ring of convergent power series in one variable over a

complete ultrametric valued ring. So, we start by recalling the definition and properties

of the latter rings.

Let A be a commutative ring with 1. An ultrametric absolute value of A is a

function | |: A→ R satisfying the following conditions:

(1a) |a| ≥ 0, and |a| = 0 if and only if a = 0.

(1b) There exists a ∈ A such that 0 < |a| < 1.

(1c) |ab| = |a| · |b|.

(1d) |a+ b| ≤ max(|a|, |b|).

By (1a) and (1c), A is an integral domain. By (1c), the absolute value of A extends

to an absolute value on the quotient field of A (by |ab | =
|a|
|b| ). It follows also that |1| = 1,

| − a| = |a|, and

(1d′) if |a| < |b|, then |a+ b| = |b|.

Denote the ordered additive group of the real numbers by R+. The function

v: Quot(A)→ R+ ∪ {∞} defined by v(a) = − log |a| satisfies the following conditions:

(2a) v(a) =∞ if and only if a = 0.

(2b) There exists a ∈ Quot(A) such that 0 < v(a) <∞.

(2c) v(ab) = v(a) + v(b).

(2d) v(a+ b) ≥ min{v(a), v(b)} (and v(a+ b) = v(b) if v(b) < v(a)).

In other words, v is a real valuation of Quot(A). Conversely, every real valuation
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v: Quot(A) → R+ ∪ {∞} gives rise to a nontrivial ultrametric absolute value | · | of

Quot(A): |a| = εv(a), where ε is a fixed real number between 0 and 1.

An attempt to extend an absolute value from A to a larger ring A′ may result in

relaxing Condition (1c), replacing the equality by an inequality. This leads to the more

general notion of a ‘norm’.

Definition 6.1: Normed rings. Let R be an associative ring with 1. A norm on R is a

function ‖ ‖: R→ R that satisfies the following conditions for all a, b ∈ R:

(3a) ‖a‖ ≥ 0, and ‖a‖ = 0 if and only if a = 0; further ‖1‖ = ‖ − 1‖ = 1.

(3b) There is an x ∈ R with 0 < ‖x‖ < 1.

(3c) ‖ab‖ ≤ ‖a‖ · ‖b‖.

(3d) ‖a+ b‖ ≤ max(‖a‖, ‖b‖).

The norm ‖ ‖ naturally defines a topology on R whose basis is the collection of

all sets U(a0, r) = {a ∈ R | ‖a − a0‖ < r} with a0 ∈ R and r > 0. Both addition

and multiplication are continuous under that topology. Thus, R is a topological ring.

Definition 6.2: Complete rings. Let R be a normed ring. A sequence a1, a2, a3, . . . of

elements of R is Cauchy if for each ε > 0 there exists m0 such that ‖an − am‖ < ε for

all m,n ≥ m0. We say that R is complete if every Cauchy sequence converges.

Lemma 6.3: Let R be a normed ring and let a, b ∈ R. Then:

(a) ‖ − a‖ = ‖a‖.

(b) If ‖a‖ < ‖b‖, then ‖a+ b‖ = ‖b‖.

(c) A sequence a1, a2, a3, . . . of elements of R is Cauchy if for each ε > 0 there exists

m0 such that ‖am+1 − am‖ < ε for all m ≥ m0.

(d) The map x 7→ ‖x‖ from R to R is continuous.

(e) If R is complete, then a series
∑∞
n=0 an of elements of R converges if and only if

an → 0.

(f) If R is complete and ‖a‖ < 1, then 1 − a ∈ R×. Moreover, (1 − a)−1 = 1 + b with

‖b‖ < 1.

17



Proof of (a): Observe that ‖ − a‖ ≤ ‖ − 1‖ · ‖a‖ = ‖a‖. Replacing a by −a, we get

‖a‖ ≤ ‖ − a‖, hence the claimed equality.

Proof of (b): Assume ‖a + b‖ < ‖b‖. Then, by (a), ‖b‖ = ‖(−a) + (a + b)‖ ≤

max(‖ − a‖, ‖a+ b‖) < ‖b‖, which is a contradiction.

Proof of (c): With m0 as above let n > m ≥ m0. Then

‖an − am‖ ≤ max(‖an − an−1‖, . . . , ‖am+1 − am‖) < ε.

Proof of (d): By (3d), ‖x‖ = ‖(x − y) + y‖ ≤ max(‖x − y‖, ‖y‖) ≤ ‖x − y‖ + ‖y‖.

Hence, ‖x‖−‖y‖ ≤ ‖x− y‖. Symmetrically, ‖y‖−‖x‖ ≤ ‖y−x‖ = ‖x− y‖. Therefore,

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖. Consequently, the map x 7→ ‖x‖ is continuous.

Proof of (e): Let sn =
∑n
i=0 ai. Then sn+1 − sn = an+1. Thus, by (c), s1, s2, s3, . . . is

a Cauchy sequence if and only if an → 0. Hence, the series
∑∞
n=0 an converges if and

only if an → 0.

Proof of (f): The elements ai tend to 0 as i approaches ∞. Hence, by (e),
∑∞
i=0 a

i

converges. The identities (1−a)
∑n
i=0 a

i = 1−an+1 and
∑n
i=0 a

i(1−a) = 1−an+1 imply

that
∑∞
i=0 a

i is both the right and the left inverse of 1− a. Moreover,
∑∞
i=0 a

i = 1 + b

with b =
∑∞
i=1 a

i and ‖b‖ ≤ maxi≥1‖a‖i < 1.

Example 6.4:

(a) Every fieldK with an ultrametric absolute value is a normed ring. For example,

for each prime number p, Q has a p-adic absolute value | · |p which is defined by

|x|p = p−m if x = a
b p
m with a, b,m ∈ Z and p - a, b.

(b) The ring Zp of p-adic integers and the field Qp of p-adic numbers are complete

with respect to the p-adic absolute value.

(c) Let K0 be a field and let 0 < ε < 1. The ring K0[[t]] (resp. field K0((t))) of

formal power series
∑∞
i=0 ait

i (resp.
∑∞
i=m ait

i with m ∈ Z) with coefficients in K0 is

complete with respect to the absolute value |
∑∞
i=m ait

i| = εmin(i | ai 6=0).

(d) Let ‖ · ‖ be a norm of a commutative ring A. For each positive integer n we

extend the norm to the associative (but usually not commutative) ring Mn(A) of all
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n× n matrices with entries in A by

‖(aij)1≤i,j≤n‖ = max(‖aij‖1≤i,j≤n).

If b = (bjk)1≤j,k≤n is another matrix and c = ab, then cik =
∑n
j=1 aijbjk and ‖cik‖ ≤

max(‖aij‖ · ‖bjk‖) ≤ ‖a‖ · ‖b‖. Hence, ‖c‖ ≤ ‖a‖‖b‖. This verifies Condition (3c). The

verification of (3a), (3b), and (3d) is straightforward. Note that when n ≥ 2, even if

the initial norm of A is an absolute value, the extended norm satisfies only the weak

condition (3c) and not the stronger condition (1c), so it is not an absolute value.

If A is complete, then so is Mn(A). Indeed, let ai = (ai,rs)1≤r,s≤n be a Cauchy se-

quence in Mn(A). Since ‖ai,rs − aj,rs‖ ≤ ‖ai − aj‖, each of the sequences

a1,rs, a2,rs, a3,rs, . . . is Cauchy, hence converges to an element brs of A. Set

b = (brs)1≤r,s≤n. Then ai → b. Consequently, Mn(A) is complete.

Like absolute valued rings, every normed ring has a completion:

Lemma 6.5: Every normed ring (R, ‖ ‖) can be embedded into a complete normed ring

(R̂, ‖ ‖) such that R is dense in R̂ and the following universal condition holds:

(4) Each continuous homomorphism f of R into a complete ring S uniquely extends to

a continuous homomorphism f̂ : R̂→ S.

The normed ring (R̂, ‖ ‖) is called the completion of (R, ‖ ‖).

Proof: We consider the set A of all Cauchy sequences a = (an)∞n=1 with an ∈ R. For

each a ∈ A, the values ‖an‖ of its components are bounded. Hence, A is closed under

componentwise addition and multiplication and contains all constant sequences. Thus,

A is a ring. Let n be the ideal of all sequences that converge to 0. We set R̂ = A/n and

identify each x ∈ R with the coset (x)∞n=1 + n.

If a ∈ Ar n, then ‖an‖ eventually becomes constant. Indeed, there exists β > 0

such that ‖an‖ ≥ β for all sufficiently large n. Choose n0 large such that ‖an−am‖ < β

for all n,m ≥ n0. Then, ‖an−an0‖ < β ≤ ‖an0‖, so ‖an‖ = ‖(an−an0)+an0‖ = ‖an0‖.

We define ‖a‖ to be the eventual absolute value of an and note that ‖a‖ 6= 0. If b ∈ n,

we set ‖b‖ = 0 and observe that ‖a + b‖ = ‖a‖. It follows that ‖a + n‖ = ‖a‖ is a well

defined function on R̂ which extends the norm of R.
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One checks that ‖ ‖ is a norm on R̂ and that R is dense in R̂. Indeed, if a =

(an)∞n=1 ∈ A, then an + n→ a + n. To prove that R̂ is complete under ‖ ‖ we consider

a Cauchy sequence (ak)∞k=1 of elements of R̂. For each k we choose an element bk ∈ R

such that ‖bk − ak‖ < 1
k . Then (bk)∞k=1 is a Cauchy sequence of R and the sequence

(ak)∞k=1 converges to the element (bk)∞k=1 + n of R̂.

Finally, let S be a complete normed ring and f : R → S a continuous homomor-

phism. Then, for each a = (an)∞n=1 ∈ A, the sequence (f(an))∞n=1 of S is Cauchy, hence

it converges to an element s. Define f̂(a + n) = s and check that f̂ has the desired

properties.

7. Rings of Convergent Powere Series

Let A be a complete normed commutative ring and x a variable. Consider the

following subset of A[[x]]:

A{x} =
{ ∞∑
n=0

anx
n | an ∈ A, lim

n→∞
‖an‖ = 0

}
.

For each f =
∑∞
n=0 anx

n ∈ A{x} we define ‖f‖ = max(‖an‖)n=0,1,2,.... This definition

makes sense because an → 0, hence ‖an‖ is bounded.

We prove the Weierstrass division and the Weierstrass preparation theorems for

A{x} in analogy to the corresponding theorems for the ring of formal power series in

one variable over a local ring.

Lemma 7.1:

(a) A{x} is a subring of A[[x]] containing A.

(b) The function ‖ ‖: A{x} → R is a norm.

(c) The ring A{x} is complete under that norm.

(d) Let B be a complete normed ring extension of A. Then each b ∈ B with ‖b‖ ≤ 1

defines an evaluation homomorphism A{x} → B given by

f =
∞∑
n=0

anx
n 7→ f(b) =

∞∑
n=0

anb
n.
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Proof of (a): We prove only that A{x} is closed under multiplication. To that end

let f =
∑∞
i=0 aix

i and g =
∑∞
j=0 bjx

j be elements of A{x}. Consider ε > 0 and let

n0 be a positive number such that ‖ai‖ < ε if i ≥ n0
2 and ‖bj‖ < ε if j ≥ n0

2 . Now

let n ≥ n0 and i + j = n. Then i ≥ n0
2 or j ≥ n0

2 . It follows that ‖
∑
i+j=n aibj‖ ≤

max(‖ai‖ · ‖bj‖)i+j=n ≤ ε ·max(‖f‖, ‖g‖). Thus, fg =
∑∞
n=0

∑
i+j=n aibjx

n belongs to

A{x}, as claimed.

Proof of (b): Standard checking.

Proof of (c): Let fi =
∑∞
n=0 ainx

n, i = 1, 2, 3, . . ., be a Cauchy sequence in A{x}. For

each ε > 0 there exists i0 such that ‖ain − ajn‖ ≤ ‖fi − fj‖ < ε for all i, j ≥ i0 and

for all n. Thus, for each n, the sequence a1n, a2n, a3n, . . . is Cauchy, hence converges

to an element an ∈ A. If we let j tend to infinity in the latter inequality, we get that

‖ain − an‖ < ε for all i ≥ i0 and all n. Set f =
∑∞
i=0 anx

n. Then an → 0 and

‖fi − f‖ = max(‖ain − an‖)n=0,1,2,... < ε if i ≥ i0. Consequently, the fi’s converge in

A{x}.

