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Introduction

The absolute Galois group Gal(K) of a global field K is a very complicated object whose

structure seems to be unattainable at the present knowledge of Galois theory. What we

do understand is the structure of absolute Galois groups of certain families of infinite

extensions of K of a ”semi-local type”. The present work proves what is perhaps the

ultimate word in a series of results in this subject that started forty years ago.

More generally, we consider a countable Hilbertian field K. The first major result

on absolute Galois groups of algebraic extensions ofK of a semi-local type was discovered

around 1970. For σ = (σ1, . . . , σe) ∈ Gal(K)e we denote the fixed field of σ1, . . . , σe

in the separable closure Ks of K by Ks(σ). We denote the maximal Galois extension

of K in Ks(σ) by Ks[σ]. Then, for almost all σ ∈ Gal(K)e (in the sense of the Haar

measure) Gal(Ks(σ)) is the free profinite group F̂e on e generators [FrJ05, Thm. 18.5.6].

The case where K = Q and e = 1 is due to James Ax [Ax67, p. 177]. In addition, for

almost all σ ∈ Gal(K)e, Gal(Ks[σ]) is isomorphic to the free profinite group F̂ω on

countably many generators [Jar97, Thm. 2.7].

On the other hand we consider a finite set S of local primes of K: Each p ∈ S is

an equivalence class of absolute values of K such that the completion K̂p is a local field,

that is, K̂p is a finite extension of either Qp, Fp((t)), or R. For each p ∈ S we choose a

p-closure Kp = Ks ∩ K̂p of K at p. This is a Henselian closure if p is nonarchimedean,

a real closure if p is real archimedean, and the algebraic closure K̃ of K if p is complex

archimedean. Let

Ktot,S =
⋂
p∈S

⋂
ρ∈Gal(K)

Kρ
p

be the field of totally S-adic numbers. Here Kρ
p is the image of Kp by ρ. By [Pop96,

Thm. 3] there exists for each p ∈ S a closed subset Rp of Gal(K) such that

Gal(Ktot,S) =
∏
∗

p∈S

∏
∗

ρ∈Rp

Gal(Kρ
p ),

where the right hand side is the inner free product in the sense of Melnikov (Definition

1.2). The case where S consists of archimedean primes only was proved in [FHV93,

Cor. 6].
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The next task is to combine the two results, that is, to describe the absolute Galois

groups of Ktot,S(σ) = Ks(σ)∩Ktot,S and Ktot,S [σ] = Ks[σ]∩Ktot,S , again up to a set

of σ ∈ Gal(K)e of Haar measure 0.

Main Theorem: Let K be a countable Hilbertian field, S a finite set of local primes

of K, and e a positive integer. Then the following statements hold for almost all

σ ∈ Gal(K)e:

(a) For each p ∈ S there exists a closed subset Rp of Gal(K) such that

Gal(Ktot,S(σ)) ∼= F̂e ∗
∏
∗ p∈S

∏
∗ ρ∈Rp

Gal(Kρ
p).

(b) For each p ∈ S there exists a closed subset Rp of Gal(K) such that

Gal(Ktot,S [σ]) ∼= F̂ω ∗
∏
∗ p∈S

∏
∗ ρ∈Rp

Gal(Kρ
p).

(c) The second free factor on the right hand side of both (a) and (b) depends (up to an

isomorphism) only on K and S but not on the choice of the fields Kp nor on σ. In

particular, that factor is isomorphic to Gal(Ktot,S). Moreover, that factor is built

from the groups Gal(Kp), p ∈ S, in purely group theoretic terms.

Note that G = Gal(Ktot,S) is isomorphic to the second free component of (a) and

(b). However, since G is a closed normal subgroup of Gal(Ktot,S(σ)) and Gal(Ktot,S [σ]),

the isomorphism of (a) (resp. (b)) does not map G onto that second component.

Part (a) of the main theorem is proved in [HJP09] in the case where K is a

number field. Among others, the proof of [HJP09] uses that the groups Gal(Kp) are

finitely generated and the Ax-Kochen-Ershov theorem. The former fact is false and the

latter one is unknown in positive characteristic. Thus, the proof of [HJP09] of (a) for

number fields does not carry over to the general case and we needed a totally new idea.

The idea we found supports both (a) and (b) and gives (c) as a bonus. It is based

on [Pop96, Thm. 2.8]. By that theorem, if E is an extension of K in Ktot,S and E is

both Hilbertian and ample (Definition 3.6), then Gal(E) ∼= G∗ F̂ω, where G is a Cantor

free product over S (Remark 3.7). On the other hand we prove a general principle for

a free product A ∗ B of profinite groups: Let π: A ∗ B → B be the projection on the

second factor, C a closed subgroup of B, and R a closed system of representatives for the

left cosets of B modulo C. Then π−1(C) = C ∗
∏
∗ r∈RAr (Lemma 2.4). Now we apply
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[GeJ02, Thm. A] and a theorem of Weissauer in order to find for almost all σ ∈ Gal(K)e

an extension E of K in Ktot,S [σ] which is both ample and Hilbertian. Moreover, using

a lifting theorem for covers over ample fields due to Colliot-Thélène in characteristic 0

(the general case is proved in [HaJ07], in [MoB01], and also in [Harb03]), we prove that

for almost all σ ∈ Gal(K)e we have Gal(Ktot,S/Ktot,S [σ]) ∼= F̂ω. Let R be a closed set

of representatives for the left cosets of Gal(Ktot,S/Ktot,S [σ]) in Gal(Ktot,S/E). Then

Gal(Ktot,S [σ]) is the inverse image of Gal(Ktot,S/Ktot,S [σ]) in Gal(E) under the map

Gal(E) → Gal(Ktot,S/E), hence is isomorphic to F̂ω ∗
∏
∗ r∈R Gal(Ktot,S)r. By Remark

3.7, the second factor is again isomorphic to the Cantor free product. This proves (b).

The proof of (a) goes along the same lines. Here it is much easier to prove that for

almost all σ ∈ Gal(K)e we have Gal(Ktot,S/Ktot,S(σ)) ∼= F̂e (Section 4).

We note that the main theorem has an application to model theory: The first

order theory of all sentences of ring theory that hold in Ktot,S(σ) (resp. Ktot,S [σ]) for

almost all σ ∈ Gal(K)e is decidable. This result is included in Fehm’s work [Feh10].

See also [Feh10, Theorems 4.6.7 and 5.5.4] for more precise results.

1. Sheaves of Profinite Groups

We introduce the concept of a semi-constant free product as a special case of the concept

of a free product of profinite groups in the sense of Melnikov [Mel90] or [Har87] (see also

[NSW00, §IV.3]) and prove that each semi-constant free product is uniquely determined

up to an isomorphism by its defining data.

