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Introduction

Let K be an infinite finitely generated field over its prime field. Denote the separable

closure of K by Ks, the algebraic closure of K by K̃, and the absolute Galois group of K

by Gal(K). The latter group is profinite and is therefore equipped with a unique Haar

measure µK satisfying µK(Gal(K)) = 1. For each σ = (σ1, . . . , σe) ∈ Gal(K)e letKs(σ)

be the fixed field of σ1, . . . , σe in Ks and K̃(σ) the maximal purely inseparable extension

of Ks(σ). Properties of Ks(σ) and K̃(σ) that hold for almost all σ ∈ Gal(K)e (i.e. for

all but a set of σ of measure zero) reflect fundamental theorems of arithmetic geometry

like Hilbert Irreducibility Theorem and Mordell-Weil Theorem which hold over finite

extensions of K. The following statements summarize some of these properties:

Theorem A: The following statements hold for almost all σ ∈ Gal(K)e:

(a) Gal(Ks(σ)) is isomorphic to the free profinite group on e generators [FrJ, Thm.

16.13].

(b) The field Ks(σ) is PAC; that is every absolutely irreducible variety defined over

Ks(σ) has a Ks(σ)-rational point [FrJ, Thm. 16.18].

(c) rank(A(Ks(σ))) = ∞ for every abelian variety A defined over Ks(σ)

[FyJ, Thm. 9.1].

Each of the properties (a), (b), and (c) of Theorem A indicates that the fields

Ks(σ) and K̃(σ) are, in general, large algebraic extensions of K.

As a complement to Theorem A(c), it was only natural to ask about the torsion

part of A over the fields Ks(σ). First we proved the following result for elliptic curves:

Theorem B ([GeJ, Thm. 1.1]): Let E be an elliptic curve over K. Then the following

holds for almost all σ ∈ Gal(K)e:

(a) If e = 1, then there are infinitely many prime numbers l with El(K̃(σ)) 6= 0.

(b) If e ≥ 2, then there are only finitely many l with El(K̃(σ)) 6= 0.

(c) If e ≥ 1, then for each l the set
⋃∞

i=1Eli(K̃(σ)) is finite.

In contrast to the large rank over these fields, torsion is bounded when e ≥ 2, and

the only unboundedness statement is that for e = 1. This case says, for a measure 1 set

of σ in the absolute Galois group, the set of primes l with El nontrivial is infinite. This
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is a statement about disjointness of fields generated by various taking l-division points

for infinitely many l. So, one sees it is a result that comes (at least in the case where E

has no complex multiplication) from Serre’s famous open image theorem on the action

of Gal(Q) on the product of all El’s. That theorem has not yet been extended to general

abelian varieties. Yet we have been able to make progress on the following conjecture

for arbitrary abelian varieties:

Conjecture C ([GeJ, p. 260]): Let A be an abelian variety overK. Then the following

holds for almost all σ ∈ Gal(K)e:

(a) If e = 1, then there are infinitely many prime numbers l with Al(K̃(σ)) 6= 0.

(b) If e ≥ 2, then there are only finitely many l with Al(K̃(σ)) 6= 0.

(c) If e ≥ 1, then for each l the set
⋃∞

i=1Ali(K̃(σ)) is finite.

Conjecture C was fully verified when K is a finite field [JaJ1, Prop. 4.2]. Part (c)

of the Conjecture is proved in [JaJ2, Main Thm.] for an arbitrary finitely generated

field K. The same theorem proves Part (b) if char(K) = 0. Parts (a) and (b) are still

open if char(K) > 0.

The goal of this work is to prove a weak version of Part (a) of Conjecture C for

number fields K:

Main Theorem: Let A be an Abelian variety over a number field K. Then K has a

finite Galois extension L such that for almost all σ ∈ Gal(L) there are infinitely many

prime numbers l with Al(L̃(σ)) 6= 0.