Proof of (d): Note that ‖anbn‖ ≤ ‖an‖ → 0, so
∑∞
n=0 anb

n is an element of B.

Definition 7.2: Let f =
∑∞
n=0 anx

n be a nonzero element of A{x}. We define the

pseudo degree of f to be the integer d = max{n ≥ 0 | ‖an‖ = ‖f‖} and set

pseudo.deg(f) = d.

The element ad is the pseudo leading coefficient of f . Thus, ‖ad‖ = ‖f‖ and

‖an‖ < ‖f‖ for each n > d. If f ∈ A[x] is a polynomial, then pseudo.deg(f) ≤ deg(f).

If ad is invertible in A and satisfies ‖cad‖ = ‖c‖·‖ad‖ for all c ∈ A, we call f regular. In

particular, if A is a field and ‖ ‖ is an ultrametric absolute value, then each 0 6= f ∈ A{x}

is regular. The next lemma implies that in this case ‖ ‖ is an absolute value of A{x}.

Lemma 7.3 (Gauss’ Lemma): Let f, g ∈ A{x}. Suppose f is regular of pseudo de-

gree d and f, g 6= 0. Then ‖fg‖ = ‖f‖ · ‖g‖ and pseudo.deg(fg) = pseudo.deg(f) +

pseudo.deg(g).
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Proof: Let f =
∑∞
i=0 aix

i and g =
∑∞
j=0 bjx

j . Let ad (resp. be) be the pseudo leading

coefficient of f (resp. g). Then fg =
∑∞
n=0 cnx

n with cn =
∑
i+j=n aibj .

If i+j = d+e and (i, j) 6= (d, e), then either i > d or j > e. In each case, ‖aibj‖ ≤

‖ai‖‖bj‖ < ‖f‖·‖g‖. By our assumption on ad, we have ‖adbe‖ = ‖ad‖·‖be‖ = ‖f‖·‖g‖.

By Lemma 6.3(b), this implies ‖cd+e‖ = ‖f‖ · ‖g‖.

If i + j > d + e, then either i > d and ‖ai‖ < ‖f‖ or j > e and ‖bj‖ < ‖g‖. In

each case ‖aibj‖ ≤ ‖ai‖ · ‖bj‖ < ‖f‖ · ‖g‖. Hence, ‖cn‖ < ‖cd+e‖ for each n > d + e.

Therefore, cd+e is the pseudo leading coefficient of fg, and the lemma is proved.

Proposition 7.4 (Weierstrass division theorem): Let f ∈ A{x} and let g ∈ A{x} be

regular of pseudo degree d. Then there are unique q ∈ A{x} and r ∈ A[x] such that

f = qg + r and deg(r) < d. Moreover,

(1) ‖qg‖ = ‖q‖ · ‖g‖ ≤ ‖f‖ and ‖r‖ ≤ ‖f‖

Proof: We break the proof into several parts.

Part A: Proof of (1). First we assume that there exist q ∈ A{x} and r ∈ A[x] such

that f = qg + r with deg(r) < d. If q = 0, then (1) is clear. Otherwise, q 6= 0 and we

let e = pseudo.deg(q). By Lemma 7.3, ‖qg‖ = ‖q‖ · ‖g‖ and pseudo.deg(qg) = e + d >

deg(r). Hence, the coefficient cd+e of xd+e in qg is also the coefficient of xd+e in f . It

follows that ‖qg‖ = ‖cd+e‖ ≤ ‖f‖. Consequently, ‖r‖ = ‖f − qg‖ ≤ ‖f‖.

Part B: Uniqueness. Suppose f = qg+r = q′g+r′, where q, q′ ∈ A{x} and r, r′ ∈ A[x]

are of degrees less than d. Then 0 = (q− q′)g+ (r− r′). By Part A, applied to 0 rather

than to f , ‖q − q′‖ · ‖g‖ = ‖r − r′‖ = 0. Hence, q = q′ and r = r′.

Part C: Existence if g is a polynomial of degree d. Write f =
∑∞
n=0 bnx

n with bn ∈ A

converging to 0. For each m ≥ 0 let fm =
∑m
n=0 bnx

n ∈ A[x]. Then the f1, f2, f3, . . .

converge to f , in particular they form a Cauchy sequence. Since g is regular of pseudo

degree d, its leading coefficient is invertible. Euclid’s algorithm for polynomials over A

produces qm, rm ∈ A[x] with fm = qmg+rm and deg(rm) < deg(g). Thus, for all k,m we

have fm−fk = (qm−qk)g+(rm−rk). By Part A, ‖qm−qk‖·‖g‖, ‖rm−rk‖ ≤ ‖fm−fk‖.

Thus, {qm}∞m=0 and {rm}∞m=0 are Cauchy sequences in A{x}. Since A{x} is complete
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(Lemma 7.1), the qm’s converge to some q ∈ A{x}. Since A is complete, the rm’s

converge to an r ∈ A[x] of degree less than d. It follows that f = qg + r

Part D: Existence for arbitrary g. Let g =
∑∞
n=0 anx

n and set g0 =
∑d
n=0 anx

n ∈

A[x]. Then ‖g − g0‖ < ‖g‖. By Part C, there are q0 ∈ A{x} and r0 ∈ A[x] such

that f = q0g0 + r0 and deg(r0) < d. By Part A, ‖q0‖ ≤ ‖f‖
‖g‖ and ‖r0‖ ≤ ‖f‖. Thus,

f = q0g + r0 + f1, where f1 = −q0(g − g0), and ‖f1‖ ≤ ‖g−g0‖‖g‖ · ‖f‖.

Set f0 = f . By induction we get, for each k ≥ 0, elements fk, qk ∈ A{x} and

rk ∈ A[x] such that deg(rk) < d and

fk = qkg + rk + fk+1, ‖qk‖ ≤
‖fk‖
‖g‖

, ‖rk‖ ≤ ‖fk‖, and

‖fk+1‖ ≤
‖g − g0‖
‖g‖

‖fk‖.

It follows that ‖fk‖ ≤
(
‖g−g0‖
‖g‖

)k
‖f‖, so ‖fk‖ → 0. Hence, also ‖qk‖, ‖rk‖ → 0.

Therefore, q =
∑∞
k=0 qk ∈ A{x} and r =

∑∞
k=0 rk ∈ A[x]. By construction, f =∑k

n=0 qng +
∑k
n=0 rn + fk+1 for each k. Taking k to infinity, we get f = qg + r and

deg(r) < d.

Corollary 7.5 (Weierstrass preparation theorem): Let f ∈ A{x} be regular of pseudo

degree d. Then f = qg, where q is a unit of A{x} and g ∈ A[x] is a monic polynomial of

degree d with ‖g‖ = 1. Moreover, q and g are uniquely determined by these conditions.

Proof: By Proposition 7.4 there are q′ ∈ A{x} and r′ ∈ A[x] of degree < d such that

xd = q′f + r′ and ‖r′‖ ≤ ‖xd‖ = 1. Set g = xd − r′. Then g is monic of degree d,

g = q′f , and ‖g‖ = 1. It remains to show that q′ ∈ A{x}×.

Note that g is regular of pseudo degree d. By Proposition 7.4, there are q ∈ A{x}

and r ∈ A[x] such that f = qg+r and deg(r) < d. Thus, f = qq′f+r. Since f = 1·f+0,

the uniqueness part of Proposition 7.4 implies that qq′ = 1. Hence, q′ ∈ A{x}×.

Finally suppose f = q1g1, where q1 ∈ A{x}× and g1 ∈ A[x] is monic of degree

d with ‖g1‖ = 1. Then g1 = (q−1
1 q)g + 0 and g1 = 1 · g + (g1 − g), where g1 − g

is a polynomial of degree at most d − 1. By the uniqueness part of Proposition 7.4,

q−1
1 q2 = 1, so q1 = q2 and g1 = g.
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Corollary 7.6: Let f =
∑∞
n=0 anx

n be a regular element of A{x} such that ‖a0b‖ =

‖a0‖ · ‖b‖ for each b ∈ A. Then f ∈ A{x}× if and only if pseudo.deg(f) = 0 and

a0 ∈ A×.

Proof: If there exists g ∈
∑∞
n=0 bnx

n in A{x} such that fg = 1, then pseudo.deg(f) +

pseudo.deg(g) = 0, so pseudo.deg(f) = 0. In addition, a0b0 = 1, so a0 ∈ A×.

Conversely, suppose pseudo.deg(f) = 0 and a0 ∈ A×. Then f is regular. Hence,

by Corollary 7.5, f = q · 1 where q ∈ A{x}×.

Corollary 7.7: Let K be a complete field with respect to an absolute value | | and

let O = {a ∈ K | |a| ≤ 1} be its valuation ring. Then K{x} is a principal ideal domain,

hence a unique factorization domain. Moreover, every ideal of K{x} is generated by an

element of O[x].

Proof: By the Weierstass preparation theorem (Corollary 7.5), every nonzero ideal a

of K{x} is generated by the ideal a ∩ K[x] of K[x]. Since K[x] is a principal ideal

domain, a ∩K[x] = fK[x] for some f ∈ K[x]. Consequenctky, a = K{x} is a principal

ideal. Moreover, dividing f by one of its coefficients with highest absolute value, we

may assume that f ∈ O[x].

8. Convergent Power Series

Let K be a complete field with respect to an ultrametric absolute value | |. We say that

a formal power series f =
∑∞
n=m anx

n in K((x)) converges at an element c ∈ K, if

f(c) =
∑∞
n=m anc

n converges, i.e. ancn → 0. In this case f converges at each b ∈ K

with |b| ≤ |c|. For example, each f ∈ K{x} converges at 1. We say that f converges

if f converges at some c ∈ K×.

We denote the set of all convergent power series in K((x)) by K((x))0 and prove

that K((x))0 is a field that contains K{x} and is algebraically closed in K((x)).

Lemma 8.1: A power series f =
∑∞
n=m anx

n in K((x)) converges if and only if there

exists a positive real number γ such that |an| ≤ γn for each n ≥ 0.

Proof: First suppose f converges at c ∈ K×. Then anc
n → 0, so there exists n0 ≥ 1
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such that |ancn| ≤ 1 for each n ≥ n0. Choose

γ = max{|c|−1, |ak|1/k | k = 0, . . . , n0 − 1}.

Then |an| ≤ γn for each n ≥ 0.

Conversely, suppose γ > 0 and |an| ≤ γn for all n ≥ 0. Increase γ, if necessary,

to assume that γ > 1. Then choose c ∈ K× such that |c| ≤ γ−1.5 and observe that

|ancn| ≤ γ−0.5n for each n ≥ 0. Therefore, ancn → 0, hence f converges at c.

Lemma 8.2: K((x))0 is a field that contains Quot(K{x}), hence also K(x).

Proof: The only difficulty is to prove that if f = 1 +
∑∞
n=1 anx

n converges, then also

f−1 = 1 +
∑∞
n=1 a

′
nx

n converges.

Indeed, for n ≥ 1, a′n satisfies the recursive relation a′n = −an−
∑n−1
i=1 aia

′
n−i. By

Lemma 8.1, there exists γ > 1 such that |ai| ≤ γi for each i ≥ 1. Set a′0 = 1. Suppose,

by induction, that |a′j | ≤ γj for j = 1, . . . , n − 1. Then |a′n| ≤ maxi(|ai| · |a′n−i|) ≤ γn.

Hence, f−1 converges.

Let v be the valuation of K((x)) defined by

v(
∞∑
n=m

anx
n) = m for am, am+1, am+2, . . . ∈ K with am 6= 0.

It is discrete, complete, its valuation ring is K[[x]], and v(x) = 1. The residue of an

element f =
∑∞
n=0 anx

n of K[[x]] at v is a0, and we denote it by f̄ . We also consider

the valuation ring O = K[[x]] ∩K((x))0 of K((x))0 and denote the restriction of v to

K((x))0 also by v. Since K((x))0 contains K(x), it is v-dense in K((x)). Finally, we

also denote the unique extension of v to the algebraic closure of K((x)) by v.