Let T be a profinite space, i.e. an inverse limit of finite discrete spaces. A sheaf

of profinite groups over T is a triple X = (X, τ, T ) in which X is a profinite space

and τ : X → T is a continuous map satisfying the following conditions:

(1a) For each t ∈ T the fiber Xt = τ−1(t) is a profinite group; thus, X =
⋃
· t∈T Xt.

(1b) The group operations in Xt are uniformly continuous. That is, if we set

X(2) = {(x, y) ∈ X ×X | τ(x) = τ(y)},

then the map µ: X(2) → X given by µ(x, y) = x−1y is continuous.
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A morphism of X into a profinite group A is a continuous map α: X → A whose

restriction to each of the fibers Xt is a homomorphism. We say that the morphism α is

rigid if the restriction of α to each Xt is injective.

Let G be a profinite group. We denote the space of all closed subgroups of G

by Subgr(G). The strict topology of Subgr(G) has a basis consisting of all subsets

{H ∈ Subgr(G) | HN = H0N}, where N is an open normal subgroup of G and H0

is a closed subgroup of G. Under this topology Subgr(G) is naturally isomorphic to

lim←− Subgr(G/N), where N ranges over all open normal subgroups of G and the finite

space Subgr(G/N) is equipped with the discrete topology. Thus, Subgr(G) equipped

with the strict topology is a profinite space. In addition, Subgr(G) has a weaker topology

called the étale topology. A basis for the étale topology is the family of all sets

{H ∈ Subgr(G) | H ≤ H0}, where H0 is an open subgroup of G.

A subfamily (Gt)t∈T of Subgr(G) is said to be étale continuous if the map

t 7→ Gt of T into Subgr(G) is étale continuous. In other words, for each open subgroup

H0 of G the subset {t ∈ T | Gt ≤ H0} of T is open.

If X = (X, τ, T ) is a sheaf and ω: X → G is a morphism, then the family

(ω(Xt))t∈T is étale continuous. Indeed, let H0 be an open subgroup of G and put

T0 = {t ∈ T | ω(Xt) ≤ H0}. Then ω−1(H0) is open in X, hence

T rT0 = {t ∈ T | Xt 6⊆ ω−1(H0)} = {t ∈ T | Xt ∩ (X rω−1(H0)) 6= ∅}

= τ(X rω−1(H0))

is closed in T , because τ is a closed map. Hence T0 is open in T .

Lemma 1.1: For each pair (G,Gt)t∈T consisting of a profinite group G and an étale

continuous family of closed subgroups (Gt)t∈T there exists a sheaf (X, τ, T ) with a rigid

morphism ω: X → G such that ω(Xt) = Gt for each t ∈ T . Moreover, if (X ′, τ ′, T )

is another sheaf over T and ω′: X ′ → G is a rigid morphism such that ω′(X ′t) = Gt

for each t ∈ T , then there exists a unique homeomorphism α: X → X ′ such that the
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following diagrams are commutative:

(2) X
ω //

α

  B
BB

BB
BB

B

τ

��

G

T X ′

ω′

OO

τ ′
oo

X(2)
µ //

α(2)

��

X

α

��
(X ′)(2)

µ′
// X ′

Here µ′(x′, y′) = (x′)−1y′, and α(2)(x, y) = (α(x), α(y)).

Proof: The proof naturally breaks up into two parts.

Part A: Construction of X. Consider the profinite space G× T and its subset

X = {(g, t) ∈ G× T | g ∈ Gt}.

Claim: X is closed in G × T . Indeed, let (g0, t0) ∈ (G × T ) rX. Then g0 /∈ Gt0 .

Hence, there exists an open subgroup H0 of G such that Gt0 ≤ H0 and g0 /∈ H0. Since

the map t → Gt is étale continuous, T has an open neighbourhood T0 of t0 such that

Gt ≤ H0 for each t ∈ T0. Thus, g0H0×T0 is an open neighborhood of (g0, t0) in G×T .

Consider (g, t) ∈ g0H0 × T0. Then Gt ≤ H0. If (g, t) ∈ X, then g ∈ Gt, so g ∈ H0,

hence g0H0 = gH0 = H0, and therefore g0 ∈ H0. We conclude from this contradiction

that (g, t) /∈ X. Consequently, g0H0 × T0 ⊆ (G× T ) rX, which proves the claim.

It follows from the claim that X is a profinite space. Let ω: X → G and τ : X → T

be the projection maps. For each t ∈ T , ω maps Xt = τ−1(t) = Gt×{t} bijectively onto

Gt. Thus, Xt is a profinite group whose multiplication is given by the rule (g1, t)(g2, t) =

(g1g2, t) for g1, g2 ∈ Gt. Moreover, ω maps Xt isomorphically onto Gt.

With this notation, X(2) = {((g1, t), (g2, t)) | t ∈ T and g1, g2 ∈ Gt}, the map

µ: X(2) → X maps each element ((g1, t), (g2, t)) of X(2) onto the element (g−1
1 g2, t) of

X. This map is continuous. Consequently, (X, τ, T ) is a sheaf of profinite groups over

T and ω: X → G is a rigid morphism.

Part B: Uniqueness of X. Suppose (X ′, τ ′, T ) is another sheaf of profinite groups

over T and ω′: X ′ → G is a rigid morphism with ω′(X ′t) = Gt for each t ∈ T . Let

α′: X ′ → X be the continuous map defined by the rule α′(x′) = (ω′(x′), τ ′(x′)) for

each x′ ∈ X ′. If α′(x′1) = α′(x′2), we set t = τ ′(x′1) = τ ′(x′2). By assumption, ω′|X′
t
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is a bijection, so x′1 = x′2. If (g, t) ∈ X, then g ∈ Gt, so there exists x′ ∈ X ′t with

ω′(x′) = g. In addition, τ ′(x′) = t, hence α′(x′) = (g, t). Since both X and X ′ are

profinite spaces, α′ is a homeomorphism whose inverse α = (α′)−1 makes both diagrams

in (2) commutative.

Finally, the commutativity of the left diagram in (2) forces the uniqueness of α′,

hence that of α.

Definition 1.2: Free product of profinite groups. Let X = (X, τ, T ) be a sheaf of profi-

nite groups. An external free product over X is a pair (G,ω) in which G is a profinite

group and ω: X→ G is a morphism satisfying the following condition:

(3) For every morphism α of X into a profinite group A there is a unique homomorphism

ϕ: G→ A such that ϕ ◦ ω = α.

For each sheaf X of profinite groups there is a unique free product (G,ω) over X

[Mel90, Sec. 1.14]. Moreover, the morphism ω: X→ G is rigid [Mel90, Lemma 1.15].

On the other hand, let (Gt)t∈T be an étale continuous family of closed subgroups

of a profinite group G. We say that G is the internal free product of the groups Gt,

t ∈ T , and write G =
∏
∗ t∈T Gt if the following conditions hold:

(4a) The map t 7→ Gt from T to Subgr(G) is étale continuous.

