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Abstract

Let Ztr be the ring of totally real integers, Gal(Q) the absolute Galois group

of Q, and e a positive integer. For each σ = (σ1, . . . , σe) ∈ Gal(Q)e let

Ztr(σ) be the fixed ring in Ztr of σ1, . . . , σe. Then the theory of all first

order sentences θ that are true in Ztr(σ) for almost all σ ∈ Gal(Q)e (in the

sense of the Haar measure) is undecidable.
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Introduction

Julia Robinson proves in [Rob] that the semiring N = {0, 1, 2, . . .} is definable in the

ring Ztr of all totally real algebraic integers. This implies that the first order theory of

Ztr is undecidable. Her proof is based on four principles:

(1a) The map z 7→ 2 + z + z−1 maps the set of all roots of unity onto the set of all

totally real integers in the interval [0, 4] (Kronecker).

(1b) The set of totally real integers in the interval [0, 4 − 1
n ] is finite and becomes

arbitrarily large as n →∞.

(1c) Each totally positive integer x is the sum of four squares in Q(x) (Siegel).

(1d) Uniqueness in a division with a remainder: If a, b, m are totally real algebraic

integers, a, b, m− 1− a,m− 1− b are totally positive integers, and a ≡ b mod m,

then a = b (Lemma 3.2).

These principles are fairly general to allow interpretation of arithmetic in the first order

theory of some families of rings of totally real integers. Specifically, we consider the

absolute Galois group Gal(Q) of Q and equip it with its unique normalized Haar measure

µQ. Let Q̃ be the field of all algebraic numbers and Qtr the field of totally real algebraic

numbers. For each positive integer e and each σ = (σ1, . . . , σe) ∈ Gal(Q)e, let Q̃(σ) =

{x ∈ Q̃ | σ1x = · · ·σex = x}, Qtr(σ) = Qtr ∩ Q̃(σ), and Ztr(σ) = Ztr ∩ Q̃(σ). The

presence of roots of unity in the fields Q̃(σ) depends on whether e = 1 or e ≥ 2. If

e = 1, then for almost all σ ∈ Gal(Q), the field Q(σ) contains infinitely many roots of

unity, while if e ≥ 2, for almost all σ ∈ Gal(Q)e, the field Q(σ) contains only finitely

many roots of unity [FrJ, Thm. 18.11.7]. Nevertheless, in the latter case, the number

of roots of unity in the fields Q(σ) is unbounded.

Now let L(ring) be the first order language of the theory of rings. For each e ≥ 1

let Almost(Gal(Q)e) be the set of all sentences in L(ring) which hold in Ztr(σ) for

almost all σ ∈ Gal(Q)e. Using the principles (1a)–(1d) we prove:

Theorem A: Arithmetic is interpretable in Almost(Gal(Q)), hence that theory is un-

decidable.

While the interpretability of arithmetic in Almost(Gal(Q)e) for e ≥ 2 has yet to

be settled, we prove the undecidability of Almost(Gal(Q)e) using the theory of finite

graphs which is also known to be undecidable [FrJ, Cor. 28.5.3]:

Theorem B: For each e ≥ 2 the theory of finite graphs in interpretable in

Almost(Gal(Q)e) which is therefore undecidable.
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The proof of Theorem B follows the pattern of the proof of the undecidability of

the theory of PAC fields [FrJ, Chapter 28]. The main point of that proof is the definition

of each subset of a given finite subset of a PAC field F . The defining property of PAC

fields to have rational points of each absolutely irreducible variety defined over F plays

an essential role in the definition [FrJ, Proof of Lemma 29.2.1]. Unfortunately, the rings

Ztr(σ) do not have that property. However, we manage to solve a special kind of system

of equations (equations (1) of Section 4) in almost all Ztr(σ) which serve the same goal

as for PAC fields. The equations involve an absolutely positive unit of Ztr(σ) which is

not a square in Qtr(σ). A theorem of Hasse supplies an absolutely positive unit ε in

Q(
√

p) for each p ≡ 3 mod 4. The condition that ε is not a square in Qtr(σ) forces us

to consider only σ ∈ Σ = Gal(Q)e r Gal(Q(
√

2)e. Thus, we first interpret the theory of

finite graphs only in the theory of sentences true in almost all rings Ztr(σ) with σ ∈ Σ.

Fortunately, the latter theory is interpretable in Almost(Gal(Q)e), so the latter theory

is undecidable.

Finally recall that the theory of all sentences of L(ring) which hold in Q̃(σ) for

almost all σ ∈ Gal(Q)e is decidable [FrJ, Thm. 20.6.7 or Thm. 30.7.2]. We do not

know yet if the theory of all sentences of L(ring) which hold in Qtr(σ) for almost all

σ ∈ Gal(Q)e is decidable.

1. Kronecker map

Consider the field C of complex numbers and the field R of real numbers. As usual,

let z̄ be the complex conjugate of a complex number z and |z| its absolute value. Let

T = {z ∈ C | |z| = 1} be the unit circle in C and [0, r] = {x ∈ R | 0 ≤ x ≤ r} the closed

interval defined by a nonnegative r ∈ R. We study the continuous map f : T → [0, 4]

defined by

(1) f(z) = 2 + z + z−1

We denote the algebraic closure of a field K by K̃ and by Gal(K) = Gal(K̃/K)

its absolute Galois group (if char(K) = 0). In particular, Q̃ is the field of all algebraic

numbers in C and Gal(Q) is the absolute Galois group of Q.

Lemma 1.1: The function f satisfies the following conditions:

(a) f maps T onto [0, 4].
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(b) If z ∈ T r{±1} and s = f(z), then f−1(s) = {z, z−1} and Q(z) is a quadratic

extension of Q(s). If z = ±1, then Q(z) = Q(s) = Q.