Remark 8.3: K((x))0 is not complete. Indeed, choose a ∈ K such that |a| > 1. Then

there exists no γ > 0 such that |an2 | ≤ γn for all n ≥ 1. By Lemma 8.1, the power series

f =
∑∞
n=0 a

n2
xn does not belong to K((x))0. Therefore, the valued field (K((x))0, v)

is not complete.

Lemma 8.4: The field K((x))0 is separably algebraically closed in K((x)).

Proof: Let y =
∑∞
n=m anx

n, with an ∈ K, be an element of K((x)) which is separably

algebraic of degree d over K((x))0. We have to prove that y ∈ K((x))0.
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Part A: A shift of y. Assume that d > 1 and let y1, . . . , yd, with y = y1, be the

(distinct) conjugates of y over K((x))0. In particular r = max(v(y − yi) | i = 2, . . . , d)

is an integer. Choose s ≥ r + 1 and let

y′i =
1
xs
(
yi −

s∑
n=m

anx
n
)
, i = 1, . . . , d.

Then y′1, . . . , y
′
d are the distinct conjugates of y′1 over K((x))0. Also, v(y′1) ≥ 1 and

y′i = 1
xs (yi − y) + y′1, so v(y′i) ≤ −1, i = 2, . . . , d. If y′1 belongs to K((x))0, then so does

y, and conversely. Therefore, we replace yi by y′i, if necessary, to assume that

(1) v(y) ≥ 1 and v(yi) ≤ −1, i = 2, . . . , d.

In particular y =
∑∞
n=0 anx

n with a0 = 0. The elements y1, . . . , yd are the roots of an

irreducible separable polynomial

h(Y ) = pdY
d + pd−1Y

d−1 + · · ·+ p1Y + p0

with coefficients pi ∈ O. Let e = min(v(p0), . . . , v(pd)). Divide the pi, if necessary, by

xe, to assume that v(pi) ≥ 0 for each i between 0 and d and that v(pj) = 0 for at least

one j between 0 and d.

Part B: We prove that v(p0), v(pd) > 0, v(pk) > v(p1) if 2 ≤ k ≤ d−1 and v(p1) = 0.

Indeed, since v(y) > 0 and h(y) = 0, we have v(p0) > 0. Since v(y2) < 0 and h(y2) = 0,

we have v(pd) > 0. Next observe that

p1

pd
= ±y2 · · · yd ±

d∑
i=2

y1 · · · yd
yi

.

If 2 ≤ i ≤ d, then v(yi) < v(y1), so v(y2 · · · yd) < v(y1yi )+v(y2 · · · yd) = v(y1···ydyi
). Hence,

(2) v
(p1

pd

)
= v(y2 · · · yd).

For k between 1 and d− 2 we have

(3)
pd−k
pd

= ±
∑
σ

k∏
i=1

yσ(i),
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where σ ranges over all monotonically increasing maps from {1, . . . , k} to {1, . . . , d}. If

σ(1) 6= 1, then {yσ(1), . . . , yσ(k)} is properly contained in {y2, . . . , yd}. Hence,

v(
∏k
i=1 yσ(i)) > v(y2 · · · yd). If σ(1) = 1, then

v
( k∏
i=1

yσ(i)

)
> v
( k∏
i=2

yσ(i)

)
> v(y2 · · · yd).

Hence, by (2) and (3), v(pd−kpd
) > v( p1pd ), so v(pd−k) > v(p1). Since v(pj) = 0 for some j

between 0 and d, since v(pi) ≥ 0 for every i between 0 and d, and since v(p0), v(pd) > 0,

we conclude that v(p1) = 0 and v(pi) > 0 for all i 6= 1. Therefore,

(4) pk =
∞∑
n=0

bknx
n, k = 0, . . . , d

with bkn ∈ K such that b1,0 6= 0 and bk,0 = 0 for each k 6= 1. In particular, |b1,0| 6= 0

but unfortunately, |b1,0| may be smaller than 1.

Part C: Making |b1,0| large. We choose c ∈ K such that |cd−1b1,0| ≥ 1 and let z = cy.

Then z is a zero of the polynomial g(Z) = pdZ
d+cpd−1Z

d−1 + · · ·+cd−1p1Z+cdp0 with

coefficients in O. Relation (4) remains valid except that the zero term of the coefficient

of Z in g becomes cd−1b1,0. By the choice of c, its absolute value is at least 1. So,

without loss, we may assume that

(5) |b1,0| ≥ 1.

Part D: An estimate for |an|. By Lemma 8.1, there exists γ > 0 such that |bkn| ≤ γn

for all 0 ≤ k ≤ d and n ≥ 1. By induction we prove that |an| ≤ γn for each n ≥ 0. This

will prove that y ∈ O and will conclude the proof of the lemma.

Indeed, |a0| = 0 < 1 = γ0. Now assume that |am| ≤ γm for each 0 ≤ m ≤ n− 1.

For each k between 0 and d we have that pkyk =
∑∞
n=0 cknx

n, where

ckn =
∑
σ∈Skn

bk,σ(0)

k∏
j=1

aσ(j),

and

Skn = {σ: {0, . . . , k} → {0, . . . , n} |
k∑
j=0

σ(j) = n}.
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It follows that

(6) c0n = b0n and c1n = b1,0an + b11an−1 + · · ·+ b1,n−1a1.

For k ≥ 2 we have bk,0 = 0. Hence, if a term bk,σ(0)

∏k
j=1 aσ(j) in ckn contains an, then

σ(0) = 0, so bk,σ(0) = 0. Thus,

ckn = sum of products of the form bk,σ(0)

k∏
j=1

aσ(j),(7)

with σ(j) < n, j = 1, . . . , k.

From the relation
∑d
k=0 pky

k = h(y) = 0 we conclude that
∑d
k=0 ckn = 0 for all n.

Hence, by (6),

b1,0an = −b0n − b11an−1 − · · · − b1,n−1a1 − c2n − · · · − cdn.

Therefore, by (7),

(8)
b1,0an = sum of products of the form − bk,σ(0)

k∏
j=1

aσ(j),

with σ ∈ Skn, 0 ≤ k ≤ d, and σ(j) < n, j = 1, . . . , k.

Note that bk,0 = 0 for each k 6= 1 (by (4)), while b1,0 does not occur on the right hand

side of (8). Hence, for a summand in the right hand side of (8) indexed by σ we have

|bk,σ(0)

k∏
j=1

aσ(j)| ≤ γ
∑k
j=0 σ(j) = γn.

We conclude from |b1,0| ≥ 1 that |an| ≤ γn, as contended.

Proposition 8.5: The field K((x))0 is algebraically closed in K((x)). Thus, each

f ∈ K((x)) which is algebraic over K(x) converges at some c ∈ K×. Moreover, there

exists a positive integer m such that f converges at each b ∈ K× with |b| ≤ 1
m .

Proof: In view of Lemma 8.4, we have to prove the proposition only for char(K) > 0.

Let f =
∑∞
n=m anx

n ∈ K((x)) be algebraic over K((x))0. Then K((x))0(f) is a purely

28



inseparable extension of a separable algebraic extension of K((x))0. By Lemma 8.4, the

latter coincides with K((x))0. Hence, K((x))0(f) is a purely inseparable extension of

K((x))0.

Thus, there exists a power q of char(K) such that
∑∞
n=m a

q
nx

nq = fq ∈ K((x))0.

By Lemma 8.1, there exists γ > 0 such that |aqn| ≤ γnq for all n ≥ 1. It follows that

|an| ≤ γn for all n ≥ 1. By Lemma 8.1, f ∈ K((x))0, so there exists c ∈ K× such that

f converges at c. If 1
m ≤ |c|, then f converges at each b ∈ K× with |b| ≤ 1

m .

9. Several Variables

Starting from a complete valued field (K, | |), we choose an element r ∈ K×, a finite

set I, and for each i ∈ I an element ci ∈ K such that |r| ≤ |ci − cj | if i 6= j. Then we

set wi = r
x−ci , with an indeterminate x, and consider the ring R = K{wi | i ∈ I} of all

series

f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i ,

with a0, ain ∈ K such that for each i the element ain tends to 0 as n→∞. The ring R is

complete under the norm defined by ‖f‖ = maxi,n(|a0|, |ain|) (Lemma 11.1). We prove

that R is a principal ideal domain (Proposition 11.9) and denote its quotient field by Q.

More generally for each subset J of I, we denote the quotient field of K{wi | i ∈ J} by

PJ . We deduce (Proposition 12.1) that PJ ∩ PJ′ = PJ∩J′ if J, J ′ ⊆ I have a nonempty

intersection and PJ ∩ PJ′ = K(x) if J ∩ J ′ = ∅. Thus, setting Pi = PI r{i} for i ∈ I,

we conclude that
⋂
i∈I Pi = K(x). The fields E = K(x) and Pi are the first objects of

patching data (Definition 4.1) that we start to assemble.

10. A Normed Subring of K(x)

Let E = K(x) be the field of rational functions in the variable x over a field K. Let

I be a finite set and r an element of K×. For each i ∈ I let ci be an element of K.

Suppose ci 6= cj if i 6= j. For each i ∈ I let wi = r
x−ci ∈ K(x). We consider the subring

R0 = K[wi | i ∈ I] of K(x), prove that each of its elements is a linear combination of

the powers wni with coefficients in K, and define a norm on R0.

29



Lemma 10.1:

(a) For all i 6= j in I and for each nonnegative integer m

(1) wiw
m
j =

rm

(ci − cj)m
wi −

m∑
k=1

rm+1−k

(ci − cj)m+1−kw
k
j .

(b) Given nonnegative integers mi, i ∈ I, not all zero, there exist aik ∈ K such that

(2)
∏
i∈I

wmii =
∑
i∈I

mi∑
k=1

aikw
k
i .

(c) Every f ∈ K[wi | i ∈ I] can be uniquely written as

(3) f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i

where a0, ain ∈ K and almost all of them are zero.

(d) Let i 6= j be elements of I. Then wi
wj

= 1+ ci−cj
r wi ∈ K[wi] is invertible in K[wi, wj ].

Proof of (a) and (b): Starting from the identity

(4) wiwj =
r

ci − cj
wi −

r

ci − cj
wj

one proves (1) by induction on m. Then one proceeds by induction on |I| and maxi∈Imi

to prove (2).

Proof of (c): The existence of the presentation (3) follows from (b). To prove the

uniqueness we assume that f = 0 in (3) but ajk 6= 0 for some j ∈ I and k ∈ N. Then,∑∞
n=1 ajnw

n
j = −a0 −

∑
i 6=j
∑∞
n=1 ainw

n
i . The left hand side has a pole at cj while the

right hand side has not. This is a contradiction.

Proof of (d): Multiplying r
wj
− r

wi
= ci − cj by wi

r we get that

wi
wj

= 1 +
ci − cj
r

wi

is in K[wi]. Similarly, wj
wi
∈ K[wj ]. Hence wi

wj
is invertible in K[wi, wj ].

Now we make an assumption for the rest of this chapter:

30



Assumption 10.2: The field K is complete with respect to a nontrivial ultrametric

absolute value | | and

(5) |r| ≤ |ci − cj | for all i 6= j. �

Geometrically, Condition (5) means that the open disks {a ∈ K | |a − ci| < r},

i ∈ I, of K are disjoint.

Let E = K(x) be the field of rational functions over K in the variable x. We

define a function ‖ ‖ on R0 = K[wi | i ∈ I] using the unique presentation (3):

‖a0 +
∑
i∈I

∑
n≥1

ainw
n
i ‖ = maxi,n{|a0|, |ain|}.

Then ‖f‖ ≥ 0 for each f ∈ R0, ‖f‖ = 0 if and only if f = 0 (Lemma 10.1(c)), and

‖f + g‖ ≤ max(‖f‖, ‖g‖) for all f, g ∈ R0. Moreover, ‖wi‖ = 1 for each i ∈ I but

‖wiwj‖ = |r|
|ci−cj | (by (4)) is less than 1 if |r| < |ci − cj |. Thus, ‖ ‖ is in general not an

absolute value. However, by (1) and (5)

‖wiwmj ‖ ≤ max1≤k≤m

(∣∣∣ r

ci − cj

∣∣∣m, ∣∣∣ r

ci − cj

∣∣∣m+1−k)
≤ 1.