(4b) Gs ∩Gt = 1 for all s, t ∈ T , s 6= t.

(4c) Every continuous map α0 of the space
⋃
t∈T Gt into a profinite group A, whose

restriction to each Gt is a homomorphism, uniquely extends to a homomorphism

α: G→ A.

The two definitions of free products are equivalent in the following sense: Suppose

(G,ω) is an external free product over the sheaf X. For each t ∈ T let Gt = ω(Xt).

Then G =
∏
∗ t∈T Gt [Mel90, Sec. 1.17]. Conversely, suppose G =

∏
∗ t∈T Gt. Then there

exists a sheaf X = (X, τ, T ) of profinite groups over T and a morphism ω: X → G such

that (G,ω) is an external free product over X [Mel90, Sec. 1.16]. This X is unique up

to an isomorphism, by Lemma 1.1. Finally we note that the uniqueness part in either

(3) or (4c) implies that G = 〈Gt〉t∈T .
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Construction 1.3: Semi-constant sheaf. Let S be a finite set. For each p ∈ S let Tp be

a profinite space and Gp a profinite group. We set T =
⋃
· p∈S Tp, X =

⋃
· p∈S Gp × Tp,

and define τ : X → T by τ(g, t) = t. Then X = (X, τ, T ) is a sheaf of profinite groups.

The sheaf X is said to be semi-constant. If S consists of one element, X is a constant

sheaf [Mel90, Sec. 1.13].

A semi-constant sheaf naturally arises in the following situation: Let G̃ be a

profinite group. For each p ∈ S let Rp be a closed subset of G̃ and Gp a closed subgroup

of G̃. We choose a homeomorphic copy Tp of Rp and a homeomorphism λp: Tp → Rp. As

above we write T =
⋃
· p∈S Tp, and for each t ∈ Tp let Gt = G

λp(t)
p be the conjugate of Gp

by λp(t). Then the family (Gt)t∈T is ètale continuous; in fact, the map T → Subgr(G̃)

given by t 7→ Gt is even strictly continuous. We let X be the corresponding semi-

constant sheaf and define a map ω: X → G̃ by ω(g, t) = gλp(t) for g ∈ Gp, t ∈ Tp

and p ∈ S. Then ω is a rigid morphism and ω(Xt) = Gt for each τ ∈ T . Thus, X

and ω satisfy the conditions of Lemma 1.1 with G̃ replacing G, so they are uniquely

determined in the sense of that lemma.

Suppose G is a closed subgroup of G̃ such that G =
∏
∗ p∈S

∏
∗ ρ∈Rp

Gρp. Then

G =
∏
∗ p∈S

∏
∗ t∈Tp

Gt =
∏
∗ t∈T Gt [Mel90, statement after Thm. 1.5]. By Definition

1.2 and Lemma 1.1, (G,ω) is, up to an isomorphism, the external free product over

X. The importance of this observation is that a free product constructed this way is

completely determined, up to an isomorphism, by the data (Gp, Rp)p∈S . In other words,

if G′ =
∏
∗ p∈S

∏
∗ t∈R′

p
(G′p)t, and R′p

∼= Rp, G′p ∼= Gp, for each p ∈ S, then G′ ∼= G.

The profinite spaces that appear in the free products arising in the field theoretic

set up of this note are all homeomorphic to a special one.

Definition 1.4: Cantor space. The weight of an infinite profinite space X is the car-

dinality of the set of open-closed subsets of X [RiZ00, Prop. 2.6.1]. We say that X is

a Cantor space if its weight is ≤ ℵ0 and X has no isolated points. Alternatively, X

is homemomorphic to 2N, or, also, to the Cantor middle third set [HaJ86, Lemma 1.2].

Thus, all Cantor spaces are homeomorphic to each other. Note that each disjoint union

or cartesian products of finitely many Cantor spaces is again a Cantor space.
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Here is an example of a Cantor space:

Lemma 1.5: Let G be a profinite group of at most countable rank, H a closed subgroup

of infinite index, and R a closed subset of representatives for the left cosets of G modulo

H. Then G/H and R are Cantor spaces.

Proof: By assumption, G has a countable basis U for its open sets. Then {UH/H | U ∈

U} is a countable basis for the open sets of G/H.

If gH is isolated in G/H, for some g ∈ G, then gH is open in G. Hence, H is an

open subgroup of G, which means (G : H) <∞. This contradiction to our assumption

proves that G/H is a Cantor space.

Finally, as a closed subspace of G, the set R is a profinite space under the topology

induced from that of G. Moreover, the map r 7→ rH is a continuous bijection R→ G/H

of profinite spaces, hence it is a homeomorhism. It follows that R is also a Cantor space.

2. Free Products

Let A and B be profinite groups, π the projection of the free product A ∗ B onto B,

given by π(a) = 1 for each a ∈ A and π(b) = b for each b ∈ B. Let C a closed subgroup

of B. We prove that π−1(C) is isomorphic to a free product of C with a free product

in the sense of Section 1 of a family of conjugates of A in A ∗B. We start the proof of

that statement with an alternative description of A ∗B.

Consider the constant sheaf of profinite groups (A × B, pr, B) with the profinite

space A × B and the projection pr on B (Construction 1.3). Let (Â, ω) be the free

product over this sheaf. For each b ∈ B the fiber pr−1(b) = A × {b} is a profinite

group isomorphic to A; let Ab = ω(A×{b}). Then Â is the inner free product
∏
∗ b∈B Ab

(Definition 1.2). Since ω is rigid, we may identify A1 with A via ω(a, 1) 7→ a.

Lemma 2.1: The group B acts on Â in the following way:

(1) ω(a, b)x = ω(a, bx), a ∈ A, b, x ∈ B.

Proof: The continuous action (a, b)x = (a, bx) of B on A×B induces a right action of
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B on Â. Indeed, each x ∈ B defines a continuous map µx: A×B → A×B by

µx(a, b) = (a, b)x = (a, bx).

Condition (3) in Definition 1.2 gives a unique homomorphism ω̂x: Â→ Â such that

A×B ω //

µx

��

Â

ω̂x

��
A×B ω // Â

commutes. For each â ∈ Â and each x ∈ B we define

(2) âx = ω̂x(â).

If y is another element of B, then µxy = µy ◦µx. By the uniqueness of (3) in Definition

1.2, ω̂xy = ω̂y ◦ ω̂x, that is, âxy = (âx)y for every â ∈ Â. In addition, ω̂1 = idÂ.

Thus, (2) defines an action of B on Â from the right. Property (1) follows from (2):

ω(a, b)x = ω̂x(ω(a, b)) = ω(µx(a, b)) = ω(a, bx).

The action of B on Â established in Lemma 2.1 defines a semi-direct product

B n Â.

