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Introduction

Let K be an infinite field which is finitely generated over its prime field (henceforth a

finitely generated field) and A an Abelian variety over K. Then the Abelian group

A(K) of all K-rational points of A is finitely generated (Mordell-Weil), in particular

rank(A(K)) < ∞. In contrast, rank(A(Ks)) = ∞ for the separable closure Ks of K.

Thus, A(Ks) has a sequence of linearly independent points p1,p2,p3, . . . . Moreover,

these points can be chosen to be M -rational if M is a separable algebraic extension of

K which lies “close enough” to Ks. More precisely, the following holds:

Theorem A ([FreyJ, p. 112]): Let K be an infinite finitely generated field, A an

Abelian variety over K of positive dimension, and e a positive integer. Then

rank(A(Ks(σ))) = ∞ for almost all σ ∈ Gal(K)e.

Here Gal(K) = Gal(Ks/K) is the absolute Galois group of K and for each

σ = (σ1, . . . , σe) ∈ Gal(K)e we write Ks(σ) for the fixed field of σ1, . . . , σe in Ks. The

expression “almost all σ ∈ Gal(K)e ” indicates that we ignore a subset of Gal(K)e of

Haar measure zero.

The proof of Theorem A in [FreyJ] uses two major tools: Néron’s theory of minimal

models of Abelian varieties over complete fields and approximation of simple points on

algebraic varieties over complete fields by separable algebraic points.

The goal of this note is to sharpen Theorem A by using the stability of fields [Neu]

and Im’s method of constructing linearly independent points [Im]:

Theorem B: Let K be an infinite finitely generated field and A an Abelian variety

over K. Then rank(A(Ks[σ])) = ∞ for almost all σ ∈ Gal(K)e.

Here Ks[σ] is the maximal Galois extension of K in Ks(σ). It is known that for

almost all σ ∈ Gal(K)σ the field Ks[σ] is PAC with absolute Galois group isomorphic

to F̂ω (the free profinite group on countably many generators) [Jar, Thm. 2.7]. Thus,

Ks[σ] is much smaller than Ks(σ), yet Theorem B shows that Ks[σ] is large enough

for the rank of A(Ks[σ]) (hence, also for the rank of A(Ks(σ))) to be infinite.
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1. Independent points on Abelian varieties

Let K be an infinite finitely generated field and A an Abelian variety of dimension d ≥ 1

over K. It turns out that the finiteness part of Ator(K) of the Mordell-Weil Theorem is

an easy consequence of the existence of a good reduction of A with respect to a valuation

with a finite residue field. This method has the advantage of proving the finiteness of

the number of torsion points of A of bounded degree over K.

We denote the algebraic closure of a field K by K̃.

Proposition 1.1: Let K be a finitely generated field, A an Abelian variety over K,

and d a positive integer. Then there exists a positive integer c such that |Ator(L)| ≤ c

for each finite extension L of K of degree at most d.

Proof: Denote the set of all extensions L of K with [L : K] ≤ d by L. Choose a prime

number p and a place π of K with a residue field K̄ of finite degree over Fp such that

A has a good reduction at π [ShT, p. 95, Prop. 25]. Denote the unique extension of K̄

of degree d by K̄d and let Ā be the reduced Abelian variety. Now consider L ∈ L and

a positive integer n with p - n. Extend π to a place of L and denote the residue field

by L̄. Then [L̄ : K̄] ≤ [L : K] ≤ d, so L̄ ⊆ K̄d!. Since K̄d! is finite, the group Ā(K̄d!) is

finite with, say, cp elements. By [SeT, Thm. 1 and Lemma 2], π maps An(L) injectively

into Ān(K̄d!). Hence, |An(L)| ≤ |Ān(K̄d!)| ≤ |Ā(K̄d!)| = cp.

Lemma 1.1 of [JaJ] allows us to choose a place π of K with a finite residue

field K̄ such that A has a good reduction at π and π maps Api(K̃) bijectively onto

Āpi(K̃) for all i ≥ 1. As in the preceding paragraph, there is a positive integer c′ such

that |Api(L)| ≤ c′ for all i ≥ 1 and L ∈ L. An arbitrary positive integer m can be

written as m = npi with p - n. For each L ∈ L we have Am(L) = An(L) ⊕ Api(L),

so |Am(L)| ≤ cpc
′. Since Ator(L) is the ascending union of all groups Ak!(L) with k

ranging on all positive integers, |Ator(L)| ≤ cpc
′, as claimed.

Remark 1.2: Related results. The proof of Proposition 1.1 is modelled after the proof

of [Silverman, p. 4, Lemma] which deals with the case where K is a number field and

A is an elliptic curve.

Merel has considerably strengthened Proposition 1.1 for elliptic curves over num-
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ber fields. He proves that for each positive integer d there exists a constant c such that

if L is an extension of degree at most d over Q and E is an elliptic curve over K, then

|Etor(L)| ≤ c [Mer]. It is conjectured that the same result holds for all Abelian varieties

of a given dimension [Silverberg, Conj. 2.3.2].