By induction, ‖wki wmj ‖ ≤ 1 for each k, so ‖fg‖ ≤ ‖f‖ · ‖g‖ for all f, g ∈ R0. Moreover,

if a ∈ K and f ∈ R0, then ‖af‖ = ‖a‖‖f‖. Therefore, ‖ ‖ is a norm on R0 in the sense

of Definition 6.1.

11. Mittag-Leffler Series

We keep the notation of Section 10 and Assumption 10.2 and proceed to define rings of

convergent power series of several variables over K. In the language of rigid geometry,

these are the rings of holomorphic functions on the complements of finitely many open

discs of the projective line P1(K).

Let R = K{wi | i ∈ I} be the completion of R0 = K[wi | i ∈ I] with respect to

‖ ‖ (Lemma 6.5). Our first result gives a Mittag-Leffler decomposition of each f ∈ R.

It generalizes Lemma 10.1(c):
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Lemma 11.1: Each element f of R has a unique presentation as a Mittag-Leffler

series

(1) f = a0 +
∑
i∈I

∞∑
n=1

ainw
n
i ,

where a0, ain ∈ K, and |ain| → 0 as n→∞. Moreover,

‖f‖ = maxi,n{|a0|, |ain|}.

Proof: Each f as in (1) is the limit of the sequence (fd)d≥1 of its partial sums fd = a0 +∑
i∈I
∑d
n=1 ainw

n
i ∈ R0, so f ∈ R. Since ‖fd‖ = maxi,n(|a0|, |ain|) for each sufficiently

large d, we have ‖f‖ = maxi,n(|a0|, |ain|). If f = 0 in (1), then 0 = maxi,n(|a0|, |ain|),

so a0 = ain = 0 for all i and n. It follows that the presentation (1) is unique.

On the other hand, let g ∈ R. Then there exists a sequence of elements gk =

ak,0 +
∑
i∈I
∑∞
n=1 ak,inw

n
i , k = 1, 2, 3, . . ., in R0, that converges to g. In particular, for

each pair (k, i) we have ak,in = 0 if n is sufficiently large. Also, the sequence (gk)∞k=1 is

Cauchy. Hence, each of the sequences {ak,0 | k = 1, 2, 3, . . .} and {ak,in | k = 1, 2, 3, . . .}

is Cauchy. Since K is complete, ak,0 → a0 and ak,in → ain for some a0, ain ∈ K. Fix

i ∈ I and let ε > 0 be a real number. There is an m such that for all k ≥ m and all n

we have |ak,in − am,in| ≤ ‖gk − gm‖ ≤ ε. If n is sufficiently large, then am,in = 0, and

hence |ak,in| ≤ ε. Therefore, |ain| ≤ ε. It follows that |ain| → 0. Define f by (1). Then

f ∈ R and gk → f in R. Consequently, g = f .

If I = ∅, then R = R0 = K.

We call the partial sum
∑∞
n=1 ainw

n
i in (1) the i-component of f .

Remark 11.2: Let i ∈ I. Then K{wi} = {
∑∞
n=0 anw

n
i | an → 0} is a subring of R, the

completion of K[wi] with respect to the norm. Consider the ring K{x} of converging

power series over K. By Lemma 7.1(d), there is a homomorphism K{x} → K{wi} given

by
∑∞
n=0 anx

n 7→
∑∞
n=0 anw

n
i . By Lemma 11.1, this is an isomorphism of normed rings.

Lemma 11.3: Let i, j ∈ I be distinct, let p ∈ K[wi] ⊆ R be a polynomial of degree ≤ d

in wi, and let f ∈ K{wj} ⊆ R. Then pf ∈ K{wi, wj} and the i-component of pf is a

polynomial of degree ≤ d in wi.
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Proof: Presenting p as the sum of its monomials we may assume that p is a power of

wi, say, p = wdi .

The assertion is obvious, if d = 0.

Let d ≥ 1 and assume, by induction, that wd−1
i f = p′ + f ′, where p′ ∈ K[wi] is

of degree ≤ d − 1 and f ′ ∈ K{wj}. Then wdi f = wip
′ + wif

′. Here wip′ ∈ K[wi] is

of degree ≤ d and the i-component of wif ′ is, by (1) of Section 10, a polynomial of

degree ≤ 1. Thus, the i-component of wdi f is of degree ≤ d.

Remark 11.4: Let (L, | |) be a complete valued field extending (K, | |). Each c ∈ L

with |c − ci| ≥ |r|, for all i ∈ I, defines a continuous evaluation homomorphism

R→ L given by f = a0 +
∑
i∈I
∑
n ainw

n
i 7→ f(c) = a0 +

∑
i∈I
∑
n ain( r

c−ci )
n. Indeed,

x 7→ c defines a K-homomorphism ϕ: K[x] → L. Let P be its kernel. Then ϕ extends

to the localization K[x]P . Since ϕ(x − ci) = c − ci 6= 0, we have wi ∈ K[x]P , for each

i ∈ I. Thus, ϕ restricts to a homomorphism R0 → L, given by the above formula. Since∣∣∣ r
c−ci

∣∣∣ ≤ 1 for each i, we have |f(c)| ≤ ‖f‖ for each f ∈ R0. Hence, ϕ uniquely extends

to a continuous homomorphism ϕ: R→ L.

Lemma 11.5 (Degree shifting): Let f ∈ R be given by (1). Fix i 6= j in I. Let∑∞
n=1 a

′
inw

n
i be the i-component of

wj
wi
f ∈ R. Then

a′in = −
∞∑

ν=n+1

aiνr
ν−n

(cj − ci)ν−n
(2)

=
−r

cj − ci

∞∑
ν=n+1

aiν
( r

cj − ci
)ν−(n+1)

, n = 1, 2, 3, . . . .

Furthermore, let m ≥ 1 be an integer, and let
∑∞
n=1 binw

n
i be the i-component of

(wjwi )mf . Let ε ≥ 0 be a real number and let d be a positive integer.

(a) If |ain| ≤ ε for each n ≥ d+ 1, then |bin| ≤ | r
cj−ci |

mε for each n ≥ d+ 1−m.

(b) Suppose d > m. If |ain| < ε for each n ≥ d+ 1 and |aid| = ε, then |bin| < | r
cj−ci |

mε

for each n ≥ d+ 1−m and |bi,d−m| = | r
cj−ci |

mε.

(c)
∑∞
n=1 ainw

n
i is a polynomial in wi if and only if

∑∞
n=1 binw

n
i is.

Proof: By Lemma 10.1(d), wj
wi
∈ R×, so (wjwi )mf ∈ R for each m and the above

statements make sense.
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Proof of (2): We may assume that a0 = ai1 = 0 and akν = 0 for each k 6= i and

each ν. Indeed, wj
wi

= 1 + (cj − ci)
wj
r ∈ K{wj}. Hence, wj

wi
· wνk ∈ K{wl | l 6= i}.

Furthermore, wj
wi
· wi = wj ∈ K{wl | l 6= i}. Hence, by (1), a0, ai1, and the akν do not

contribute to the i-component of wj
wi
f .

Thus, f =
∑∞
ν=2 aiνw

ν
i . Hence, by (1) of Section 10,

wj
wi
f =

∞∑
ν=2

aiνwjw
ν−1
i =

∞∑
ν=2

aiν
[ rν−1

(cj − ci)ν−1
wj −

ν−1∑
n=1

rν−n

(cj − ci)ν−n
wni
]

=
∞∑
ν=2

aiνr
ν−1

(cj − ci)ν−1
wj −

∞∑
n=1

∞∑
ν=n+1

aiνr
ν−n

(cj − ci)ν−n
wni

,

from which (2) follows.

Proof of (a) and (b): By induction on m it suffices to assume that m = 1. In this

case we have to prove: (a) If |ain| ≤ ε for each n ≥ d + 1, then |a′in| ≤ | r
cj−ci |ε for

each n ≥ d; (b) assuming d ≥ 2, if |ain| < ε for each n ≥ d + 1 and |aid| = ε, then

|a′in| < | r
cj−ci |ε for each n ≥ d and |a′i,d−1| = | r

cj−ci |ε. By Condition (5) of Section 10,

| r
ci−cj | ≤ 1. Hence, (a) follows from (2) with n = d, d+ 1, d+ 2, . . . and (b) follows from

(2) with n = d− 1, d, d+ 1, . . . .

Proof of (c): Again, it suffices to prove that
∑∞
n=1 ainw

n
i is a polynomial if and

only if
∑∞
n=1 a

′
inw

n
i is a polynomial.

If
∑∞
n=1 ainw

n
i is a polynomial, then aiν = 0 for all large ν. It follows from (2)

that a′i,n = 0 for all large n. Hence,
∑∞
n=1 a

′
inw

n
i is a polynomial.

If
∑∞
n=1 ainw

n
i is not a polynomial, then for each d0 there exists d > d0 such that

aid 6= 0. Since |ain| → 0 as n→∞, there are only finitely many n ≥ d with |ain| ≥ |aid|.

Replacing d with the largest of those n’s, if necessary, we may assume that |ain| < |aid|

for each n ≥ d+ 1. By (b), a′i,d−1 6= 0. Consequently,
∑∞
n=1 a

′
inw

n
i is not a polynomial.

We apply degree shifting (albeit not yet Lemma 11.5) to generalize the Weierstrass

preparation theorem (Corollary 7.5) to Mittag-Leffler series.
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Lemma 11.6: Suppose I 6= ∅ and let 0 6= f ∈ R. Then there is an l ∈ I such that

f = pu with p ∈ K[wl] and u ∈ R×.

Proof: Write f in the form (1). Then, there is a coefficient with absolute value ‖f‖.

Thus we are either in Case I or Case II below:

Case I: |a0| = ‖f‖ > |ain| for all i and n. Multiply f by a−1
0 to assume that a0 = 1.

Then ‖1− f‖ < 1. By Lemma 6.3(f), f ∈ R×, so p = 1 and u = f satisfy the claim of

the lemma for each l ∈ I.

Case II: There exist i and d ≥ 1 such that |aid| = ‖f‖. Increase d, if necessary, to

assume that |ain| < |aid| = ‖f‖ for all n > d.

Let A = K{wk | k 6= i}. This is a complete subring of R. We introduce a

new variable z, and consider the ring A{z} of convergent power series in z over A

(Lemma 7.1(c)). Since aid ∈ K× ⊆ A×, the element

f̂ = (a0 +
∑
k 6=i

∞∑
n=1

aknw
n
k ) +

∞∑
n=1

ainz
n

of A{z} is regular of pseudo degree d. By Corollary 7.5, we have f̂ = p̂û, where û is a

unit of A{z} and p̂ is a monic polynomial of degree d in A[z].

By definition, ‖wi‖ = 1. By Lemma 7.1(d), the evaluation homomorphism

θ: A{z} → R defined by
∑
cnz

n 7→
∑
cnw

n
i , with cn ∈ A, maps f̂ onto f , û onto

a unit of R, and p̂ onto a polynomial p of degree d in A[wi]. Replacing f by p and using

Lemma 10.1, we may assume that f ∈ A[wi] = A + K[wi] is a polynomial of degree d

in wi, that is,

f = (a0 +
∑
k 6=i

∞∑
n=1

aknw
n
k ) +

d∑
n=1

ainw
n
i .

If I = {i}, then A[wi] = K[wi], and we are done. If |I| ≥ 2, we choose a j ∈ I

distinct from i. By Lemma 10.1(d), wj
wi

= 1 + cj−ci
r wj is invertible in R0, hence in R.

Since wj
wi
∈ A, we have wj

wi
(
∑
k 6=i
∑∞
n=1 aknw

n
k ) ∈ A. In addition, by Lemma 10.1,

wj
wi

d∑
n=1

ainw
n
i =

d∑
n=1

ainw
n−1
i wj
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is a polynomial in A[wi] of degree ≤ d− 1. Using induction on d, we may assume that

f ∈ A. Finally, we apply the induction hypothesis (on |I|) to conclude the proof.

Lemma 11.7: Let j ∈ I. Then each f ∈ R can be written as f = pu with p ∈ K[wj ],

‖p‖ = 1, and u ∈ R×.