Lemma 2.2: The homomorphism α: A ∗B → B n Â defined by

(3) α(a) = ω(a, 1) for a ∈ A and α(b) = b for b ∈ B

is an isomorphism. Its inverse α′: B n Â → A ∗ B is given by α′(b) = b on B and by

α′(ω(a, b)) = ab on Â = 〈ω(A×B)〉.

Proof: We break up the proof into two parts.

Part A: α′ is well defined. The map A × B → A ∗ B defined by (a, b) 7→ ab is

continuous and its restriction to each fiber A × {b} is a homomorphism. By (3) of

Section 1 there exists a unique homomorphism α′: Â→ A∗B such that α′(ω(a, b)) = ab.

In order to extend α′ from B ∪ Â to a homomorphism on B n Â, we have to prove that

α′ commutes with the action of B on Â, that is, that α′(âx) = α′(â)x for all â ∈ Â and
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x ∈ B. But, since ω(A×B) generates Â, it suffices to prove this for â = ω(a, b), for all

a ∈ A and b ∈ B. In this case, by (1),

α′(ω(a, b)x) = α′(ω(a, bx)) = abx = (ab)x = (α′(ω(a, b)))x.

Part B: α and α′ are inverse to each other. By definition, both α and α′ are the

identity map on B. For a ∈ A we have α′(α(a)) = α′(ω(a, 1)) = a1 = a. Conversely,

in order to prove that α ◦ α′|Â = idÂ it suffices to prove α ◦ α′(ω(a, b)) = ω(a, b) for all

(a, b) ∈ A×B. This follows from the definitions and from (1):

α(α′(ω(a, b))) = α(ab) = α(a)α(b) = ω(a, 1)b = ω(a, 1 · b) = ω(a, b).

Lemma 2.3: (a) The group B n Â is the free product of its subgroups A1 = A and B.

(b) Let K = 〈Ab | b ∈ B〉 ≤ A ∗B. Then K =
∏
∗ b∈B Ab = Ker(π) and A ∗B = B nK.

Proof of (a): The isomorphism α of Lemma 2.2 maps A onto A1 and B onto B.

Proof of (b): We have Â =
∏
∗ b∈B Ab. The isomorphism α′ of Lemma 2.2 maps each

Ab onto Ab, hence it maps Â onto K, whence K =
∏
∗ b∈B Ab. Furthermore, α′ maps B

identically onto itself, hence A ∗B = α′(B n Â) = B nK. Since π is the identity on B

and trivial on K, we conclude that K = Ker(π).

If C is a closed subgroup of a profinite group B, then the quotient map b 7→ bC is

a continuous surjection B → B/C of profinite spaces. By [Rib70, p. 31, Prop. 3.5], this

map has a continous section. Hence, B has a closed subset of representatives R for the

collection of left cosets bC, b ∈ B.

In the following result we start from R and present π−1(C) as a free product of

C and conjugates of A with exponents ranging on R.

Lemma 2.4: Let A and B be profinite group, A∗B their free product, and π: A∗B → B

the projection on the second factor. Consider a closed subgroup C of B and let R be a

closed system of representatives of the left cosets bC of B modulo C. Let H = π−1(C).

Then H = C n Ker(π) and H = (
∏
∗ r∈RAr) ∗ C.

Proof: Let K = Ker(π). Since π is injective on C, we have H = C nK, where C acts

on K by conjugation in H.
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The map R × C → B given by (r, c) 7→ rc is a continuous bijection of profinite

spaces, hence so is its inverse β: B → R × C. Hence, the composition of β with the

projection on C is a continuous surjection δ: B → C; it satisfies δ−1(c) = Rc for each

c ∈ C.

By Lemma 2.3(b), K =
∏
∗ b∈B Ab. Hence by [Mel90, Theorems 1.4 and 1.5],

K =
∏
∗
c∈C

( ∏
∗

b∈Rc

Ab
)

=
∏
∗
c∈C

(∏
∗
r∈R

Arc
)

=
∏
∗
c∈C

(∏
∗
r∈R

Ar
)c
.

By Lemma 2.3(a) (with
∏
∗ r∈RAr, C replacing A,B),

H = C nK = C n
∏
∗
c∈C

(∏
∗
r∈R

Ar
)c =

(∏
∗
r∈R

Ar
)
∗ C.

Thus the action of C on K is given by

(ac)c
′

= acc
′
, a ∈

∏
∗
r∈R

Ar, c, c′ ∈ C.

3. Normally Generated Groups

We fix a countable Hilbertian field K, a finite set S of local primes of K, a positive

integer e, and consider the p-topology of K for each p ∈ S. The intersections of basic

p-open subsets of K with p ranging over S form a basis for the S-adic topology.

For each non-archimedean p ∈ S we choose a Henselian closure Kp of K at p. For a

real archimedean p ∈ S we choose a real closure Kp of K at p. Finally, if p ∈ S is

archimedean and complex, we set Kp to be the algebraic closure K̃ of K. In each case

we call Kp a p-closure of K. Then

Ktot,S =
⋂
p∈S

⋂
ρ∈Gal(K)

Kρ
p

is the maximal Galois extension of K in which each p ∈ S totally splits.

We denote the separable closure of K by Ks and the absolute Galois group

Gal(Ks/K) of K by Gal(K). For each σ = (σ1, . . . , σe) ∈ Gal(K)e we consider its

fixed field in Ktot,S ,

Ktot,S(σ) = {x ∈ Ktot,S | xσi = x, for i = 1, . . . , e}.
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Let Ktot,S [σ] be the maximal Galois extension of K in Ktot,S(σ). We prove in this

section that for almost all σ ∈ Gal(K)e the absolute Galois group Gal(Ktot,S [σ]) is the

free product of F̂ω with the free product of some of the groups Gal(Kρ
p). The latter

factor depends only on S.

Note that Ktot,S does not change if we omit all of the complex archimedean primes

from S. Thus, without loss we assume that S contains none of those primes. In other

words, Gal(Kp) is nontrivial for each p ∈ S. This assumption is used in the proof of

Lemma 3.2.

Notation 3.1: Let AlgExt(K,S) = {Kρ
p | p ∈ S, ρ ∈ Gal(K)} and Gal(K,S) =

{Gal(Kρ
p) | p ∈ S, ρ ∈ Gal(K)}. The map Kρ

p 7→ Gal(Kρ
p) is a bijection of AlgExt(K,S)

onto Gal(K,S) that commutes with the action of Gal(K) from the right on those sets.

We use that map to endow AlgExt(K,S) with the strict topology and the étale topol-

ogy. Since the map ρ 7→ Gal(Kρ
p) = Gal(Kp)ρ of Gal(K) into the profinite space

Subgr(Gal(K)) (in the strict topology) is continuous, Gal(K,S) is profinite in the strict

topology. Therefore, so is AlgExt(K,S).

Lemma 3.2:

(a) If primes p, q of K and an element ρ ∈ Gal(K) satisfy Kp 6= Kρ
q , then KpK

ρ
q = Ks

(b) Every group in Gal(K,S) is a maximal element of Gal(K,S).