(c) Let z ∈ T ∩ Q̃ and σ ∈ Gal(Q) such that σf(z) ∈ [0, 4]. Then σz ∈ T and

f(σz) = σf(z).

(d) Let w be a root of unity. Then all of the conjugates of w are in T, f(σw) = σf(w)

for each σ ∈ Gal(Q), and all of the conjugates of f(w) belong to the interval [0, 4].

Proof of (a): We may write z = cos θ+ i sin θ, with θ ranges on the interval [−π, π] and

i =
√
−1. Then z−1 = z̄ = cos θ − i sin θ and f(z) = 2(1 + cos θ) ranges on the interval

[0, 4].

Proof of (b): First note that f(z) = f(z−1), so {z, z−1} ⊆ f−1(s). By (1), both z and

z−1 satisfy z + z−1 = s − 2 and zz−1 = 1. If z 6= ±1, then z ∈ C r R and z 6= z−1.

Hence, z and z−1 are the distinct roots of the quadratic equation X2−(s−2)X +1 = 0.

This implies that f−1(s) = {z, z−1}.
It follows also that Q(s) ⊆ Q(z, z−1) = Q(z) and that [Q(z) : Q(s)] = 2.

Proof of (c): Let s = f(z). We may assume that z 6= ±1. By (a), there is a w ∈ T
with σs = f(w). Then w−1 ∈ T and by the proof of (b), w,w−1 are the distinct roots of

the equation X2 − (σs− 2)X + 1 = 0. Also, σz, σz−1 are the distinct roots of the that

equation. Hence, by (b), {σz, σz−1} = {w,w−1} = f−1(σs). Consequently, σz ∈ T and

f(σz) = σs = σf(z).

Proof of (d): Each root of unity has the form e2πi k
n , where e is the basis of the natural

logarithms and k ∈ Z. Thus |w| = 1, so w ∈ T. Each conjugate of w is again a root of

unity, hence belongs to T. Therefore σf(w) = 2 + σw + σw−1 = f(σw). Consequently,

all of the conjugates of f(w) are in [0, 4].

Lemma 1.2 ([Kro, I.]): Suppose all of the conjugates of an algebraic integer z are in

T. Then z is a root of unity.

Each z ∈ T can be uniquely be presented as z = eiζ with ζ ∈ R and −π < ζ ≤ π.

Then, ζ = arg(z). For each positive real number θ let Tθ = {z ∈ T | | arg(z)| < θ}. Let

Z̃ be the set of all algebraic integers. For a, b ∈ R with a < b we denote the set of all

s ∈ Z̃ ∩R such that all of the conjugates of s lie in [a, b] by P[a, b]. Let W be the set of

all roots of unity in Q̃.
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Lemma 1.3: The function f maps W onto P[0, 4].

Proof: By Lemma 1.1(d), f(W) ⊆ P[0, 4]. Conversely, for each s ∈ P[0, 4], Lemma

1.1(a) gives w ∈ T with f(w) = s. For each σ ∈ Gal(Q) we have σf(w) = σs ∈ [0, 4].

By Lemma 1.1(c), σw ∈ T. It follows from Lemma 1.2 that w ∈ W.

We denote the ring of integers of an algebraic extensions M of Q by OM .

Lemma 1.4: Let M be an algebraic extension of Q and denote the compositum of all

quadratic extensions of M by M (2).

(a) For each θ > 0 there are only finitely many w ∈ W such that all of the conjugates

of w belong to T r Tθ.

(b) For each ε > 0 the set P[0, 4− ε] is finite.

(c) Let M be an algebraic extension of Q such that M ∩W is infinite. Then, for each

c > 0 there exists a positive integer n such that |OM ∩ P[0, 4− 1
n ]| > c.

(d) If M (2) ∩W is finite, then so is M ∩ P[0, 4].

Proof of (a): Choose a positive integer n with 2π
n < θ. Then e

2πi
n ∈ Tθ, so there is no

root of unity of order n all of whose conjugates belong to T r Tθ. Since only finitely

many n’s satisfy 2π
n ≥ θ and for each n there are only finitely many roots of unity of

order n, there are only finitely many w ∈ W all of whose conjugates belong to T r Tθ.

Proof of (b): Since f(1) = 4 and f is continuous, there is θ > 0 with f(Tθ) ⊆ (4−ε, 4].

Let W be the set of all w ∈ W all of their conjugates belong to T r Tθ. Consider

s ∈ P[0, 4− ε] and w ∈ T with f(w) = s. For each σ ∈ Gal(Q) we have, by Lemma 1.1,

that σw ∈ T and f(σw) = σs ∈ [0, 4 − ε], so σw ∈ T r Tθ. By Lemma 1.2, w ∈ W.

Thus, f−1(P[0, 4− ε]) ⊆ W . By (a), W is finite, hence P[0, 4− ε] is finite.

Proof of (c): If w ∈ M∩W, then Q(w)/Q is an Abelian extension and Q(f(w)) ⊆ Q(w)

(Lemma 1.1(b)). Hence, all of the conjugates of f(w) belongs to Q(f(w)) and therefore

to M ∩ [0, 4]. Moreover, since both w and w−1 are algebraic integers, f(w) ∈ M ∩P[0, 4].

Since each fiber of f contains at most two elements (Lemma 1.1(b)), OM ∩ P[0, 4] is

infinite.

By (b), M ∩ P[0, 4 − 1
n ] is finite. Since |M ∩ P[0, 4 − 1

n ]| increases with n, there

exists n such that |M ∩ P[0, 4− 1
n ]| > c.