Proof: Lemma 11.6 gives a decomposition f = p1u1 with u1 ∈ R× and p1 ∈ K[wi] for

some i ∈ I. If i = j, we set p = p1 and u = u1. If i 6= j, we may assume that f ∈ K[wi].

Thus, f =
∑d
n=0 anw

n
i with ad 6= 0. By Lemma 10.1(d), wi

wj
is invertible in R0, hence

in R. Multiplying f by
(
wj
wi

)d
gives

(wj
wi

)d
f =

d∑
n=0

an
(wj
wi

)d−n
wnj =

d∑
n=0

an
(
1 +

cj − ci
r

wj
)d−n

wnj ∈ K[wj ].

Thus, f = pu with p ∈ K[wj ] and u ∈ R×. Finally, we may divide p by a coefficient

with the highest absolute value to get that ‖p‖ = 1.

Corollary 11.8: Let 0 6= g ∈ R. Then R0 + gR = R.

Proof: Since R =
∑
i∈I K{wi} and R0 = K[wi | i ∈ I] =

∑
i∈I K[wi] (Lemma 10.1),

it suffices to prove for each i ∈ I and for every f ∈ K{wi} that there is h ∈ K[wi] such

that f − h ∈ gR. By Lemma 11.7, we may assume that g ∈ K[wi]. By Remark 11.2,

there is a K-isomorphism K{z} → K{wi} that maps K[z] onto K[wi]. Therefore the

assertion follows from the Weierstrass Division Theorem (Proposition 7.4) for the ring

K{z}.

The next result generalizes Proposition 7.7 to Mittag-Leffler series.

Proposition 11.9: The ring R = K{wi | i ∈ I} is a principal ideal domain, hence a

unique factorization domain. Moreover, for each i ∈ I, each ideal a of R is generated

by an element p ∈ K[wi] such that a ∩K[wi] = pK[wi].

Proof: Let f1, f2 ∈ R with f1f2 = 0. Choose an i ∈ I. By Lemma 11.7, f1 = p1u1 and

f2 = p2u2 with p1, p2 ∈ K[wi] and u1, u2 ∈ R×. Then p1p2 = f1f2(u1u2)−1 = 0, and

hence either p1 = 0 or p2 = 0. Therefore, either f1 = 0 or f2 = 0. Consequently, R is

an integral domain.
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By Lemma 11.7, each ideal a of R is generated by the ideal a ∩K[wi] of K[wi].

Since K[wi] is a principal ideal domain, a ∩ K[wi] = pK[wi] for some p ∈ K[wi].

Consequently, a = pR is a principal ideal.

12. Fields of Mittag-Leffler Series

In the notation of Sections 10 and 11 we consider for each nonempty subset J of I the

integral domain RJ = K{wi | i ∈ J} (Proposition 11.9) and let PJ = Quot(RJ). For

J = ∅, we set PJ = K(x). All of these fields are contained in the field Q = PI . The

fields Pi = PI r{i}, i ∈ I, will be our ‘analytic’ fields in the patching data over E = K(x)

that we start to assemble. As in Definition 4.1, the fields P ′i =
⋂
j 6=i Pj will be useful

auxiliary fields.

Proposition 12.1: Let J and J ′ be subsets of I. Then PJ ∩ PJ′ = PJ∩J′ .

Proof: If either J = ∅ or J ′ = ∅, then PJ ∩ PJ′ = K(x), by definition. We therefore

assume that J, J ′ 6= ∅. Let j ∈ J . Then K[wj ] ⊆ RJ , hence K(x) = K(wj) ⊆ PJ .

Similarly K(x) ⊆ PJ′ . Hence K(x) ⊆ PJ ∩ PJ′ . If J ∩ J ′ 6= ∅, then, by the unique

representation for the elements of R appearing in (1) of Lemma 11.1, we have RJ∩J′ =

RJ ∩RJ′ , so PJ∩J′ ⊆ PJ ∩ PJ′ .

For the converse inclusion, let 0 6= f ∈ PJ ∩ PJ′ . Fix j ∈ J and j′ ∈ J ′; if

J ∩ J ′ 6= ∅, take j, j′ ∈ J ∩ J ′. Write f as f1/g1 with f1, g1 ∈ RJ . By Lemma 11.7,

g1 = p1u1, where 0 6= p1 ∈ K[wj ] and u1 ∈ R×J . Replace f1 by f1u
−1
1 to assume that

g1 ∈ K[wj ]. Similarly f = f2/g2 with f2 ∈ RJ′ and g2 ∈ K[wj′ ].

If J ∩ J ′ 6= ∅, then g1, g2 ∈ RJ ∩ RJ′ = RJ∩J′ . Thus g2f1 = g1f2 ∈ RJ ∩ RJ′ =

RJ∩J′ ⊆ PJ∩J′ , and hence f = f1g2
g1g2
∈ PJ∩J′ .

Now suppose J ∩ J ′ = ∅. Let g1 =
∑d1
n=0 bnw

n
j with bn ∈ K. Put h1 = (wj′wj )d1g1.

Since wj′

wj
∈ K[wj′ ] (Lemma 10.1(d)), we have h1 =

∑d1
n=0 bn(wj′wj )d1−nwnj′ ∈ K[wj′ ].

Similarly there is an integer d2 ≥ 0 such that h2 = ( wjwj′ )
d2g2 ∈ K[wj ]. Let d = d1 + d2.

Then, for each k ∈ J

(1) f1h2 ·
(
wj′

wk

)d
= f2h1 ·

(
wj
wk

)d
.
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Note that f1h2 ∈ RJ while f2h1 ∈ RJ′ . In particular, the k-component of f2h1 is zero.

By Lemma 11.5(c), the k-component of f2h1 ·
(wj
wk

)d is a polynomial in wk. By (1), the

k-component of f1h2 ·
(wj′
wk

)d
is a polynomial in wk. Hence, again by Lemma 11.5(c),

the k-component of f1h2 is a polynomial in wk.

We conclude that f1h2 ∈ K[wk | k ∈ J ], so f = f1h2
g1h2

∈ K(x).

Corollary 12.2: For each i ∈ I we have P ′i = P{i}. Also,
⋂
j∈I Pj = K(x).

Proof: We apply Proposition 12.1 several times:

P ′i =
⋂
j 6=i

Pj =
⋂
j 6=i

PI r{j} = P⋂
j 6=i I r{j} = P{i}.

For the second equality we choose an i ∈ I. Then

⋂
j∈I

Pj = PI r{i} ∩
⋂
j 6=i

PI r{j} = PI r{i} ∩ P{i} = K(x),

as claimed.

13. Factorization of Matrices over Complete Rings

We show in this section how to decompose a matrix over a complete ring into a product of

matrices over certain complete subrings. This will establish the decomposition condition

in the definition of the patching data (Definition 4.1) in our setup.

Lemma 13.1: Let (M, ‖ ‖) be a complete normed ring and let 0 < ε < 1. Consider

elements a1, a2, a3, . . . ∈M such that ‖ai‖ ≤ ε for each i and ‖ai‖ → 0. Let

pi = (1− a1) · · · (1− ai), i = 1, 2, 3, . . . .

Then the sequence (pi)∞i=1 converges to an element of M×.

Proof: For each i ≥ 1 we have ‖pi‖ ≤ ‖1− a1‖ · · · ‖1− ai‖ ≤ 1. Setting p0 = 1, we also

have pi = pi−1(1− ai). Hence,

‖pi − pi−1‖ ≤ ‖pi−1‖ · ‖ai‖ ≤ ‖ai‖ → 0.
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Thus, (pi)∞i=1 is a Cauchy sequence, so it converges to some p ∈M . Furthermore,

‖pk − 1‖ = ‖
k∑
i=1

(pi − pi−1)‖ ≤ max ‖ai‖ ≤ ε.

Consequently, ‖p− 1‖ < 1. By Lemma 6.3(f), p ∈M×.

Lemma 13.2 (Cartan’s Lemma): Let (M, ‖ ‖) be a complete normed ring. Let M1 and

M2 be complete subrings of M . Suppose

(1) for each a ∈ M there are a+ ∈ M1 and a− ∈ M2 with ‖a+‖, ‖a−‖ ≤ ‖a‖ such that

a = a+ + a−.

Then for each b ∈ M with ‖b − 1‖ < 1 there exist b1 ∈ M×1 and b2 ∈ M×2 such that

b = b1b2.

Proof: Let a1 = b− 1 and ε = ‖a1‖. Then 0 ≤ ε < 1. The condition

(2) 1 + aj+1 = (1− a+
j )(1 + aj)(1− a−j ),

with a+
j , a

−
j associated to aj by (1), recursively defines a sequence (aj)∞j=1 in M . Use

the relation aj = a+
j + a−j to rewrite (2):

(3) aj+1 = a+
j a
−
j − a

+
j aj − aja

−
j + a+

j aja
−
j .

Inductively assume that ‖aj‖ ≤ ε2j−1
. Since ‖a+

j ‖, ‖a
−
j ‖ ≤ ‖aj‖, (3) implies that

‖aj+1‖ ≤ max(‖aj‖2, ‖aj‖3) = ‖aj‖2 ≤ ε2j . Therefore, aj → 0, a−j → 0, and a+
j → 0.

Further, by (2),

(4) 1 + aj+1 = (1− a+
j ) · · · (1− a+

1 ) b (1− a−1 ) · · · (1− a−j ).

By Lemma 13.1, the partial products (1− a−1 ) · · · (1− a−j ) converge to some b′2 ∈M×2 .

Similarly, the partial products (1− a+
j ) · · · (1− a+

1 ) converge to some b′1 ∈M×1 . Passing

to the limit in (4), we get 1 = b′1bb
′
2. Therefore, b = (b′1)−1(b′2)−1, as desired.

Lemma 13.3: Let A be a complete integral domain with respect to an absolute value

| |, A1, A2 complete subrings of A, and A0 a dense subring of A. Set Ei = Quot(Ai) for

i = 0, 1, 2 and E = Quot(A). Suppose these objects satisfy the following conditions:
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(5a) For each a ∈ A there are a+ ∈ A1 and a− ∈ A2 with |a+|, |a−| ≤ |a| such that

a = a+ + a−.

(5b) A = A0 + gA for each nonzero g ∈ A0.

(5c) For every f ∈ A there are p ∈ A0 and u ∈ A× such that f = pu.

(5d) E0 ⊆ E2.

Then, for every positive integer n and for each b ∈ GLn(E) there are b1 ∈ GLn(E1) and

b2 ∈ GLn(E2) such that b = b1b2.

Proof: As in Example 6.4(d), we define the norm of a matrix a = (aij) ∈ Mn(A) by

‖a‖ = maxij |aij | and note that Mn(A) is a complete normed ring, Mn(A1),Mn(A2)

are complete normed subrings of Mn(A), and Mn(A0) is a dense subring of Mn(A).

Moreover, by (5a), for each a ∈ Mn(A) there are a+ ∈ Mn(A1) and a− ∈ Mn(A2) with

‖a+‖, ‖a−‖ ≤ ‖a‖ such that a = a+ + a−.

By Condition (5c) each element of E is of the form 1
hf , where f ∈ A and h ∈ A0,

h 6= 0. Hence, there is h ∈ A0 such that hb ∈ Mn(A) and h 6= 0. If hb = b1b
′
2, where

b1 ∈ GLn(E1) and b′2 ∈ GLn(E2), then b = b1b2 with b2 = 1
hb
′
2 ∈ GLn(E2). Thus, we

may assume that b ∈ Mn(A).

Let d ∈ A be the determinant of b. By Condition (5c) there are g ∈ A0 and u ∈ A×

such that d = gu. Let b′′ ∈ Mn(A) be the adjoint matrix of b, so that bb′′ = d · 1, where

1 is here the unit of Mn(A). Let b′ = u−1b′′. Then b′ ∈ Mn(A) and bb′ = g · 1.

We set

V = {a′ ∈ Mn(A) | ba′ ∈ gMn(A)} and V0 = V ∩Mn(A0).

Then V is an additive subgroup of Mn(A) and gMn(A) ≤ V . By (5b), Mn(A) =

Mn(A0) + gMn(A). Hence V = V0 + gMn(A). Since Mn(A0) is dense in Mn(A), and

therefore gMn(A0) is dense in gMn(A), it follows that V0 = V0 + gMn(A0) is dense

in V = V0 + gMn(A). Since b′ ∈ V , there is a0 ∈ V0 such that ||b′ − a0|| < |g|
||b|| . In

particular, a0 ∈ Mn(A0) and ba0 ∈ gMn(A).