(c) The étale topology of Gal(K,S) coincides with its strict topology.

Proof of (a): The case where p and q are non-archimedean is a special case of [Efr06,

Cor. 21.1.4]. If p is non-archimedean and q is archimedean, then Gal(Kp) is isomorphic

to an open subgroup of Gal(Qp) for some prime number p while Kq is a real closed field.

If in this case F = KpK
ρ
q 6= K̃, then F = Kρ

q and Gal(Qp) has an involution. This

contradicts [HJP09, Lemma 8.3]. If both p and q are archimedean, then Gal(Kp) and

Gal(Kρ
q ) are distinct subgroups of Gal(K) of order 2. Their intersection is therefore

trivial.

Proof of (b) and (c): By (a), every pair of distinct groups in Gal(K,S) intersects

trivially. Since none of the groups in Gal(K,S) is trivial, there are no inclusions between

12



distinct groups in Gal(K,S). Hence, every group in Gal(K,S) is maximal. By [HJP09,

Lemma 2.1], the étale topology of Gal(K,S) coincides with its strict topology.

Following Lemma 3.2(c), we omit the attributes “étale” and “strict” of the topolo-

gies of Gal(K,S) and AlgExt(K,S). In particular, by Notation 3.1, a subset of Gal(K,S)

(or of AlgExt(K,S)) is compact if and only if it is closed.

We apply Lemma 3.2 to give another useful example of a Cantor space.

Lemma 3.3: Let M be an infinite extension of K in Ktot,S and R a compact set of

representatives for the Gal(M)-orbits of Gal(K,S). Then:

(a) R =
⋃
· p∈S Rp, where eachRp is a closed set of representatives for the Gal(M)-orbits

of Gal(K, p).

(b) R is a Cantor space.

(c) For each p ∈ S there exists a closed subset Rp of Gal(K) such that

Rp = {Gal(Kp)ρ | ρ ∈ Rp} and the map ρ 7→ Gρp is a homeomorphism of Rp

onto Rp.

Proof: For each p ∈ S we set Gp = Gal(Kp) and break up the proof into three parts.

Part A: Reduction to the case where S is a singleton. For each p ∈ S the set

Gal(K, p) = {Gρp | ρ ∈ Gal(K)} is a closed subset of the profinite space

Subgr(Gal(K)) and Gal(K,S) =
⋃
· p∈S Gal(K, p) is also a profinite space.

It follows that R is a profinite space, so also Rp = R ∩ Gal(K, p) is a profinite

space. Since R =
⋃
· p∈S Rp, this proves (a). To complete the proof of (b), it remains to

prove that each of the sets Rp is a Cantor space.

Part B: Rp is a Cantor space. First note that the weight of Rp is at most ℵ0. Thus,

we have to prove that Rp has no isolated points (Definition 1.4). To that end observe

that the map G 7→ GGal(M) = {Gµ | µ ∈ Gal(M)} from Rp onto Gal(K, p)/Gal(M) is

a continuous bijection of profinite spaces. Therefore, it is a homeomorphism.

Next note that the map Gal(K) → Subgr(Gal(K)) given by ρ 7→ Gρp is a con-

tinuous map of profinite spaces. Since Aut(Kp/K) = 1 ([Jar91, Prop. 14.5] if p is

non-archimedean and [Lan93, p. 455, Thm. 2.9] if p is archimedean), Gρ1p = Gρ2p if and
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only if ρ2 ∈ Gpρ1. Therefore, the above map induces a homeomorphism Gp\Gal(K)→

Gal(K, p) mapping Gpρ onto Gρp. This map is compatible with the action of Gal(M) on

both spaces (on Gp\Gal(K) by multiplication from the right), hence induces a home-

omorphism of the quotient profinite spaces Gp\Gal(K)/Gal(M)→ Gal(K, p)/Gal(M).

Thus, by [HJP09, Lemma 2.2], it suffices to show that GρpGal(M) is an open subset of

Gal(K) for no ρ ∈ Gal(K). ButM ⊆ Kρ
p and [M : K] =∞, henceGρpGal(M) = Gal(M)

is not open.

Part C: The set Rp. The map ρ 7→ Gρp is a continuous surjection α: Gal(K) →

Gal(K, p). By Part B, α decomposes into the quotient map Gal(K)→ Gp\Gal(K) and

a homeomorphism Gp\Gal(K) ∼= Gal(K, p). By [Rib70, p. 31, Prop. 3.5], the quotient

map has a continuous section. Hence, also α has a continuous section α′: Gal(K, p) →

Gal(K). Since Rp is closed in Gal(K, p), its image Rp under α′ is a closed subset of

Gal(K). It satisfies the requirements of (c).

We say that a finite group G is normally generated by one element if there

exists g ∈ G such that G = 〈gx | x ∈ G〉.

Lemma 3.4: Let G be a finite group, L a finite Galois extension of K in Ktot,S , and e

a positive integer, Suppose that there exist elements x, y such that

(1a) x is transcendental over L,

(1b) y is integral over L[x],

(1c) L(x, y) is Galois over L(x) with Galois group G,

(1d) L(x, y)/L is regular field extension [FrJ08, Section 2.6].

(1e) L(x, y) has an L-place ϕ with a = ϕ(x) ∈ L and ϕ(L(x, y)) ⊆ Ktot,S ∪ {∞}.

Then

(a) there exists an infinite sequence L1, L2, L3, . . . of linearly disjoint Galois extensions

of L with Galois group G contained in Ktot,S ; hence

(b) if G is normally generated by one element, then for almost all σ ∈ Gal(L)e, the

field Ktot,S [σ] has a Galois extension in Ktot,S with Galois group G.

Proof of (a): By assumption there exists an absolutely irreducible polynomial f ∈

L[X,Y ], monic and Galois in Y over L(X), such that f(x, Y ) = irr(y, L(x)) [FrJ05,
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Cor. 10.2.2]. By [FrJ05, Lemma 13.1.1], L has a separable Hilbert subset H such that

f(a′, Y ) is Galois over L and Gal(f(a′, Y ), L) ∼= G for each a′ ∈ H [FrJ05, Lemma

13.1.1]. By (1e), the splitting field of f(a, Y ) over L is contained in Ktot,S . We denote

the set of all primes of L lying over S by SL and note that Ltot,SL
= Ktot,S . By [Jar91,

Prop. 12.3] in the non-archimedean case and [Jar91, Prop. 16.7] in the real case, there

exists for each p ∈ SL a p-open neighborhood Up of a in L such that if a′ ∈ Up for each

p ∈ SL, then the splitting field of f(a′, Y ) over L is contained in Lp, hence in Ktot,S .