Proof of (d): For each s ∈ M ∩ P[0, 4] lemma 1.3 gives w ∈ W with f(w) = s. By

Lemma 1.1(b), [M(w) : M ] ≤ 2, so w ∈ M (2). Thus, M ∩ P[0, 4] ⊆ f(M (2) ∩W ), so

M ∩ P[0, 4] is finite.
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An algebraic number x ∈ Q̃ is said to be totally real if all of the conjugates of

x belong to R. We denote the field of all totally real algebraic numbers by Qtr. An

element x ∈ Qtr is said to be totally positive if each conjugate of x is positive. By

a theorem of Siegel, x is totally positive if and only if x is a sum of four squares in

Q(x) [Sie]. This result follows also from the Hasse-Minkowski local-global principle for

quadratic forms and the fact that each quadratic form with at least 5 variables over a

finite extension of Qp represents 0 [CaF, p. 359, Ex. 4.9].

We abbreviate OQtr by Ztr. Given a, b ∈ Qtr, we write a � b if b − a is totally

positive. By Siegel, this is a definable relation. Indeed, denote the elementary language

of rings by L(ring) and let K be a subfield of Qtr containing a, b. Then a � b if and

only if

OK |= (∃x0)(∃x1)(∃x2)(∃x3)(∃x4)[x0 6= 0 ∧ x2
0(b− a) = x2

1 + x2
2 + x2

3 + x2
4].

In particular, the sets P[a, b] are definable in each subring of Ztr.

2. Coding in Rings with Monadic Quantifiers

This section adjusts material on monadic theories of PAC fields developed in [ChJ] and

represented in [FrJ, Chapter 29] to rings of totally real numbers.

Every first order language L naturally extends to a language Ln, the language

of n-adic quantifiers. It is the simplest extension of L which allows for each m ≤ n

quantification over certain m-ary relations on the underlying sets of structures of L.

To obtain Ln from L adjoin for each m ≤ n a sequence of m-ary variable symbols

Xm1, Xm2, Xm3, . . . . The variable symbols of L are taken here as x1, x2, x3, . . . . An

atomic formula of Ln is either an atomic formula of L or a formula (xi1 , . . . , xim
) ∈

Xmj , where m ≤ n and i1, . . . , im, j are positive integers. As usual we close the set of

formulas of Ln under negation, disjunction, conjunction, and quantification on variables.

A structure for Ln (or an n-adic structure for L) is a system 〈A,Q1, . . . ,Qn〉, where

A is a structure for L and, for each m ≤ n, Qm is a nonempty collection of m-ary

relations on the underlying set of A (which we also denote by A). The structure is

weak if for each m, all relations in Qm are finite. We interpret the variables xi as

elements of A and the variables Xmj as elements of Qj . Thus, “(x1, . . . , xm) ∈ Xmj”

means “(x1, . . . , xm) belongs to Xmj”, “∃xi” means “there exists an element xi in A”,

and “∃Xmj” means “there exists an element Xmj in Qm”.
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Theories of Ln, also called n-adic theories, are often undecidable. Thus, when-

ever we “interpret” such a theory in another theory the latter also turns out to be

undecidable.

We are mainly interested in the case where L = L(ring). For an integer q ≥ 2 and

for an integral domain R with quotient field F we say that hypothesis G(q) holds in

R if the following condition holds:

(1) There exists c ∈ R r F q such that for all distinct a1, . . . , am, b1, . . . , bn ∈ R there

exist x, y1, . . . , ym, z1, . . . , zn ∈ R such that

ai + x = yq
i , i = 1, . . . ,m

bj + x = czq
j , j = 1, . . . , n.

Note that this condition forces c to be a unit of R. Indeed, take no ai’s, let b1 = 0

and b2 = 1. Then there exist x, z1, z2 ∈ R with x = czq
1 and 1 + x = czq

2 . Hence,

1 = c(zq
2 − zq

1), so c ∈ R×.

We say that a class R of n-adic structures over integral domains satisfy Hypoth-

esis G(q) if for each structure 〈R,Q1, . . . ,Qn〉 in R, R is an integral domain that

satisfies Hypothesis G(q).

For the rest of this section we fix a class R of weak monadic structures (i.e. weak

1-adic structures) over integral domains. To each 〈R,Q〉 in R we associate another

monadic structure 〈R,Q′〉 where Q′ is the collection of all subsets

D(A, x) = {a ∈ A | (∃y ∈ R)[y 6= 0 ∧ a + x = yq]}

of R with A ∈ Q and x ∈ R. Let R′ be the class of all 〈R,Q′〉 with 〈R,Q〉 ∈ R.

Note that our framework slightly generalize that of [FrJ, Sec. 29.2], where we

considered a class F of n-adic structures over fields. The proofs of the results about R
are verbatim repetitions of those for F , so we cite the former from [FrJ], replacing F
by R.

Lemma 2.1 ([FrJ, Lemma 29.2.1, Case A]): Suppose R satisfies Hypothesis G(q).

(a) For each structure 〈R,Q〉 in R the collection Q′ consists of all subsets of the sets

A ∈ Q.

(b) The monadic theory Th(R′) is interpretable in Th(R).

Our next construction allows us to replace monadic structures by certain n-adic

structures. For each structure 〈R,Q〉 ∈ R and every m ≤ n let Qm be the collection
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of all subsets of A1 × · · · × Am, where A1, . . . , Am ∈ Q. Denote the class of n-adic

structures 〈R,Q1, . . . ,Qn〉 obtained in this way by Rn.

Lemma 2.2 ([FrJ, Lemma 29.2.2, Parts A and B]): Suppose for each structure 〈R,Q〉
in R the integral domain R is infinite. Then Th(Rn) is interpretable in Th(R′).

A graph in this work is a structure 〈A,E〉 where A is a set and E is a binary

symmetric nonreflexive relation on A. Denote the language of graphs without equality

by L(graph).