Put a = 1
ga0 ∈ Mn(E0). Then ba ∈ Mn(A) and ||1 − ba|| = || 1g b(b

′ − a0)|| ≤
1
|g| ||b|| · ||b

′ − a0|| < 1. It follows from Lemma 6.3(f) that ba ∈ GLn(A). In particular
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det(a) 6= 0 and therefore a ∈ GLn(E0) ≤ GL(E2). By Lemma 13.2, there are b1 ∈

GLn(A1) and b′2 ∈ GLn(A2) ≤ GLn(E2) such that ba = b1b
′
2. Thus b = b1b2, where

b1 ∈ GLn(A1) ≤ GLn(E1) and b2 = b′2a
−1 ∈ GLn(E2).

We apply Corollary 13.3 to the rings and fields of Section 12.

Corollary 13.4: Let B ∈ GLn(Q).

(a) For each partition I = J ·∪ J ′ there exist B1 ∈ GLn(PJ) and B2 ∈ GLn(PJ′) such

that B = B1B2.

(b) For each i ∈ I there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′i ) such that B = B1B2.

Proof: We may assume without loss that both J and J ′ are nonempty and ap-

ply Lemma 13.3 to the rings R,RJ , RJ′ , R0 rather than A,A1, A2, A0, where R0 =

K[wi | i ∈ I].

By definition, R, RJ , and RJ′ are complete rings (Second paragraph of Section

11). Given f ∈ R, say, f = a0 +
∑
i∈I
∑∞
k=1 aikw

k
i (Lemma 11.1), we let f1 = a0 +∑

i∈J
∑∞
k=1 aikw

k
i and f2 =

∑
i∈J′

∑∞
k=1 aikw

k
i . Then |fi| ≤ |f |, i = 1, 2 and f =

f1 + f2. This proves condition (5a) in our context.

By definition, R is the completion of R0, so R0 is dense in R and K(x) = Quot(R0)

is contained in both PJ = Quot(Rj) and PJ′ = Quot(RJ′). Conditions (5b) and (5c)

are Corollary 11.8 and Lemma 11.7, respectively. Our Corollary is therefore a special

case of Lemma 13.3.

We apply Corollary 12.2 and Corollary 13.4 to put together patching data whose

analytic fields are the fields Pi introduced above.

Proposition 13.5: Let K be a complete field with respect to an ultrametric absolute

value | |. Let x be an indeterminate, G a finite group, r an element of K×, and I a

finite set with |I| ≥ 2. For each i ∈ I let Gi be a subgroup of G, Fi a finite Galois

extension of E = K(x) with Gal(Fi/K) ∼= Gi, and ci ∈ K× such that |r| ≤ |ci − cj |

if i 6= j. Set wi = r
x−ci , Pi = Quot(K{wj | j ∈ I r{i}}), P ′i = Quot(K{wi}), and

Q = Quot(K{wi | i ∈ I}). Suppose G = 〈Gi | i ∈ I〉 and Fi ⊆ P ′i for each i ∈ I. Then

E = (E,Fi, Pi, Q,Gi, G)i∈I is patching data.
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Proof: Our assumptions imply conditions (1a) and (1d) of Definition 4.1. By Corollary

12.2, P ′i = P{i} =
⋂
j 6=i PI r{j} =

⋂
j 6=i Pj and

⋂
i∈I Pi = E. Thus, Conditions (1b) and

(1c) of Definition 4.1 hold. Finally, Condition (1e) of Definition 4.1 holds by Corollary

13.4. It follows that E is patching data.

14. Cyclic Extensions

Every finite group is generated by cyclic groups whose orders are powers of prime

numbers. Given a field K, a variable x, and a power q of a prime number, we construct

a Galois extension F of K(x) with Gal(F/K(x)) ∼= Z/nZ. If in addition K is complete

with respect to a non-archimedean norm, we show how to embed F into K{x}.

Lemma 14.1: Let K be a field, n a positive integer with char(K) - n, and x a variable.

Then K(x) has a cyclic extension F of degree n which is contained in K((x)).

Proof: Choose a root of unity ζn of order n in Ks. Let L = K(ζn) and G = Gal(L/K).

Then there is a map χ: G→ {1, . . . , n−1} such that σ(ζn) = ζ
χ(σ)
n . Then gcd(χ(σ), n) =

1 and

(1) χ(στ) ≡ χ(σ)χ(τ) mod n

for all σ, τ ∈ G. By Example 3.5.1, K((x)) is a regular extension of K and L((x)) =

K((x))(ζn). Thus, we may identify G with Gal(L((x))/K((x))).

Choose a primitive element c of L/K. Consider the element

g(x) =
∏
σ∈G

(
1 + σ(c)x

)χ(σ−1)

of L[x]. Since char(K) - n, Hensel’s lemma (Proposition 3.5.2) gives a z ∈ L[[x]] with

zn = 1 + cx. Then y =
∏
σ∈G σ(z)χ(σ−1) ∈ L[[x]] and yn =

∏
σ∈G σ(zn)χ(σ−1) =∏

σ∈G(1 + σ(c)x)χ(σ−1) = g(x). Since ζn ∈ L, F = L(x, y) is a cyclic extension of

degree d of L(x), where d|n and yd ∈ L(x) [Lang7, p. 289, Thm. 6.2(ii)]. Since χ(σ−1)

is relatively prime to n, we must have d = n. The Galois group Gal(F/L(x)) is generated

by an element ω satisfying ω(y) = ζny.
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By (1) there exist for each τ, ρ ∈ G a positive integer k(τ, ρ) and a polynomial

fτ (x) ∈ L[x] such that

τ(y) =
∏
σ∈G

τσ(z)χ(σ−1) =
∏
ρ∈G

ρ(z)χ(ρ−1τ) =
∏
ρ∈G

ρ(z)χ(ρ−1)χ(τ)+k(τ,ρ)n

= yχ(τ)
∏
ρ∈G

(1 + ρ(c)x)k(τ,ρ) = yχ(τ)fτ (x).

It follows that G leaves F invariant. Let E be the fixed field of G in F .

K((x)) L((x))

E F= L(x, y)

K(x) L(x)

K L= K(ζn)

Denote the subgroup of Aut(F/K(x)) generated by G and Gal(F/L(x)) by H.

Then the fixed field of H is K(x), so F/K(x) is a Galois extension with Gal(F/K(x)) =

G · Gal(F/L(x)). Moreover, given τ ∈ G, put m = χ(τ). Then τω(y) = τ(ζny) =

ζmn y
mfτ (x) = ω(y)mfτ (x) = ω(ymfτ (x)) = ωτ(y). Thus, τω = ωτ , so G commutes

with Gal(F/L(x)). Therefore, E/K(x) is a Galois extension with Gal(E/K(x)) ∼=

Gal(F/L(x)) ∼= Z/nZ.

Lemma 14.2: Let E be a field of positive characteristic p. Let F be a cyclic extension

of degree pn, n ≥ 1, of E. Then E has a Z/pn+1Z-extension F ′ which contains F .

Proof: Define F ′ to be F (z) where z is a zero of Zp − Z − a with a ∈ F . The three

parts of the proof produce a, and then show F ′ has the desired properties.

Part A: Construction of a. Since F/E is separable, there is a b1 ∈ F with c =

traceF/E(b1) 6= 0 [Lang7, p. 286, Thm. 5.2]. Put b = b1
c . Then traceF/E(b) = 1 and

traceF/E(bp − b) = (traceF/E(b))p − traceF/E(b) = 0. With σ a generator of Gal(F/E),

the additive form of Hilbert’s Theorem 90 [Lang7, p. 290, Thm. 6.3] gives a ∈ F with

(2) σa− a = bp − b.
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Part B: Irreducibility of Zp − Z − a. Assume Zp − Z − a is reducible over F . Then

z ∈ F [Lang7, p. 290, Thm. 6.4(b)]. Thus

(σz − z)p − (σz − z)− (bp − b) = (σz − z)p − (σz − z)− (σa− a)(3)

= (σzp − σz − σa)− (zp − z − a) = 0

Since b is a root of Zp − Z − (bp − b), there is an i with σz − z = b+ i [Lang7, p. 290,

Thm. 6.4(b)]. Apply traceF/E to both sides to get 0 on the left and 1 on the right. This

contradiction proves Zp − Z − a is irreducible.

Part C: Extension of σ to σ′ that maps z to z + b. Equality (2) implies z + b is

a zero of Zp − Z − σa. Thus, by Part B, σ extends to an automorphism σ′ of F ′

with σ′(z) = z + b. We need only prove that σ′ has order pn+1. Induction shows

(σ′)j(z) = z + b+ σb+ · · ·+ σj−1b. In particular,

(4) (σ′)p
n

(z) = z + traceF/E(b) = z + 1.

Hence, (σ′)ip
n

(z) = z+ i, i = 1, . . . , p. Therefore, the order of σ′ is pn+1, as contended.

Lemma 14.3: Let K be a field, x a variable, and A a finite abelian group. Then K(x)

has a Galois extension F such that Gal(F/K(x)) ∼= A and F/K is regular.

Proof: We put p = char(K) and divide the proof into two parts:

Part A: A ∼= Z/mZ and p - m. By Lemma 16.3.1, K(x) has a cyclic extension Em of

degree m which is contained in K((x)). By Example 3.5.1, K((x)) is a regular extension

of K. Hence, so is Em (Corollary 2.6.5(b)).

Part B: A ∼= Z/pkZ. Assume without loss that k ≥ 1. By Eisenstein’s criterion and

Gauss’ lemma, the polynomial Zp − Z − x is irreducible over K̃(x). Let z be a root of

Zp − Z − x in K(x)s. Then, by Artin-Schreier, [Lang7, p. 290, Thm. 6.4(b)], K(z) is

a cyclic extension of degree p of K(x). Lemma 16.3.2 gives a cyclic extension Epk of

K(x) of degree pk which contains K(z).
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By the preceding paragraph, K(z) ∩ K̃(x) = K(x). Since Gal(Epk/K(x)) is a

cyclic group of order pk, each subextension of Epk which properly contains K(x) must

contain K(z). Hence, Epk ∩ K̃(x) = K(x). Thus, Epk is linearly disjoint from K̃(x)

over K(x). By the tower property (Lemma 2.5.3), Epk is linearly disjoint from K̃ over

K; that is, Epk/K is regular.

Part C: A ∼= Z/nZ, n = mpk, p - m. The compositum En = EmEpk is a cyclic

extension of K(x) of degree n. Moreover, En∩ K̃(x) decomposes into a cyclic extension

of K(x) of degree which divides m and a cyclic extension of K(x) degree dividing pk.

By Parts A and B, both subextensions must be K(x). It follows that En is a regular

extension of K.

The following result, due to Helmut Völklein, improves Lemma 14.3. Its proof

applies the field crossing argument.

Lemma 14.4: Let K be an infinite field, x a variable, and A a finite abelian group.

Then K(x) has a finite Galois extension in K((x)) with Galois group isomorphic to A.

Proof: Lemma 14.3 gives a Galois extension F of K(x) such that Gal(F/K(x)) ∼= A

and F/K is regular. We choose a primitive element y for F/K(x) integral over K[x]

and let g = irr(y,K(x)). Then g(Y ) = f(X,Y ), where f ∈ K[X,Y ] is irreducible. Since

F/K is regular, f is absolutely irreducible. Replacing x by x − a for an appropriate

a ∈ K, we may assume that f(0, Y ) is separable. Let L be the splitting field of f(0, Y )

over K. By Hensel’s lemma, g(Y ) has a root y′ in L((x)). Since F/K(x) is Galois,

F = K(x, y′) ⊆ L((x)). Hence FL is a Galois extension of K(x) in L((x)). Since F , as

a regular extension of K, is linearly disjoint from L over K, we have Gal(FL/K(x)) =

Gal(FL/F ) × Gal(FL/L(x). Morover, Gal(FL/L(x)) is isomorphic via restriction to

Gal(F/K(x)) ∼= A, hence Gal(FL/L(x)) is abelian. It follows that Gal(FL/L(x)) lies

in the center of Gal(FL/K(x)).