Suppose, by induction, we have found linearly disjoint Galois extensions L1, . . . , Ln

of L contained in Ktot,S with Galois group G. Let L′ be their compositum. Since

f(X,Y ) is absolutely irreducible, it is irreducible over L′. The separable Hilbert set

HL′(f) defined by f over L′ contains a Hilbert subset of L [FrJ05, Cor. 12.2.3]. By

Geyer [Gey78, Lemma 3.4], the Hilbert subsets of L are dense in the S-adic topology.

Hence, there exists a′ ∈ H ∩
⋂

p∈S Up such that f(a′, Y ) is irreducible over L′. Let

Ln+1 be the splitting field of f(a′, Y ) over L. Then Ln+1 is Galois over L with Galois

group G, Ln+1 ⊆ Ktot,S , and [L′Ln+1 : L′] = deg(f(a′, Y )) = [Ln+1 : L], hence Ln+1 is

linearly disjoint from L′ over L.

Proof of (b): For each i choose λi ∈ Gal(Li/L) which normally generates Gal(Li/L).

Then let Σi = {σ ∈ Gal(L)e | σ1|Li
= λi}. If σ ∈ Gal(L)e, then L ⊆ Ktot,S [σ] because

L ⊆ Ktot,S and L/K is Galois. Hence, if σ ∈ Σi, then Ktot,S [σ] ∩ Li = L. Hence,

Ktot,S [σ]Li ⊆ Ktot,S and Gal(Ktot,S [σ]Li/Ktot,S [σ]) ∼= Gal(Li/L) ∼= G. To conclude

the proof we note by Borel-Cantelli [FrJ05, Lemma 18.5.3] that the Haar measure in

Gal(L)e of
⋃∞
i=1 Σi is 1.

Lemma 3.5: For almost all (σ, τ) ∈ Gal(K)e+1 the field Ktot,S [σ] is an infinite exten-

sion of K and a proper extension of Ktot,S [σ, τ ].

Proof: Let f(T,X) = X2−X−T and a = 0. Then f(T,X) is an absolutely irreducible

polynomial and f(a,X) has two distinct roots in K. Therefore Lemma 3.4 gives a

linearly disjoint sequence L1, L2, L3, . . . of quadratic extensions of K in Ktot,S . For

each n let τ̄n be the generator of Gal(Ln/K). By Borel-Cantelli [FrJ05, Lemma 18.5.3],

for almost all (σ, τ) ∈ Gal(K)e+1 there exist infinitely many positive integers n such
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that σ1, . . . , σe ∈ Gal(Ln) and τ |Ln
= τ̄n. Thus, Ln 6⊆ Ktot,S [σ, τ ] and Ln ⊆ Ktot,S [σ].

Consequently, Ktot,S [σ, τ ] is properly contained in Ktot,S [σ] and [Ktot,S [σ] : K] = ∞.

Definition 3.6: Strongly projective, PSC, and ample. Let G be a profinite group and

G a subset of Subgr(G). A finite G-embedding problem for G is a triple (ϕ: G →

A, α: B → A,B), where A and B are finite groups, ϕ and α are epimorphisms and B is

a subset of Subgr(B) closed under conjugation such that for each G0 ∈ G there exists a

homomorphism γ0: G0 → B such that α ◦ γ0 = ϕ|G0 and γ0(G0) is a subgroup of some

B0 ∈ B. A solution of the problem is a homomorphism γ: G→ B such that α ◦ γ = ϕ.

The solution is strong if in addition for each G0 ∈ G there exists B0 ∈ B such that

γ(G0) ≤ B0. We say that G is G-projective if every finite G-embedding problem for

G is solvable. We say that G is strongly G-projective if every finite G-embedding

problem for G has a strong solution. Note that if G is closed under conjugation with

elements of G and R is a set of representatives for the G-orbits of G, then G is (strongly)

G-projective if and only if G is (strongly) R-projective.

A field extension E of K in Ktot,S is said to be PSC (pseudo-S-closed) if every

absolutely irreducible variety V defined over E with a simple Kρ
p -point for all p ∈ S

and ρ ∈ Gal(K) has an E-rational point.

A field E is said to be ample (or large, in the terminology of [Pop96]) if every

absolutely irreducible curve defined over E with an E-rational simple point has infinitely

many E-rational points. By [Pop96, Prop. 3.1], every PSC field is ample.

Remark 3.7: Cantor free products. We consider the special case of Construction 1.3,

where S is the finite set of prime divisors of K that we have fixed in this section and

G̃ = Gal(K). Moreover, for each p ∈ S the closed subset Rp of G̃ that we consider is

now a Cantor space and Gp = Gal(Kp). Then the corresponding semi-constant sheaf

X = (
⋃
· p∈S Rp × Gp, τ,

⋃
p∈S Rp) depends up to an isomorphism only on S (assuming

K is fixed). We call X a Cantor semi-constant sheaf. If a closed subgroup G of

Gal(K) is isomorphic to
∏
∗ p∈S

∏
∗ ρ∈Rp

Gρp, then G depends up to an isomorphism only

on S. We say that G is a Cantor free product over S.
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Lemma 3.8: For almost all σ ∈ Gal(K)e each finite proper extension E of Ktot,S [σ] in

N = Ktot,S is ample, and there exists a closed set of representatives R for the Gal(E)-

orbits of Gal(K,S) such that R is a Cantor space, and there exists a commutative

diagram of profinite groups

(2) 1 // Ker(π) // F̂ω ∗ C
π // F̂ω

// 1

1 // Gal(N)

OO

// Gal(E)

α

OO

res // Gal(N/E)

OO

// 1,

where C is the free inner product over R, π is the projection map, the horizontal

sequences are exact, and the vertical arrows are isomorphisms.

Proof: For almost all σ ∈ Gal(K)e the field Ktot,S [σ] is PSC [GeJ02, Thm. A]. By

definition, Ktot,S [σ]/K is Galois. Let E be a finite proper extension of Ktot,S [σ] in

N . By Weissauer [FrJ05, Thm. 13.9.1], E is Hilbertian. By [HJP09, Lemma 12.2],

E is PSC, hence ample (Definition 3.6). Since AlgExt(K,S) is compact, Gal(E) is

Gal(K,S)-projective [HJP05, Prop. 4.1]. By the first part of [Pop96, Thm. 2.8], Gal(E)

is strongly Gal(K,S)-projective.

Since E is countable, the second part of [Pop96, Thm. 2.8] asserts that the Gal(E)-

orbits of Gal(K,S) have a compact set of representatives R and there exists an isomor-

phism α: Gal(E) → F̂ω ∗ C, where C is the inner free product over R. Moreover, by

[Pop96, Thm. 2.7], α maps the family R as a subset of Subgr(Gal(E)) onto the family

R as a subset of Subgr(F̂ω ∗C). By Lemma 3.3, R =
⋃
· p∈S Rp is a Cantor space, where

each Rp is a closed set of representatives for the Gal(E)-orbits of Gal(K, p). Moreover,

Gal(K) has a closed subset Rp such that Rp = {Gal(Kp)ρ | ρ ∈ Rp} and the map

ρ 7→ Gal(Kp)ρ is a homeomorphism of Rp onto Rp. By Construction 1.3,

C =
∏
∗

G∈R
G =

∏
∗

p∈S

∏
∗

G∈Rp

G =
∏
∗

p∈S

∏
∗

ρ∈Rp

Gal(Kp)ρ.