Lemma 2.3 ([FrJ, Prop. 29.2.3]): Let R be a class of weak monadic structures over

integral domains. Suppose

(4) for each positive integer n there exists 〈R,Q〉 ∈ R and an A ∈ Q of cardinality at

least n.

Then the theory of finite graphs is interpretable in Th(R2).

Proposition 2.4: Let R be a class of weak monadic structures over integral domains.

Suppose:

(5a) R satisfy Hypothesis G(q) for some positive integer q.

(5b) For each 〈R,Q〉 ∈ R the integral domain R is infinite.

(5c) For each positive integer n there exist 〈R,Q〉 ∈ R and A ∈ Q of cardinality at

least n.

Then the theory of finite graphs is interpretable in Th(R).

Proof: By Lemma 2.3 and Condition (5c), the theory of finite graphs is interpretable

in Th(R2). By Lemma 2.2 and Condition (5b), Th(R2) is interpretable in Th(R′). By

Lemma 2.1 and Condition (5a), Th(R′) is interpretable in Th(R). Consequently, the

theory of finite graphs is interpretable in Th(R).

3. Interpretation of Arithmetic

For each σ ∈ Gal(Q)e let Q̃(σ) = {x ∈ Q̃ | σix = x for i = 1, . . . , e},

Qtr(σ) = {x ∈ Qtr | σix = x for i = 1, . . . , e} and Ztr(σ) = Ztr ∩Qtr(σ) = OQtr(σ).

In this section we consider the case e = 1 and prove that the theory of all sentences

of L(ring) which hold in Ztr(σ) for almost all σ ∈ Gal(Q) is undecidable. As usual, we

use the expression “for almost all” in the sense of the Haar measure µQ of Gal(Q). Our
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proof follows ideas of Julia Robinson [Rob]. It that article Robinson proves that if a

subring R of Ztr contains infinitely many absolutely positive algebraic integers between

0 and 4, then arithmetic can be interpreted in Th(R), thus proving that Th(R) is unde-

cidable. The proof of our result relies on the observation that Robinson’s interpretation

of arithmetic is actually independent of R.

Lemma 3.1 ([Rob, Lemma 1]): Let A be a finite set of non-zero algebraic integers and

t, g0 positive integers. Then there exists a positive integer g > g0 such that

(a) t and all numbers 1 + ag with a ∈ A are relatively prime in pairs and

(b) the numbers 1 + ag are neither units nor zero.

As usual we write x ≡ y mod m for elements x, y, m of a ring R if (∃a)[x−y = am]

holds in R. The following result is a uniqueness statement for division with a remainder

in rings of totally real algebraic integers.

Lemma 3.2 ([Rob, Lemma 3]): Given two totally real algebraic integers m and t, there

is at most one totally real integer a such that a ≡ t mod m and 0 � a � m− 1.

Let R be the ring of integers of a subfield of Qtr and let m, t, g ∈ R. Let β(m, t, g, x)

be the following formula of L(ring):

(∃b)[0 � bm � 4m− 1 ∧ 0 � x � bg ∧ t ≡ x mod 1 + bg].

Using β we define a formula γ(x) of L(ring):

(∃m)(∃t)(∃g)
[
β(m, t, g, x) ∧ (∀y)[β(m, t, g, y) → y = 0 ∨ β(m, t, g, y − 1)]

]
.

Let

Bm(R) = R ∩ P
[
0, 4− 1

m

]
= {b ∈ R | 0 � bm � 4m− 1}.

By Lemma 1.4(b), Bm(R) is a finite set.

Let N be the set of nonnegative integers. We view N as a sub-semi-ring of R.

Lemma 3.3 (An extract from [Rob, Thm. 2]): Let R be the ring of integers of a subfield

of Qtr, let m ∈ R, and let n ∈ N . Suppose the set Bm(R) has more than n elements.

Then there exist t, g ∈ R such that R |= β(m, t, g, a) if and only if a ∈ {0, 1, . . . , n}.

Proof: Use Lemma 3.1 to choose a positive integer g such that the numbers 1 + bg

with b ∈ Bm(R) are relatively prime in pairs and they are nonunits nonzero elements
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of R. Moreover, since all b ∈ Bm(R) are totally nonnegative, g can be chosen to be so

large such that n � bg for all b ∈ Bm(R), b 6= 0.

Now choose distinct nonzero elements b1, . . . , bn of Bm(R). By the Chinese re-

mainder theorem, there exists t ∈ R such that

t ≡ j mod 1 + bjg for j = 1, . . . , n,

t ≡ 0 mod 1 + bg for all other b ∈ Bm(R)

For this choice of m, t, g, the statement β(m, t, g, a) holds in R for a = 0, 1, . . . , n. By

Lemma 3.2, these are the only values of a such that β(m, t, g, a) holds.

Let B(R) = {Bm(R) | m ∈ R, 1 � m}.

Lemma 3.4: Let R be the ring of integers of a subfield of Qtr and let n ∈ R. Suppose

B(R) contains sets of arbitrarily large finite cardinalities. Then n ∈ N if and only if

R |= γ(n).

Proof: Suppose R |= γ(n). Then there exist m, t, g ∈ R such that

R |= β(m, t, g, n) ∧ (∀y)[β(m, t, g, y) → y = 0 ∨ β(m, t, g, y − 1)].

If n /∈ N , then R |= β(m, t, g, n − k), so k � n for each k ∈ N . Since n ∈ R, this is a

contradiction. Consequently, n ∈ N .

Conversely, consider n ∈ N . Choose m ∈ R such that |Bm(R)| ≥ n. By Lemma

3.3, there exist t, g ∈ R such that {a ∈ R | R |= β(m, t, g, a)} = {0, 1, . . . , n}. Hence,

R |= (∀y)[β(m, t, g, y) → y = 0 ∨ β(m, t, g, y − 1)].