The action of Γ = Gal(L/K) on the coefficients of the power series belonging to

L((x)) extends to a faithful action of Γ on L((x)) with fixed field K((x)). Since F is a

Galois extension of K(x) in L((x)), it is invariant under Γ. Hence, the action of Γ on

L((x)) restricts to an action of Γ on FL fixing each element of K(x). We denote the
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fixed field of Γ in FL by F ′.

K((x)) Γ
L((x))

F ′
Γ

FL

F
mmmmmmm

mmmmmm

K(x) Γ
L(x)

K
Γ

L

It follows that F ′ ∩ L(x) = K(x) and F ′ · L(x) = FL. Hence, Γ · Gal(FL/L(x)) =

Gal(FL/K(x)). Since, by the preceding paragraph, Gal(FL/L(x)) lies in the center of

Gal(FL/K(x)), we conclude that Gal(FL/F ′) is a normal subgroup of Gal(FL/K(x)).

Therefore, F ′ is a Galois extension of K(x) and Gal(F ′/K(x)) ∼= Gal(FL/L(x)) ∼=

Gal(F/K(x)) ∼= A, as desired.

We can do even better, if K is a complete field under an absolute value | |.

Lemma 14.5: Let K be a complete field under an absolute value | |, let x be a variable,

and let A be a finite abelian group. Then K(x) has a Galois extension in K{x} with

Galois group A.

Proof: By Lemma 14.4, K(x) has a Galois extension F in K((x)) with Galois group

isomorphic to A. We choose a primitive element y for F/K(x) integral over K[x]. Then

y ∈ K[[x]], so y =
∑∞
n=0 anx

n with an ∈ K for each n ≥ 0. By Proposition 8.5, y

converges at some c ∈ K×. Thus, the series
∑∞
n=0 anc

n converges in K, which means

that y′ =
∑∞
n=0 anc

nxn ∈ K{x}. Now, the map x → cx extends to an automorphism

ϕ of K((x)) that leaves K(x) invariant. It maps K(x, y) onto the subfield K(x, y′) of

K{x}. Since K(x, y)/K is Galois with Galois group A, so is the extension K(x, y′)/K,

as desired.

15. Embedding Problems over Complete Fields

Let K/K0 be a finite Galois extension of fields with Galois group Γ acting on a finite

group G. Consider a variable x and set E0 = K0(x) and E = K(x). Then E/E0 is a
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Galois extension and we identify Gal(E/E0) with Γ = Gal(K/K0) via restriction. We

refer to

(1) pr: Γ nG→ Γ

as a constant finite split embedding problem over E0. We prove that if K0 is

complete under an ultrametric absolute value, then (1) has a solution field (Section 5)

equipped with a K-rational place.

Proposition 15.1: Let K0 be a complete field with respect to an ultrametric absolute

value | |. Let K/K0 be a finite Galois extension with Galois group Γ acting on a finite

group G from the right. Then E has a Galois extension F such that

(3a) F/E0 is Galois;

(3b) there is an isomorphism ψ: Gal(F/E0)→ Γ nG such that pr ◦ ψ = resE ; and

(3c) F has a set of cardinality |K0| of K-rational place ϕ (so F/K is regular) such that

ϕ(x) ∈ K0 and F̄ϕ = K.

Proof: Our strategy is to attach patching data E to the embedding problem and to

define a proper action of Γ on E . Then we apply Proposition 5.2 to conclude that the

compound F of E gives a solution to the embedding problem.

We fix a finite set I on which Γ acts from the right and a system of generators

{τi | i ∈ I} of G such that for each i ∈ I

(4a) {γ ∈ Γ | iγ = i} = {1};

(4b) the order of the group Gi = 〈τi〉 is a power of a prime number;

(4c) τγi = τiγ , for every γ ∈ Γ; and

(4d) |I| ≥ 2.

(E.g. assuming G 6= 1, let G0 be the set of all elements of G whose order is a power

of a prime number and note that Γ leaves G0 invariant. Let I = G0 × Γ and for each

(σ, γ) ∈ I and γ′ ∈ Γ let (σ, γ)γ
′

= (σ, γγ′) and τ(σ,γ) = σγ .)

Then Gγi = Giγ for each γ ∈ Γ and G = 〈Gi | i ∈ I〉. Choose a system of

representatives J for the Γ-orbits of I. Then every i ∈ I can be uniquely written as

i = jγ with j ∈ J and γ ∈ Γ.
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Claim A: There exists a subset {ci | i ∈ I} ⊆ K such that cγi = ciγ and ci 6= cj for all

distinct i, j ∈ I and γ ∈ Γ.

Indeed, it suffices to find {cj | j ∈ J} ⊆ K (and then define ci, for i = jγ ∈ I, as

cγj ) such that cδj 6= cεj for all j ∈ J and all distinct δ, ε ∈ Γ, and cδj 6= ck for all distinct

j, k ∈ J and all δ ∈ Γ.

The first condition says that cj is a primitive element for K/K0; the second

condition means that distinct cj and ck are not conjugate over K0. Thus it suffices to

show that there are infinitely many primitive elements for K/K0. But if c ∈ K× is

primitive, then so is c + a, for each a ∈ K0. Since K0 is complete, hence infinite, the

claim follows.

Construction B: Patching data.

We choose r ∈ K×0 such that |r| ≤ |ci − cj | for all distinct i, j ∈ I. For each i ∈ I

we set wi = r
x−ci ∈ K(x). As in Section 11, we consider the ring R = K{wi | i ∈ I}

and let Q = Quot(R). For each i ∈ I let

Pi = PI r{i} = Quot(K{wj | j 6= i}) and P ′i = P{i} = Quot(K{wi})

(we use the notation of Section 12).

Let γ ∈ Γ. By our definition, wγi = r
x−cγi

= wiγ , i ∈ I. Hence, γ leaves R0 =

K[wi | i ∈ I] invariant. Since | | is complete on K0, it has a unique extension to K, so

|aγ | = |a| for each a ∈ K. Moreover, for each f = a0 +
∑
i∈I
∑∞
n=1 ainw

n
i ∈ R0, we have

(5) fγ = aγ0 +
∑
i∈I

∞∑
n=1

aγin(wγi )n

and

‖fγ‖ = ‖aγ0 +
∑
i∈I

∞∑
n=1

aγin(wγi )n‖ = ‖aγ0 +
∑
i∈I

∞∑
n=1

aγinw
n
iγ‖

= max(|aγ0 |, |a
γ
in|)i,n = max(|a0|, |ain|)i,n = ‖f‖.

By Lemma 6.5, γ uniquely extends to a continuous automorphism of the completion R

of R0, by formula (5) for f ∈ R. Hence, Γ lifts to a group of continuous automorphisms

of R. Therefore, Γ extends to a group of automorphisms of Q = Quot(R). In addition,

P γi = Piγ and (P ′i )
γ = P ′iγ .
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For each j ∈ J , Lemma 14.5 gives a cyclic extension Fj of E in P ′j = K{wj} with

Galois group Gj = 〈τj〉.

For an arbitrary i ∈ I there exist unique j ∈ J and γ ∈ Γ such that i = jγ (by

(4a)). Since γ acts on Q and leaves E invariant, Fi = F γj is a Galois extension of E in

Q in P ′i .

The isomorphism γ: Fj → Fi gives an isomorphism

Gal(Fj/E) ∼= Gal(Fi/E)

that maps each τ ∈ Gal(Fj/E) onto γ−1 ◦ τ ◦ γ ∈ Gal(Fi/E) (notice that the elements

of the Galois groups act from the right). In particular, it maps τj onto γ−1 ◦ τj ◦ γ.

We can therefore identify Gi with Gal(Fi/E) such that τi coincides with γ−1 ◦ τj ◦ γ.

This means that (aτ )γ = (aγ)τ
γ

for all a ∈ Fj and τ ∈ Gj . In particular, Fi ⊆ P ′i for

each i ∈ I. It follows from Proposition 13.5 that E = (E,Fi, Pi, Q;Gi, G)i∈I is patching

data. By construction, Γ acts properly on E (Definition 5.1). By Propositions 4.5 and

5.2, the compound F of E satisfies (3a) and (3b). Now we verify (3c).

Claim C: F/K has many prime divisor of degree 1. Each b ∈ K0 with

(6) |b| > max
i∈I

(|r|, |ci|)

satisfies
∣∣ r
b−ci

∣∣ < 1 for each i ∈ I, hence, the map x 7→ b extends to a homomorphism

from R to K that maps wi onto r
b−ci . Since R is a principal ideal domain (Proposi-

tion 11.9), this homomorphism extends to a K-rational place ϕb: Q→ K ∪{∞}. Thus,

ϕb|F is a K-rational place of F with ϕb(x) = b ∈ K0, so it corresponds to a prime

divisor of F/K of degree 1. If b′ ∈ K0 and b′ 6= b, then ϕb 6= ϕb′ , so also the prime

divisors that ϕb and ϕb′ define are distinct. Consequently, the cardinality of the prime

divisors of F/K of degree 1 is that of K0.

Finally, the regularity of F/K follows from the fact that ϕb(F ) = K∪{∞} [FrJ08,

Lemma 2.6.9].
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16. Embedding Problems over Ample Fields

In this section K/K0 is an arbitrary finite Galois extension with Galois group Γ and x

is a variable. Suppose Γ acts on a finite group G. We look for a rational solution of the

constant split embedding problem

(1) pr: Gal(K(x)/K0(x)) nG→ Gal(K(x)/K0(x))

over K0(x). When K0 is complete under an ultrametric absolute value, this problem

reduces to the special case solved in Section .

Consider also a regular extension K̂0 of K0 such that x is transcendental over K̂0

and let K̂ = KK̂0. Then K̂0(x) is a regular extension of K0(x) [FrJ08, Lemma 2.6.8(a)],

so K̂0(x) is linearly disjoint from K(x) over K0(x). Hence, res: Gal(K̂(x)/K̂0(x)) →

Gal(K(x)/K0(x)) is an isomorphism. This gives rise to a finite split embedding problem

over K̂0(x),

(2) pr: Gal(K̂(x)/K̂0(x)) nG→ Gal(K̂(x)/K̂0(x))

such that pr ◦ (resK(x) × idG) = resK(x) ◦ pr.

We identify each of the groups Gal(K̂(x)/K̂0(x)), Gal(K(x)/K0(x)), and

Gal(K̂/K̂0) with Γ = Gal(K/K0) via restriction. Moreover, if F (resp. F̂ ) is a so-

lution field of embedding problem (1) (resp. (2)), then we identify Gal(F/K0(x)) (resp.

Gal(F̂ /K̂0(x))) with Γ n G via an isomorphism θ (resp. θ̂) satisfying pr ◦ θ = res

(resp. pr ◦ θ̂ = res). We say that (F, θ) is a split rational solution of (1) if F has a

K-rational place ϕ such that Γ = Dϕ. We say that (F, θ) is unramified if ϕ can be

chosen to be unramified over K0(x).

Lemma 16.1: In the above notation suppose K0 is ample and existentially closed in

K̂0. Let F̂ be a solution field to embedding problem (2) with a K̂-rational place ϕ̂,

unramified over K̂0(x), such that ϕ̂(x) ∈ K̂0. Then embedding problem (1) has a

solution field F with a K-rational place ϕ unramified over K0(x) such that ϕ(x) ∈ K0.

Proof: We break up the proof into several parts. First we solve embedding problem (1)

over K̂0(x), then we push the solution down to a solution over a function field K0(u, x)
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which is regular over K0, and finally we specialize the latter solution to a solution over

K0(x) with a place satisfying all of the prescribed conditions.

Part A: A solution of (1) over K̂0(x). By assumption, there exists an isomorphism

θ̂: Gal(F̂ /K̂0(x))→ Gal(K̂(x)/K̂0(x)) nG

such that pr◦θ̂ = resK̂(x). Let F̂0 be the fixed field in F̂ of Dϕ̂ (= Γ). Then, F̂0∩K̂(x) =

K̂0(x) and F̂0 · K̂(x) = F̂ , so m = [F̂0 : K̂0(x)] = [F̂ : K̂(x)]. Then, ϕ̂(F̂0) = K̂0 ∪ {∞}.

Hence, F̂0/K̂0 is regular [FrJ08, Lemma 2.6.9(b)].