Using [Silverman], Im proves Proposition 1.3 below for elliptic curves over number

fields [Im, Lemma 3.11]. We apply Proposition 1.1 and generalize Im’s result to Abelian

varieties over infinite finitely generated fields:

Proposition 1.3: Let K be a finitely generated field, A an Abelian variety over K,

and d a positive integer. Suppose K has a linearly disjoint sequence L1, L2, L3, . . . of

Galois extensions of degree d and for each i there is a point pi ∈ A(Li)rA(K). Then

there exists a positive integer k such that the points pk,pk+1,pk+2, . . . are linearly

independent. In particular, ord(pi) = ∞ for each i ≥ k.

Proof: By Proposition 1.1,
⋃∞

i=1 Ator(Li) is a finite set. Denote the least common

multiple of the orders of the points in
⋃∞

i=1 Ator(Li) by n. Thus, np = 0 for each

p ∈ ⋃∞
i=1 Ator(Li). Next choose generators q1, . . . ,qm of A(K) (Mordell-Weil [Lan,

p. 138, Thm. 1]). For each 1 ≤ j ≤ m choose q′j ∈ A(K̃) with nq′j = qj . Put F =

K(An,q′1, . . . ,q
′
m). Then F/K is a finite extension and A(F ) contains each point q′ ∈

A(K̃) satisfying nq′ ∈ A(K). Indeed, there are a1, . . . , am ∈ Z with nq′ =
∑m

j=1 ajqj .

Hence, n
∑m

j=1 ajq′j =
∑m

j=1 ajqj = nq′, so q′ −∑m
j=1 ajq′j ∈ An(K̃) ⊆ A(F ). Thus,

q′ ∈ A(F ).

Denote the maximal separable extension of K in F by E. Lemma 2.5.7 of [FriedJ]

gives a positive integer k such that E,Lk, Lk+1, Lk+2, . . . are linearly disjoint over

K. Since each of the extensions Li/K is separable and F/E is purely inseparable,

F, Lk, Lk+1, Lk+2, . . . are linearly disjoint over K.

Assume that the points pk,pk+1,pk+2, . . . are linearly dependent. Then there

exists a nonempty finite subset I of {k, k + 1, k + 2, . . .} and for each i ∈ I there exists

a nonzero integer bi such that

(1)
∑

i∈I

bipi = 0.
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Put L =
∏

i∈I Li, choose j ∈ I, and consider an element τj ∈ Gal(Lj/K). Since

the extensions Li of K with i ∈ I are linearly disjoint, there is a τ ∈ Gal(L/K)

with τ |Lj = τj and τ |Li = 1 for each i ∈ I r{j}. Acting with τ on (1), we get

bjτjpj +
∑

i6=j bipi = 0. Subtracting the latter equality from (1), gives bj(τjpj−pj) = 0,

so τjpj−pj ∈ Ator(Lj). By the first paragraph, n(τjpj−pj) = 0, hence τj(npj) = npj .

Since the latter equality holds for each τj ∈ Gal(Lj/K), we have npj ∈ A(K). Again,

by the first paragraph, pj ∈ A(F ). Since pj is also in A(Lj), the linear disjointness of

Lj and F over K implies that pj ∈ A(K). This contradiction to the basic assumption

on pj implies that pk,pk+1,pk+2, . . . are linearly independent, as claimed.

2. Application of the Stability of Fields

The construction of the fields Li and the points pi ∈ A(Li)rA(K) as in Proposition

1.3 is made possible by a very general theorem about the stability of fields (surveyed in

[FriedJ, Sec. 18.9]). It works for an arbitrary absolutely irreducible variety:

Lemma 2.1: Let V be an absolutely irreducible variety of positive dimension r over

a Hilbertian field K. Then there exists an integer d ≥ 2, a linearly disjoint sequence

L1, L2, L3, . . . of Galois extensions of K of degree d, and for each i there exists pi ∈
V (Li)rV (K).

Proof: Choose a generic point x of V over K. Then F = K(x) is a regular extension

of K [FriedJ, Lemma 10.2.2]. The stability of fields gives t1, . . . , tr ∈ F which are

algebraically independent over K such that F/K(t) is finite and separable and the Galois

closure F̂ of F/K(t) is regular over K [Neu, p. 222, Thm.]. If F is not a field of rational

functions, then d0 = [F : K(t)] ≥ 2. If F = K(u1, . . . , ur) with u1, . . . , ur algebraically

independent over K, we redefine t1, . . . , tr in the following way: For i = 2, . . . , r we put

ti = ui. When char(K) 6= 2, we let t1 = u2
1. Finally, when char(K) = 2, we define

t1 to be u2
1 + u1. Then t1, . . . , tr are algebraically independent over K and F̂ = F is

a Galois extension of K(t) of degree d0 = 2 which is regular over K. In each case let

G = Gal(F̂ /K(t)) and d = [F̂ : K(t)].

Now choose a primitive element y for F/K(t) which is integral over K[t] and let

4



f ∈ K[T1, . . . , Tr, Y ] be a polynomial such that f(t, Y ) = irr(y, K(t)). Then degY (f) =

d0 and Gal(f(t, Y ), L(t)) ∼= G, for each algebraic extension L of K. Let W be the

hypersurface in Ar+1 defined over K by the equation f(T, Y ) = 0. Then there exists a

birational transformation ϕ: W → V over K. Since K is Hilbertian, we may inductively

define a sequence (a1, b1), (a2, b2), (a3, b3), . . . of points of W (Ks) with the following

properties:

(1a) For each i, ai ∈ Kr.