Consequently, R |= γ(n), as claimed.

We set N = 〈N,+, ·, 0, 1〉 and refer to Th(N) as arithmetic. By Gödel, Church,

and Rosser, arithmetic is undecidable [ELT, Thm. 3.2.4]. Thus, if arithmetic is inter-

pretable in a theory T , then T is undecidable.

Corollary 3.5 (Main theorem of [Rob]): Let M be a subfield of Qtr. Suppose OM ∩
P[0, 4] is infinite. Then Th(OM ) is undecidable. In particular, Th(Ztr) is undecidable.

Proof: By Lemma 1.4(b), the subsets Bm(OM ) have an arbitrarily large cardinality.

Hence, by Lemma 3.4, N is definable in OM and arithmetic is interpretable in Th(OM ).

Therefore, Th(OM ) is undecidable.
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Denote the set of all sentences of L(ring) which hold in Ztr(σ) for almost all

σ ∈ Gal(Q) by Almost(Gal(Q)). The undecidability of Almost(Gal(Q)) we are now

going to prove depends on the following result:

Proposition 3.6: The following statements hold for almost all σ ∈ Gal(Q)e:

(a) If e = 1, then the set Q̃(σ) ∩W is infinite. If e ≥ 2, then Q̃(σ)(2) ∩W is finite.

(b) If e = 1, then each of the sets Bm(Ztr(σ)) is finite and becomes arbitrarily large as

m tends to infinity.

(c) If e ≥ 2, then Ztr(σ) ∩ P[0, 4] is finite.

Proof: The first statement (a) can be found in [FrJ, Thm. 18.1.7]. For the second

one note that for almost all σ ∈ Gal(Q)e we have limn→∞[Q̃(σ)(ζn) : Q̃(σ)] = ∞ [Jar,

Lemma 5.3]. Since Q̃(σ) has only finitely many quadratic extensions, Q̃(σ)(2) is a finite

extension of Q̃(σ). Therefore, Q̃(σ)(2) contains only finitely many roots of unity.

Statement (b) follows from (a) by Lemma 1.4 (c). Statement (c) follows from (a)

by Lemma 1.4(d).

Lemma 3.7: Arithmetic is interpretable in Almost(Gal(Q)).

Proof: To each formula ϕ(x1, . . . , xn) of L(ring) we recursively associate a formula

ϕ∗(x1, . . . , xn) of L(ring). The map ϕ 7→ ϕ∗ is defined by induction on the structure of

ϕ. If ϕ(x1, . . . , xn) is an atomic formula of L(ring), then ϕ∗(x1, . . . , xn) is the formula∧n
i=1 γ(xi) ∧ ϕ(x1, . . . , xn). Next we let the star operation commute with negation and

disjunction. Finally, if ϕ∗(x1, . . . , xn, y) has been defined for a formula ϕ(x1, . . . , xn, y),

then (∃y)[γ(y)∧ϕ∗(x1, . . . , xn, y)] is the formula we associate with (∃y)ϕ(x1, . . . , xn, y).

By Proposition 3.6(c), for almost all σ ∈ Gal(Q) the family B(Ztr(σ)) consists

of arbitrarily large finite sets. Induction on the structure of formulas in L(ring) and

Lemma 3.4 imply that each formula ϕ(x1, . . . , xn) of L(ring), for almost all σ ∈ Gal(Q),

and all a1, . . . , an ∈ Ztr(σ)

a1, . . . , an ∈ N & N |= ϕ(a1, . . . , an) ⇐⇒ Ztr(σ) |= ϕ∗(a1, . . . , an).

In particular, a sentence θ of L(ring) holds in N if and only if Ztr(σ) |= θ∗ for almost

all σ ∈ Gal(Q). Consequently, the map θ 7→ θ∗ is an interpretation of arithmetic in

Almost(Gal(Q)).

Theorem 3.8: The theory of all sentences in L(ring) which hold in Ztr(σ) for almost

all σ ∈ Gal(Q) is undecidable.
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Remark 3.9: The combination of Corollary 3.5 and Proposition 3.6 shows that for

almost all σ ∈ Gal(Q) the theory of Ztr(σ) is undecidable. As much as this result

sounds attractive, it follows from a quite general principle which has nothing to do with

the fine analysis that led to the proof of Corollary 3.5. Indeed, that principle applies to

arbitrary e ≥ 1.

To this end choose for each set A of prime numbers an e-tuple σ = σA ∈ Gal(Q)e

such that σi(
√

p) =
√

p, i = 1, . . . , e, for each p ∈ A and σ1(
√

p) = −√p for each p /∈ A.

If A 6= A′, then Ztr(σA) is not elementarily equivalent to Ztr(σA′). Thus, there are

2ℵ0 unequivalent classes of rings of the form Ztr(σ). On the other hand, each decision

procedure for a ring is determined by finitely many instructions taken from a countable

vocabulary. Thus, there are only countably many decision procedures (Equivalently,

there are only countably many recursive subsets of N .) If two rings with decidable

theories have the same decision procedure, then they are elementarily equivalent.