We choose a primitive element y for the extension F̂0/K̂0(x) integral over K̂0[x].

By the preceding paragraph, F̂ = K̂(x, y).

By [Jar11, Lemma 5.1.2], there exists an absolutely irreducible polynomial h ∈

K̂0[V,W ] and elements v, w ∈ F̂0 such that K̂0(v, w) = F̂0, h(v, w) = 0, h(0, 0) = 0,

and ∂h
∂W (0, 0) 6= 0.

We also choose a primitive element c for K over K0, a primitive element z for

F̂ over K̂0(x) integral over K̂0[x], and note that F̂ = K̂0(c, x, y). Then there exist

polynomials f, p0, p1 ∈ K̂0[X,Z], g, r0, r1, r2 ∈ K̂0[X,Y ], q0, q1 ∈ K̂0[T,X, Y ], and

s0, s1, s2 ∈ K̂0[V,W ] such that the following conditions hold:

(3a) F̂ = K̂0(x, z) and f(x, Z) = irr(z, K̂0(x)); in particular discr(f(x, Z)) ∈ K̂0(x)×.

(3b) g(x, Y ) = irr(y, K̂0(x)) = irr(y, K̂(x)); since F̂0/K̂0 is regular (by the first para-

graph of Part A), g(X,Y ) is absolutely irreducible [FrJ08, Cor. 10.2.2(b)].

(3c) y = p1(x,z)
p0(x,z) , z = q1(c,x,y)

q0(c,x,y) , p0(x, z) 6= 0, and q0(c, x, y) 6= 0.

(3d) v = r1(x,y)
r0(x,y) , w = r2(x,y)

r0(x,y) , x = s1(v,w)
s0(v,w) , y = s2(v,w)

s0(v,w) , r0(x, y) 6= 0, and s0(v, w) 6= 0.

Part B: Pushing down. The polynomials introduced in Part A depend on only finitely

many parameters from K̂0. Thus, there are u1, . . . , un ∈ K̂0 with the following proper-

ties:

(4a) The coefficients of f, g, h, p0, p1, q0, q1, r0, r1, r2, s0, s1, s2 are in K0[u].

(4b) Fu = K0(u, x, z) is a Galois extension of K0(u, x),

f(x, Z) = irr(z,K0(u, x)), and discr(f(x, Z)) ∈ K0(u, x)×.

(4c) g(x, Y ) = irr(y,K0(u, x)) = irr(y,K(u, x)); we set F0,u = K0(u, x, y).

51



It follows that restriction maps the groups Gal(F̂ /K̂0(x)), Gal(F̂ /F̂0), and

Gal(F̂ /K̂(x)) isomorphically onto the groups Gal(Fu/K0(u, x)), Gal(Fu/F0,u), and

Gal(Fu/K(u, x)), respectively. Therefore, restriction transfers θ̂ to an isomorphism

(5) θ: Gal(Fu/K0(u, x))→ Gal(K(u, x)/K0(u, x)) nG

satisfying pr ◦ θ = resFu/K(u,x).

Part C: Specialization. Since K0 is existentially closed in K̂0, the field K̂0 and there-

fore also K0(u) are regular extensions of K0 (Lemma 1.5). Thus, u generates an ab-

solutely irreducible variety U = Spec(K0[u]) over K0 [FrJ08, Cor. 10.2.2]. The variety

U has a nonempty Zariski-open subset U ′ that contains u such that for each u′ ∈ U ′

the K0-specialization u→ u′ extends to a K(x)-homomorphism ′: K(x)[u, v, w, y, z]→

K(x)[u′, v′, w′, y′, z′] such that the following conditions, derived from (3) and (4), hold:

(6a) The coefficients of f ′, g′, h′, p′0, p
′
1, q
′
0, q
′
1, r
′
0, r
′
1, r
′
2, s
′
0, s
′
1, s
′
2 belong to K0[u′].

(6b) F = K0(u′, x, z′) is a Galois extension of K0(u′, x), f ′(x, z′) = 0, and

discr(f ′(x, Z)) ∈ K0(u′, x)×.

(6c) y′ = p′1(x,z′)
p′0(x,z′) , z′ = q′1(c,x,y′)

q′0(c,x,y′) , p′0(x, z′) 6= 0, and q′0(c, x, y′) 6= 0; we set F0 =

K0(u′, x, y′) and find that F = F0K.

(6d) g′(X,Y ) is absolutely irreducible, degY (g′(x, Y )) = degY (g(x, Y )),

g′(x, y′) = 0, and so g′(x, Y ) = irr(y′,K0(u′, x)) = irr(y′,K(u′, x));

(6e) h′(V,W ) is absolutely irreducible, h′(0, 0) = 0, and ∂h′

∂W (0, 0) 6= 0.

(6f) v′ = r′1(x,y′)
r′0(x,y′) , w′ = r′2(x,y′)

r′0(x,y′) , x = s′1(v′,w′)
s′0(v′,w′) , y′ = s′2(v′,w′)

s′0(v′,w′) , r′0(x, y′) 6= 0, and

s′0(v′, w′) 6= 0; thus F0 = K0(u′, v′, w′).

To achieve the absolute irreducibility of g′ and h′ we have used the Bertini-Noether

theorem [FrJ08, Prop. 9.4.3].

Part D: Choosing u′ ∈ Kn
0 . Since K0 is existentially closed in K̂0 and since u ∈

U ′(K̂0), we can choose u′ ∈ U ′(K0). Then K0[u′] = K0, K0(u′, x) = K0(x), F0 =

K0(x, y′) = K0(v′, w′), and F = K0(x, z′). Since discr(f ′(x, Z)) 6= 0 (by (6b)) the

homomorphism ′ induces an embedding

(7) ψ∗: Gal(F/K0(x))→ Gal(Fu/K0(u, x))
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such that (ψ∗(σ)(s))′ = σ(s′) for all σ ∈ Gal(F/K0(x)) and s ∈ Fu with s′ ∈ F

[Lan93, p. 344, Prop. 2.8]. Each s ∈ K(x) is fixed by ′, hence ψ∗(σ)(s) = σ(s) for each

σ ∈ Gal(F/K0(x)). It follows that ψ∗ commutes with restriction to K(x).

F̂0

qqqqqqq F̂

rrrrrrr

F0,u

ww

Fu

xx
F0 F

K̂0(x)

qqq
qq
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ssss
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ppp
pp

K(u, x)

rrrr

K0(x) K(x)

K̂0

qqqqqq K̂

rrrrrr

K0(u)

pppppp
K(u)

qqq
qqq

K0 K

By (6c), F = K(x, y′) = F0K. By (6d) and [FrJ08, Cor. 10.2.2(b)], F0/K0 is a

regular extension, so F0 is linearly disjoint from K over K0. Therefore, F0 is linearly

disjoint from K(x) over K0(x), hence F0∩K(x) = K0(x) and [F0 : K0(x)] = [F : K(x)].

It follows from (6d) that

|Gal(F/K0(x))| = [F : K0(x)]

= [F : K(x)][K(x) : K0(x)]

= degY g
′(x, Y )[K : K0]

= degY g(x, Y )[K : K0]

= [Fu : K(u, x)][K(u, x) : K0(u, x)]

= [Fu : K0(u, x)] = |Gal(Fu/K0(u, x))|.

Therefore ψ∗ is an isomorphism. Let

ρ: Gal(K(u, x)/K0(u, x)) nG→ Gal(K(x)/K0(x)) nG
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be the isomorphism whose restriction to Gal(K(u, x)/K0(u, x)) is the restriction map

and to G is the identity map. Then, θ′ = ρ ◦ θ ◦ψ∗ satisfies pr ◦ θ′ = resF/K(x) (by (5)).

This means that θ′ is a solution of embedding problem (1).

Part E: Rational place. Finally, by (6e) and (6f), the curve defined by h′(X,Y ) = 0

is a model of F0/K0 and (0, 0) is a K0-rational simple point of it. Therefore, by [Jar11,

Lemma 5.1.4(b)], F0 has a K0-rational place ϕ0: F0 → K0 ∪ {∞}. Since K0 is ample,

F0 has infinitely many K0-places (Lemma 1.1). Only finitely many of them are ramified

over K0(x). Hence, we may choose ϕ0 to be unramified over K0(x). Using the linear

disjointness of F0 and K over K0, we extend ϕ0 to a K-rational place ϕ: F → K ∪{∞}

unramified over K0(x).

Theorem 16.2: Let K0 be an ample field. Then each constant finite split embedding

problem over K0(x) has a split unramified rational solution.

Proof: Consider a constant finite split embedding problem (1) over K0(x). Let K̂0 =

K0((t)). Then K̂0 is complete under a nontrivial discrete ultrametric absolute value

with prime element t. Consequently, by Proposition 15.1, (2) has a split unramified

rational solution. By Lemma , K0 is existentially closed in K̂0. Hence, by Lemma 16.1,

(1) has a split unramified rational solution.

17. PAC Hilbertian Fields are ω-Free

The statement of the title was a major open problem of Field Arithmetic. Theorem

17.3 settles that problem.

Recall that the rank of a profinite group G is the least cardinality of a system of

generators of G that converges to 1. If G is not finitely generated, then rank(G) is also

the cardinality of the set of all open normal subgroups of G [FrJ08, Prop. 17.1.2]. We

denote the free profinite group of rank m by F̂m.

An embedding problem for a profinite group G is a couple

(1) (ϕ: G→ A, α: B → A),

of homomorphisms of profinite groups with ϕ and α surjective. The embedding problem

is said to be finite if B is finite. If there exists a homomorphism α′: A→ B such that
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α ◦ α′ = idA, we say that (1) splits. A weak solution to (1) is a homomorphism

γ: G→ B such that α ◦γ = ϕ. If γ is surjective, we say that γ is a solution to (1). We

say that G is projective if every finite embedding problem for G has a weak solution.

An embedding problem over a field K is an embedding problem (1), where

G = Gal(K). If L is the fixed field of Ker(ϕ), we may identify A with Gal(L/K) and

ϕ with resKs/L and then consider α: B → Gal(L/K) as the given embedding problem.

This shows that our present definition generalizes the one given in Section 5. Note that

if γ: Gal(K) → B is a solution of (1) and F is the fixed field in Ks of Ker(γ), then

F is a solution field of the embedding problem α: B → Gal(L/K) and γ induces an

isomorphism γ̄: Gal(F/K)→ B such that α ◦ γ̄ = resF/L.

The first statement of the following proposition is due to Gruenberg [FrJ08,

Lemma 22.3.2], the second one is a result of Iwasawa [FrJ08, Cor. 24.8.2].

Proposition 17.1: Let G be a projective group. If each finite split embedding problem

for G is solvable, then every finite embedding problem for G is solvable. If in addition

rank(G) ≤ ℵ0, then G ∼= F̂ω.

We say that a field K is ω-free if every finite embedding problem over K (that

is, finite embedding problem for Gal(K)) is solvable.

Theorem 17.2: Let K be an ample field.

(a) If K is Hilbertian, then each finite split embedding problem over K is solvable.

(b) If in addition, Gal(K) is projective, then K is ω-free.

(c) If in addition, Gal(K) has countably many generators, and in particular, if K is

countable, then Gal(K) ∼= F̂ω.

Proof of (a): Every finite split embedding problem over K gives a finite split constant

embedding problem over K(x). The latter is solvable by Theorem 16.2. Now use the

Hilbertianity and specialize to get a solution of the original embedding problem over K

[FrJ08, Lemma 13.1.1].

Proof of (b): By (a), every finite split embedding problem over K is solvable. Hence,

by Proposition 17.1, every finite embedding problem over K is solvable.
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Proof of (c): Use (b) and Proposition 17.1.

The following special case of Theorem 17.2 is a solution of [FrJ86, Prob. 24.41].

Theorem 17.3: Let K be a PAC field. Then K is ω-free if and only if K is Hilbertian.

Proof: That ‘K is ω-free’ implies ‘K is Hilbertian’ is a result of Roquette [FrJ08,

Cor. 27.3.3]. Conversely, if K is PAC, then Gal(K) is projective [FrJ08, Thm. 11.6.2].

By Example (a) of 2, K is ample. Hence, if K is Hilbertian, then by Theorem 17.2(b),

K is ω-free.
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