Since E ⊆ N = Ktot,S , the closed normal subgroup of Gal(E) generated by R

is Gal(N). Moreover, the closed normal subgroup of F̂ ∗ C generated by R is Ker(π).

Hence, α(Gal(N)) = Ker(π), so α induces an isomorphism of Gal(N/E) onto F̂ω such

that Diagram (2) is commutative.
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Our next goal is to prove that Gal(Ktot,S [σ]/Ktot,S [σ, τ ]) ∼= F̂ω for almost all

(σ, τ) ∈ Gal(K)e+1.

Lemma 3.9: Let G be a finite group which is normally generated by one element. Then,

for almost all σ ∈ Gal(K)e, the field Ktot,S [σ] has a Galois extension in Ktot,S with

Galois group G.

Proof: For a fixed indeterminate x let L be the set of all pairs (L, y), where L is a

finite Galois extension of K in Ktot,S and y is an element of K(x)s satisfying Conditions

(1b)–(1e) of Lemma 3.4. We denote the set of all σ ∈ Gal(L)e such that Ktot,S [σ] has a

Galois extension in Ktot,S with Galois group G by Σ(L, y). By Lemma 3.4, the measure

of Σ(L, y) in Gal(L)e is 1. Therefore, since L is countable, the measure of

Σ1 = Gal(K)e r
⋃

(L,y)∈L

[
Gal(L)e r Σ(L, y)

]

in Gal(K)e is 1.

Let Σ′2 be the set of all (σ, τ) ∈ Gal(K)e+1 with the following properties: each

finite extension of Ktot,S [σ] in Ktot,S is ample, Ktot,S [σ] is a proper extension of

Ktot,S [σ, τ ], and (σ, τ) satisfies the conclusion of Lemma 3.8 with e replaced by e+ 1.

By Lemmas 3.5 and 3.8, the measure of Σ′2 is 1. By Fubini, the projection Σ2 of Σ′2 on

the first e coordinates has measure 1 in Gal(K)e. Therefore, the measure of Σ = Σ1∩Σ2

in Gal(K)e is 1.

We consider σ ∈ Σ and choose τ ∈ Gal(K) with (σ, τ) ∈ Σ′2. Then there exists a

proper finite extension E of Ktot,S [σ, τ ] in Ktot,S [σ]. By the conclusion of Lemma 3.8,

Gal(Ktot,S/E) ∼= F̂ω, so E has a finite Galois extension F in Ktot,S with Galois group

G.

In addition, E is an ample field, so by [HaJ07, Theorem B] (or [MoB01, Thm. 1.1],

or also by the last paragraph of page 90 of [Harb03]), E has field extensions E(x) ⊆

E(x, y), E(x, y)/E regular, and E(x, y)/E(x) Galois with Galois group G. Further, we

may choose y to be integral over E[x] and such that E(x, y) has an E-rational place

ϕ with ϕ(E(x)) = E ∪ {∞} and ϕ(E(x, y)) = F ∪ {∞}. In particular, ϕ(E(x, y)) ⊆

Ktot,S ∪ {∞}.
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All of this data can be pushed down. That is, K has a finite extension L contained

in E such that L(x, y)/L is regular, L(x, y)/L(x) is Galois with Galois group G, y is

integral over L[x], ϕ(L(x)) = L ∪ {∞}, and ϕ(L(x, y)) ⊆ Ktot,S ∪ {∞}. The field L

need not be Galois over K. However, since L ⊆ Ktot,S [σ], the Galois closure L̂ of

L/K is contained in Ktot,S [σ]. Note that L̂ need not be contained in E any more.

Nevertheless, L̂(x, y)/L̂ is regular, L̂(x, y)/L̂(x) is Galois with Galois group G, y is

integral over L̂[x], and ϕ|L(x,y) extends to an L̂-place ϕ̂ with ϕ̂(L̂(x)) = L̂ ∪ {∞}, and

ϕ̂(L̂(x, y)) ⊆ Ktot,S ∪ {∞}. Therefore, (L̂, y) ∈ L. Since σ ∈ Σ1 ∩ Gal(L̂)e ⊆ Σ(L̂, y),

Ktot,S [σ] has a Galois extension in Ktot,S with Galois group G, as contended.

Lemma 3.10: For almost all σ ∈ Gal(K)e the field Ktot,S [σ] has a subfield E and there

exists a commutative diagram (2) of Lemma 3.8 such that the horizontal rows are short

exact sequences, the vertical arrows are isomorphisms, C is a Cantor free product over

S, and Gal(Ktot,S/Ktot,S [σ]) ∼= F̂ω.

Proof: Let Σ′ be the set of all (σ, τ) ∈ Gal(K)e+1 that satisfy the following conditions:

(3a) M = Ktot,S [σ] is a proper extension of Ktot,S [σ, τ ].

(3b) For each finite proper extension E of Ktot,S [σ, τ ] in N = Ktot,S we have Gal(E) ∼=

F̂ω ∗ C, where C is a Cantor free product over S and Gal(N/E) ∼= F̂ω.

(3c) For each finite group G which is normally generated by one element there exists a

finite Galois extension M ′ of M in N with Gal(M ′/M) ∼= G.

Note that there are only countably many finite groups (up to isomorphism).

Hence, by Lemma 3.5, Lemma 3.8 (with e+ 1 replacing e), and Lemma 3.9 the measure

of Σ′ in Gal(K)e+1 is one. By Fubini, the measure of the projection Σ of Σ′ on the first

e coordinates is also 1.

We consider σ ∈ Σ and choose a τ ∈ Gal(K) with (σ, τ) ∈ Σ′. Using (3a)

we choose a finite proper extension E of Ktot,S [σ, τ ] in M = Ktot,S [σ]. By (3b),

Gal(E) ∼= F̂ω ∗ C, where C is a Cantor free product over S and Gal(N/E) ∼= F̂ω. Now

note that for each prime number p the cyclic group Z/pZ is normally generated by

one element. Moreover, if B is a finite nonabelian simple group and n is a positive

integer, then Bn is normally generated by one element. Indeed, by [Hup67, p. 51], Bn
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is normally generated by each (s1, . . . , sn) ∈ Bn with s1, . . . , sn 6= 1. It follows from

(3c) that each of these groups is realizable as a Galois group over M in N . In addition,

Gal(N/M) /Gal(N/E). Consequently, by [Jar97, Lemma 2.1], Gal(N/M) ∼= F̂ω.