If Ztr(σ) ≡ Ztr(σ′) for σ,σ′ ∈ Gal(Q)e, then Qtr(σ) ≡ Qtr(σ′). Hence, Qtr(σ)

is conjugate over Q to Qtr(σ′) [FrJ, Lemma 20.6.3(b)]. Therefore, Qab ∩ Qtr(σ) =

Qab ∩Qtr(σ′) (here Qab is the maximal Abelian extension of Q.) It follows that res(σ′)

lies in the closed subgroup 〈res(σ)〉 of Gal(Qab ∩ Qtr/Q) generated by res(σ), where

res is the restriction map from Gal(Q)e to Gal(Qab ∩ Qtr/Q)e. But 〈res(σ)〉 has an

infinite index in Gal(Qab ∩Qtr/Q), so its Haar measure is zero. Consequently, for each

σ ∈ Gal(Q)e the set {σ′ ∈ Gal(Q)e | Ztr(σ) ≡ Ztr(σ′)} has Haar measure 0.

To sum up, Th(Ztr(σ)) is decidable only for σ’s that belong to at most countably

many sets of measure 0. Consequently, the set of all σ ∈ Gal(Q)e such that Th(Ztr(σ))

is decidable has Haar measure 0.

Remark 3.10: Julia Numbers. The Corollary on page 301 of [Rob] says that if R is a

ring of totally real algebraic integers and there exists a minimal s between 0 and ∞
such that R ∩ P[0, s] is infinite, then the semiring N is definable in R. Julia Robinson

adds that s may exist for R. If it does, we call it the Julia number of R. In that case

it must be at least 4 (Lemma 1.4(b)). By Lemma 3.6, for almost all σ ∈ Gal(Q)e, the

Julia number of Ztr(σ) is 4 if e = 1 and greater than 4 if e ≥ 2 and if it exists. We

conjecture that in the latter case the Julia number is ∞. In other words, Ztr(σ)∩P[0, s]

is finite for each positive real number s.
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4. Undecidability

If R is a PAC field, then Hypothesis G(q) holds for R for each positive integer q. If R is

a subring of Ztr, this need not be the case. Nevertheless, we prove that for each positive

integer and almost all σ ∈ Gal(Q)e r Gal(Q(
√

2))e the ring Ztr(σ) satisfies Hypothesis

G(2). For e ≥ 2 this allows us to apply Proposition 2.4 to prove that the theory of finite

graphs is interpretable in the theory of all sentences of L(ring) which hold in Ztr(σ) for

almost all σ ∈ Gal(Q)e, proving that the latter theory is undecidable.

For the rest of this section we assume e ≥ 2 and denote the normalized Haar

measure of Gal(Q)e by µQ.

Lemma 4.1: Let K be a finite extension of Q in Qtr, let e be a positive integer, let

a1, . . . , am, b1, . . . , bn be distinct elements of OK , and let c be an absolutely positive unit

of OK . Then, for almost all σ ∈ Gal(K)e there are x ∈ Z and y1, . . . , ym, z1, . . . , zn ∈
Ztr(σ) such that

(1)
ai + x = y2

i , i = 1, . . . ,m

bj + x = cz2
j , j = 1, . . . , n.

Proof: Denote the distinct archimedean absolute values of K by | |1, . . . , | |r. Choose

a positive integer d which is greater than |ai|k, |bj |k for all i, j, k. Suppose by induc-

tion we have already constructed linearly disjoint Galois extensions K1, . . . ,Ks of K

of degree 2m+n in Qtr such that for each l between 1 and s there exist x ∈ Z and

y1, . . . , ym, z1, . . . , zn ∈ Ztr which satisfy (1). Then L = K1K2 · · ·Ks is a finite Galois

extension of Q. By Duret, the system of equations

(2)
ai + X = Y 2

i , i = 1, . . . ,m

bj + X = cZ2
j , j = 1, . . . , n

defines an absolutely irreducible variety V over K [FrJ, Lemma 29.1.2]. Let x̂ be a

transcendental element over K and choose ŷ1, . . . , ŷm, ẑ1, . . . , ẑn ∈ K̃(x̂) which satisfy

(1). Then (x̂, ŷ, ẑ) is a generic point of V over K. Moreover, by Kummer theory, K(ŷ, ẑ)

is a Galois extension of K(x̂) with Galois group (Z/2Z)m+n (see also the proof of [FrJ,

Lemma 29.1.2(a)]). By [FrJ, Lemma 13.1.1], L has a Hilbert subset H such that for

each x ∈ K ∩H, there are (y, z) ∈ Q̃ such that

(3a) (x,y, z) is a specialization of (x̂, ŷ, ẑ) over L.

(3b) K(y, z) is a Galois extension of K with (Z/2Z)m+n as its Galois group,
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(3c) and K(y, z) is linearly disjoint from L over K

By [FrJ, Cor. 12.2.3], H contains a Hilbert subset H0 of Q. The latter set contains

infinitely many positive integers ([FrJ, Lemma 13.5.3(c)] or [Lan, p. 231, Cor. 2.4]). In

particular, there exists x ∈ H0 such that x > d. Thus, ai + x, i = 1, . . . ,m, and bj + x,

j = 1, . . . , n, are absolutely positive elements of Ztr. Let (y, z) ∈ Q̃m+n be elements

which satisfy (3). Since (x̂, ŷ, ẑ) is a zero of (2), (3a) implies that (x,y, z) satisfy (1). For

each i and j, ai + x and c−1(bj + x) are absolutely positive elements of Ztr. Therefore,

yi, zj ∈ Ztr. Finally set Ks+1 = K(y, z) to conclude the induction.

Now use Borel-Cantelli to find for almost all σ ∈ Gal(K)e a positive integer s

such that Ks ⊆ Q̃(σ) [FrJ, Lemma 18.5.3]. The construction gives (x,y, z) ∈ K1+m+n

satisfying (1). Then (x,y, z) ∈ Ztr(σ)1+m+n, as desired.

For a positive number e we consider the set

Σ = {σ ∈ Gal(Q)e | Q̃(σ) ∩Q(
√

2) = Q}

= Gal(Q)e r Gal(Q(
√

2))e

=
e⋃

i=1

{σ ∈ Gal(Q)e | σi

√
2 = −

√
2}.