(1b) For each i, the extension K(bi)/K is separable of degree d0.

(1c) For each i, ϕ is defined at (ai, bi).

(1d) For each i, Gal(f(ai, Y ),K) ∼= G.

(1e) Denote the Galois closure of K(bi)/K by Li. Then L1, L2, L3, . . . are linearly

disjoint Galois extensions of K of degree d.

Indeed, inductively suppose (a1, b1), . . . , (an, bn) have already been constructed.

Let L be the Galois closure of K(b1, . . . , bn)/K. Then both Gal(f(t, Y ),K(t)) and

Gal(f(t, Y ), L(t)) are isomorphic to G. A lemma of Hilbert gives a separable Hilbertian

subset HK of Kr such that f(a, Y ) is irreducible and separable of degree d0, ϕ is defined

at (a, b) for each root b of f(a, Y ), and Gal(f(a, Y ),K) ∼= G for each a ∈ HK [FriedJ,

Lemma 13.1.1]. Likewise there exists a separable Hilbertian subset HL of Lr such that

Gal(f(a, Y ), L) ∼= G for each a ∈ HL. By [FriedJ, Prop. 12.3.3], HL contains a separable

Hilbertian subset H ′
L of Kr. Since K is Hilbertian, there exists an+1 ∈ HK∩H ′

L. Choose

a root bn+1 of f(an+1, Y ) in Ks and let Ln+1 be the Galois closure of K(bn+1)/K. Then

Conditions (1a)-(1d) hold for i = n + 1 and L1, . . . , Ln+1 are linearly disjoint. This

concludes the induction step.

Finally, for each i let pi = ϕ(ai, bi). Then pi belongs to V (Li) and K(pi) = K(bi)

is an extension of degree d0 of K, so pi /∈ V (K), as desired.

We are now in a position to prove Theorem B:

Proposition 2.2: Let A be an Abelian variety of positive dimension over a finitely

generated field K. Then rank(A(Ks[σ])) = ∞ for almost all σ ∈ Gal(K)e.

Proof: Let r = dim(A). By Lemma 2.1 there exists a positive integer d, a linearly
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disjoint sequence L1, L2, L3, . . . of Galois extensions of K of degree d, and for each i

there exists pi ∈ A(Li)rA(K). Proposition 1.3 gives a positive integer k such that

the points pk,pk+1,pk+2, . . . are linearly independent. By Borel-Cantelli, for almost all

σ ∈ Gal(K)e there are infinitely many i ≥ k such that Li ⊆ Ks(σ) [FriedJ, Lemma

18.5.3(b)], hence Li ⊆ Ks[σ]. For each of these σ’s the rank of A(Ks[σ]) is infinite.

Our final goal is to improve Theorem B by letting the Abelian varieties be defined

over Ks[σ]:

Lemma 2.3: Let N/K be a Galois extension of fields. Suppose rank(B(N)) = ∞ for

every Abelian variety B of positive dimension over K. Then rank(A(N)) = ∞ for every

Abelian variety A of positive dimension over N .

Proof: Let A be an Abelian variety of positive dimension over N . Then K has

a finite Galois extension L in N and there is an Abelian variety A′ over L such

that A ∼= A′ ×L N . In particular, A(N) ∼= A′(N). Let G = Gal(L/K) and lift

each τ ∈ G to an element τ ∈ Gal(N/K). Weil’s descent gives an Abelian variety

B over K such that B ×K L ∼= ∏
τ∈G τA′ [Weil, end of page 6]. Thus, B(N) ∼=

⊕
τ∈G(τA′)(N), so B(N)⊗Q ∼= ⊕

τ∈G(τA′)(N)⊗Q. By assumption, rank(B(N)) = ∞,

so dim(B(N) ⊗ Q) = ∞. Hence, there is a τ ∈ G with dim((τA′)(N) ⊗ Q) = ∞ and

therefore rank(τ(A′(N))) = rank((τA′)(N)) = ∞ for at least one τ ∈ G. Consequently,

rank(A(N)) = rank(A′(N)) = rank(τ(A′(N))) = ∞, as claimed.

The combination of Proposition 2.2 and Lemma 2.3 improves Theorem B:

Theorem 2.4: Let K be an infinite finitely generated field and e a positive integer.

Then almost all σ ∈ Gal(K)e have the following property: For each Abelian variety A

of positive dimension over Ks[σ] the rank of A(Ks[σ]) is infinite.

Proof: By assumption K is countable. Hence, there are only countably many Abelian

varieties B of positive dimension over K. It follows from Proposition 2.2, that almost

all σ ∈ Gal(K)e have the following property: If B is an Abelian variety over K, then

rank(B(Ks[σ])) = ∞. We conclude from Lemma 2.3, that almost all σ ∈ Gal(K)e have
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the property indicated in the Theorem.
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