Theorem 3.11: Let K be a countable Hilbertian field, S a finite set of local primes of

K, and e a positive integer. Then, for almost all σ ∈ Gal(K)e we have Gal(Ktot,S [σ]) ∼=

F̂ω ∗ C, where C is a Cantor free product over S.

Proof: Let N = Ktot,S . By Lemma 3.10, for almost all σ ∈ Gal(K)e the field M =

Ktot,S [σ] has a subfield E and there exists a commutative diagram

(4) 1 // Ker(π) // F̂ω ∗ C
π // F̂ω

// 1

1 // Gal(N) //

OO

Gal(E) res //

OO

Gal(N/E) //

OO

1

1 // Gal(N) // Gal(M)

OO

res // Gal(N/M) //

OO

1

such that C is a Cantor free product over S, π|F̂ω
= idF̂ω

, π|C = 1, the lower vertical

arrows are inclusions, the upper vertical arrows are isomorphisms, and Gal(N/M) ∼=

F̂ω. Identifying Gal(N/M) as a subgroup of F̂ω via the right arrows, we obtain that

Gal(M) ∼= π−1(Gal(N/M)). By Lemma 2.4, Gal(M) ∼= Gal(N/M) ∗
∏
∗ ρ∈R Cρ, where R

is a closed system of representatives for the left cosets of Gal(N/E) modulo Gal(N/M),

that is Gal(N/E) =
⋃
· ρ∈R ρGal(N/M). If [M : E] <∞, then R is finite, otherwise R is

a Cantor subspace of Gal(E) (Lemma 1.5).

By Remark 3.7, for each p ∈ S there exists a closed Cantor subspace Rp of Gal(K)

such that C =
∏
∗ p∈S

∏
∗ ρ∈Rp

Gρp, where Gp = Gal(Kp). Using the associativity of the

free product and the ability to change the order of the free product operation (all of

which are special cases of the remark succeeding [Mel90, Thm. 1.5]), we rewrite the

second free factor of Gal(M) in the following way:

(5)
∏
∗

ρ′∈R
Cρ

′
=
∏
∗

ρ′∈R

∏
∗

p∈S

∏
∗

ρ∈Rp

Gρρ
′

p =
∏
∗

p∈S

∏
∗

ρ′∈R

∏
∗

ρ∈Rp

Gρρ
′

p =
∏
∗

p∈S

∏
∗

(ρ,ρ′)∈Rp×R

Gρρ
′

p
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Since nontrivial free factors in a free product are distinct, the map Rp×R→ RpR given

by (ρ, ρ′) 7→ ρρ′ is a continuous bijection of profinite spaces, so it is a homeomorphism.

Therefore RpR is a Cantor space and the right hand side of (5) can be rewritten as∏
∗ p∈S

∏
∗ µ∈RpR

Gµp . Consequently, the second factor of Gal(M) is a Cantor free product

over S, as desired.

Remark 3.12: The absolute Galois group of Ktot,S . The group Gal(Ktot,S) is proved

to be a Cantor free product over S (in our terminology) in [Pop96]. This is also an easy

consequence of our results.

Indeed, as in the proof of Theorem 3.11, let E be an extension of K in N = Ktot,S

such that Gal(E) ∼= C ∗ F̂ω, where C is a Cantor free product over S. Then Gal(Ktot,S)

is isomorphic to the kernel of the projection C ∗ F̂ω on F̂ω. Hence, by Lemma 2.3,

Gal(Ktot,S) ∼=
∏
∗ f∈F̂ω

Cf . It follows as in the last paragraph of the proof of Theorem

3.11 that Gal(Ktot,S) is a Cantor free product over S.

4. Finitely Generated Groups

As in Section 3, we fix a countable Hilbertian field K, a finite set S of local primes of K,

and a positive integer e. We set N = Ktot,S . Building on our previous results, we prove

in this section that for almost all σ ∈ Gal(K)e the group Gal(N(σ)) is isomorphic to

the free product of F̂e and the Cantor free product over S. The proof of this statement

utilizes the following result rather than the deeper Lemmas 3.8 and 3.9.

Lemma 4.1: For almost all σ ∈ Gal(K)e we have Gal(N/N(σ)) ∼= F̂e.

Proof: For each σ ∈ Gal(K)e the group Gal(N/N(σ)) is generated by σ1|N , . . . , σe|N .

Thus, by [FrJ05, Lemma 17.7.1], it suffices to prove that for each finite group B which

is generated by e elements and for almost all σ ∈ Gal(K)e, the field N(σ) has a Galois

extension in N with Galois group B.

Indeed, consider B as a subgroup of Sn, where n = |B|. Let c0, . . . , cn−1 be

integers such that Xn + cn−1X
n−1 + · · ·+ c0 = (X − 1)(X − 2) · · · (X − n). By [Jar91,

Propositions 12.3 and 16.7], c = (c0, . . . , cn−1) has an open S-adic neighborhood A in

Kn such that if (a0, . . . , an−1) ∈ A, then Xn + an−1X
n−1 + · · · + a0 splits into linear
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factors over each Kp with p ∈ S, hence it splits over N . Now consider the general

polynomial f(T, X) = Xn + Tn−1X
n−1 + · · ·+ T0 of degree n, having Sn as its Galois

group over L(T) for each field extension L of K.

Inductively suppose we have constructed linearly disjoint finite Galois extensions

L1, . . . , Ln of K in N with Galois group Sn. Set L = L1 · · ·Ln. By [FrJ05, Cor. 12.2.3

and Lemma 13.1.1], Kn has a separable Hilbert subset H such that Gal(f(a, X),K) ∼=

Gal(f(a, X), L) ∼= Sn for each a ∈ H. By [Gey78, Lemma 3.4], there exists a ∈ H ∩A.

The splitting field Ln+1 of f(a, X) over K has Galois group Sn, is linearly disjoint from

L over K, and is contained in N . This completes the induction.

By construction, there are for each n elements σn,1, . . . , σn,e ∈ Gal(Ln/K) such

that 〈σn,1, . . . , σn,e〉 ∼= B. By Borel-Cantelli, for almost all σ ∈ Gal(K)e there exists n

such that σi|Ln
= σn,i, i = 1, . . . , e [FrJ05, Lemma 18.5.3]. Therefore, N(σ)Ln ⊆ N

and Gal(N(σ)Ln/N(σ)) ∼= Gal(Ln/Ln(σn)) ∼= B, as claimed.

Theorem 4.2: Let K be a countable Hilbertian field, S a finite set of local primes of

K, and e a positive integer. Then, for almost all σ ∈ Gal(K)e there is a Cantor free

product C over S such that Gal(Ktot,S(σ)) ∼= F̂e ∗ C,

Proof: Repeat the proof of Theorem 3.11 with N = Ktot,S , M = Ktot,S(σ), and with

Gal(N/M) ∼= F̂e replacing Gal(N/M) ∼= F̂ω.
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