Then µQ(Σ) = 1− 1
2e . We make Σ into a probability space by defining µΣ(A) = µQ(A)

µQ(Σ)

for each measurable subset A of Gal(Q)e which is contained in Σ.

Lemma 4.2: For almost all σ ∈ Σ the ring Ztr(σ) has an absolutely positive unit c

which is not a square in Qtr(σ).

Proof: Let p ≡ −1 mod 4 be a prime number. By [Has, p. 554], OQ(
√

p) has a

fundamental unit ε = εp such that Nε = 1. In other words, if ε̄ is the conjugate of ε

over Q, then εε̄ = 1, i.e. ε̄ = ε−1. Replacing ε with −ε, if necessary, we may assume

that ε > 1. Then ε is unique with these properties and ε is absolutely positive. Saying

that ε is a fundamental unit means that ε is a generator of the group of units of OQ(
√

p)

(which is in our case isomorphic to Z). In particular, Q(εp) = Q(
√

p) and ε is not a

square of Q(
√

p). It follows that δ = δp = √
εp generates a quadratic extension Q(δ) of

Q(
√

p) in Qtr.

Let a = ε + ε̄ ∈ Z. Then ε is a root of the polynomial X2 − aX + 1, so δ is a root

of the polynomial X4−aX2 +1 and X4−aX2 +1 = (X−δ)(X +δ)(X−δ−1)(X +δ−1).

Thus, Q(δ) is a Galois extension of Q of degree 4. Consider σ ∈ Gal(Q(δ)/Q). If
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σδ = −δ, then σ2δ = δ. If σδ = δ−1, then σδ−1 = δ, so σ2δ = δ. If σδ = −δ−1, then

σδ−1 = −δ, so σ2δ = −(σδ)−1 = −(−δ−1)−1 = δ. In each case σ2 = 1. It follows that

Gal(Q(δ)/Q) ∼= Z/2Z×Z/2Z. This gives a square free integer d with Q(δ) = Q(
√

p,
√

d).

In particular, Q(
√

d) ⊆ Qtr, so d > 1.

Since εp is a unit, the extension Q(δ)/Q(
√

p) is ramified at most in primes that lie

over 2 [FrJ, Example 2.3.8, Case C]. Hence, Q(
√

d)/Q is ramified at most in 2, p. This

forces d to be 2 or 2p. In both cases Q(δp) = Q(
√

p,
√

2). It follows that

(2)

Sp = {σ ∈ Gal(Q)e | Q̃(σ) ∩Q(δp) = Q(
√

p)}

= Gal(Q(
√

p))e r Gal(Q(δp))e

= Gal(Q(
√

p))e r Gal(Q(
√

2))e

= Gal(Q(
√

p))e ∩ Σ

Hence, µQ(Sp) = 1
2e − 1

4e = 1
2e

(
1− 1

2e

)
, so µΣ(Sp) = 1

2e .

List the prime numbers congruent to −1 modulo 4 as p1, p2, p3, . . . . Then the fields

Q(
√

2), Q(
√

p1), Q(
√

p2), . . . are linearly disjoint over Q (because each pi is ramified in

Q(
√

pi) and in no other field of that sequence). In addition,

Sp1 ∩ · · · ∩ Spn
= Gal(Q(

√
p1, . . . ,

√
pn))e r Gal(Q(

√
p1, . . . ,

√
pn,

√
2))e.

Hence, µQ(Sp1 ∩ · · · ∩ Spn) = 1
2ne − 1

2(n+1)e = 1
2ne

(
1− 1

2e

)
. Therefore,

µΣ(Sp1 ∩ · · · ∩ Spn
) =

1
2ne

= µΣ(Sp1) ∩ · · · ∩ Spn
) = µΣ(Sp1) · · ·µΣ(Spn

).

Consequently, Sp1 , Sp2 , Spe
, . . . are independent in Σ.

By Borel-Cantelli, almost all σ ∈ Σ belong to at least one Spn [FrJ, Lemma 18.3.4].

Then εpn
is an absolutely positive unit of Ztr(σ) which is not a square in Qtr(σ), as

desired.

Lemma 4.3: For almost all σ ∈ Σ the ring Ztr(σ) satisfies Hypothesis G(2).

Proof: Let Σ′ be the set of all σ ∈ Σ such that Ztr(σ) has an absolutely positive

unit which is not a square in Qtr(σ). For each totally real number field K, each abso-

lutely positive unit c of OK , and all distinct elements a1, . . . , am, b1, . . . , bn in OK let

S(K,a,b, c) be the set of all σ ∈ Gal(K)e for which there exists (x,y, z) ∈ Ztr(σ)1+m+n

that satisfies (1). There are only countably many quadruple (K,a,b, c) of that form.

Hence, by Lemmas 4.2 and 4.1, the measure of S = Σ′ ∩
⋂

K,a,b,c S(K,a,b, c) in Σ is 1.

14



We prove that Ztr(σ) satisfies Hypothesis G(2) for each σ ∈ S. Indeed, Ztr(σ)

has an absolutely positive unit c. Let a1, . . . , am, b1, . . . , bn ∈ Ztr(σ) and set K =

Q(a,b, c). Then K is an absolutely real number field, c is an absolutely positive unit

of OK , a1, . . . , am, b1, . . . , bn ∈ OK , and σ ∈ S(K,a,b, c). By definition, there exists

(x,y, z) ∈ Ztr(σ)1+m+n that satisfies (1). Consequently, Ztr(σ) satisfies Hypothesis

G(2).

Lemma 4.4: For each positive integer n there exists σ ∈ Σ such that |Ztr(σ)∩P[0, 4]| ≥
n.

Proof: Choose an odd prime p > 2n. Then Q(ζp) ∩ Q(
√

2) = Q, because 2 ramifies

in Q(
√

2) but not in Q(ζp). Let Kp = Q(f(ζp)). By Lemma 1.1, all of the conjugates

of f(ζp) are in OKp
∩ P[0, 4] and there are at least n of them. Moreover, Q(ζp) is a

quadratic extension of Kp, so [Kp : Q] = p−1
2 and Kp ∩Q(

√
2) = Q. The latter relation

implies that Gal(Kp)e ∩ Σ = Gal(Kp)e r Gal(Kp(
√

2))e and

µ(Gal(Kp)e ∩ Σ) =
1(

p−1
2

)e −
1

(p− 1)e
=

2e − 1
(p− 1)e

> 0.

Each σ ∈ Gal(Kp)e ∩ Σ will satisfy the conclusion of the lemma.

Denote the set of all sentences of L(ring) which hold in Ztr(σ) for almost all σ ∈ Σ

by Almost(Σ). For each σ ∈ Gal(Q)e let U(σ) = Ztr(σ) ∩ P[0, 4]. The proof of the

following result is modeled after the proof of [FrJ, Thm. 23.3.1].

Proposition 4.5: The theory of finite graphs is interpretable in

Almost(Σ), so Almost(Σ) is undecidable.

Proof: The theory of finite graphs is undecidable [FrJ, Cor. 28.5.3], so it suffices to

interpret the theory of finite graphs in Almost(Σ).

For each sentence η of L(ring) let Truth(η) = {σ ∈ Σ | Ztr(σ) |= η}. Let

S =
⋂

η∈Almost(Σ)

Truth(η) ∩ {σ ∈ Σ | U(σ) is finite }(3)

∩ {σ ∈ Σ | Ztr(σ) satisfies hypothesis G(2)}.

By definition, µΣ(Truth(η)) = 1 for each η ∈ Almost(Σ). Since there are only countable

many sentences η, the measure (in Σ) of the first term on the right hand side of (3) is

1. By Proposition 3.6(c), µΣ{σ ∈ Σ | U(σ) is finite } = 1. By Lemma 4.3,

µΣ{σ ∈ Σ | Ztr(σ) satisfies hypothesis G(2)} = 1.
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Therefore, µΣ(S) = 1.

Let Qσ = {U(σ)} and R = {〈Ztr(σ),Qσ〉 | σ ∈ S}. Then R is a set of weak

monadic structures over the rings Ztr(σ) which satisfies Hypothesis G(2) (by (3)) with

|U(σ)| unbounded (Lemma 4.4). By Proposition 2.4, the theory of finite graphs is

interpretable in Th(R). Thus, it suffices to interpret Th(R) in Almost(Σ).

By definition, for all σ ∈ Gal(Q)e and s ∈ Ztr(σ),

(4) s ∈ U(σ) ⇐⇒ Ztr(σ) |= 0 � s � 4

We define a map ϕ 7→ ϕ∗ from formulas of L1 to formulas of L(ring) in the following

way. If ϕ is the atomic formula z ∈ X, then ϕ∗ is 0 � z � 4. If ϕ is an atomic formula

of L(ring), set ϕ∗ to be ϕ. Next let the star operation commute with negation and

disjunction. Finally, if ϕ∗ is an interpretation of a formula ϕ of L1, then ϕ∗ is also the

interpretation of (∃X)ϕ. Starting from (4), an induction on the structure of formulas

in L1 proves the following statement: Let ϕ(z1, . . . , zm, X1, . . . , Xn) be a formula of L1,

σ ∈ Gal(Q)e, and s1, . . . , sm ∈ Ztr(σ). Then ϕ∗(z1, . . . , zm) has its free variables among

the z1, . . . , zm’s and

(5) 〈Ztr(σ),Qσ〉 |= ϕ(s, U(σ), . . . , U(σ)) ⇐⇒ Ztr(σ) |= ϕ∗(s).

The induction step from ϕ to (∃Xn)ϕ is justified by the observation, that U(σ) is the

only element of Qσ.

It follows from (5) that a sentence θ of L1 belongs to Th(R) if and only if θ∗

is in Almost(Σ). Indeed, if θ ∈ Th(R), then 〈Ztr(σ),Qσ〉 |= θ, so Ztr(σ) |= θ∗ for

all σ ∈ S. Since µΣ(S) = 1, we conclude that θ∗ ∈ Almost(Σ). Conversely, suppose

θ∗ ∈ Almost(Σ). Then S ⊆ Truth(θ∗). Hence, Ztr(σ) |= θ∗, so 〈Ztr(σ),Qσ〉 |= θ for all

σ ∈ S, that is θ ∈ Th(R).

This concludes the interpretation of Th(R) in Almost(Σ).

Denote the set of all sentences of L(ring) which hold in Ztr(σ) for almost all

σ ∈ Gal(Q)e by Almost(Gal(Q)e).

Theorem 4.6: Let e ≥ 2. Then the theory of finite graphs is interpretable in

Almost(Gal(Q)e), hence that theory is undecidable.

Proof: By Proposition 4.5, it suffices to interpret Almost(Σ) in Almost(Gal(Q)e). To

each sentence θ of L(ring) let θ′ be the sentence

θ ∨ (∃x)[x2 = 2].
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The second disjunct of θ′ holds in Ztr(σ) for each σ ∈ Gal(Q(
√

2)). By definition, Σ =

Gal(Q)e r Gal(Q(
√

2))e. Hence, θ ∈ Almost(Σ) if and only if θ′ ∈ Almost(Gal(Q)e).

Thus, θ 7→ θ′ is the desired interpretation of Almost(Σ) in Almost(Gal(Q)e).
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