We can take L = K in the Main Theorem and thus prove Part (a) of Conjecture

C in a few special cases:

(a) E = Q⊗EndCA is a totally real number field with [E : Q] = n and there is a prime

of K at which A has no potential good reduction.

(b) EndCA = Z and dim(A) is 2, 6, or an odd positive integer.

Whether L can be taken as K in the general case remains open.

The proof of the result for elliptic curves depends on a good knowledge of the

image of Gal(K) under the l-ic (also known as the “mod l”) representations associated
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with A. In the general case we have relevant information only over a finite Galois

extension L of K.

Let A be an abelian variety of dimension d over a number field K. We know that

for each prime number l we have Al(K̃) ∼= F2d
l . The action of Gal(K) on Al(K̃) gives,

after choosing an appropriate basis for Al, a representation ρl: Gal(K) → GL2d(Fl).

Put GK(l) = ρl(Gal(K)). For each number field N denote the set of all prime numbers

which split completely in N by Splt(N). Using results of Serre, we are able to find a

finite Galois extension L of K, a number field N , a connected reductive subgroup H of

GL2d over N with a positive dimension r, a connected algebraic group Ĥ, an isogeny

θ: Ĥ → H over N , and a set Λ of prime numbers satisfying the following conditions:

(1a) Λ ⊆ Splt(N).

(1b)
∑

l∈Λ∩Splt(N ′)
1
l =∞ for each number field N ′.

(1c) θ(Ĥ(Fl)) ≤ GL(l) ≤ H(Fl) and (H(Fl) : θ(Ĥ(Fl)) ≤ |Ker(θ)| for each l ∈ Λ.

(1d) The fields L(Al), with l ranging over Λ, are linearly disjoint over L.

We indicate how the main theorem follows from the properties (1a)-(1d): For each

l ∈ Λ let S̃l = {σ ∈ Gal(L) | Al(L̃(σ)) 6= 0}. By (1d), the sets S̃l are µ-independent.

If we prove that
∑

l∈Λ µ(S̃l) = ∞, then almost all σ ∈ Gal(L) will belong to infinitely

many S̃l (a lemma of Borel-Cantelli). This will prove the Main Theorem.

For each l ∈ Λ let Sl be the set of all σ ∈ Gal(L(Al)/L) for which there is a

nonzero a ∈ Al(L̃) with σa = a. Then res−1
L(Al)

(Sl) = S̃l. Hence, µ(S̃l) = |Sl|
[L(Al):L] . By

(1c) and Weil-Lang, [L(Al) : L] = |GL(l)| ≤ |H(Fl)| ≤ c1l
r for some constant c1 > 0.

Next use (1c) to estimate |Sl| from below:

(2)
|Sl| = #{h ∈ GL(l) | det(1− h) = 0}

≥ 1
|Ker(θ)|

#{ĥ ∈ Ĥ(Fl) | det(1− θ(ĥ)) = 0}.

Now let V be the intersection of Ĥ with the hypersurface defined by det(1− θ(ĥ)) = 0.

Let W be an absolutely irreducible component of V . Then dim(W ) = r − 1 and W

is defined over a finite extension N ′ of N . Let Λ′ = Λ ∩ Splt(N ′). For each l ∈ Λ′

Weil-Lang gives a constant c2 > 0 with |W (Fl)| ≥ c2lr−1. Combined with (2), this gives

|µ(S̃l)| ≥ c
l with c = c2

|Ker(θ)|c1
. It follows from (1b), that

∑
l∈Λ′ µ(S̃l) =∞, as claimed.
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The main body of this work consists of constructing N , Λ, H, and Ĥ as above out

of results of Serre lectured by him during 1985-86 in Collège de France. We acknowledge

use of lecture notes taken by Eva Bayer as well as a letter of Serre sent to us. We thank

Michael Larsen for useful conversation and correspondence and Michael Fried for helpful

comments. Finally we thank Gopal Prasad and Andrei Rapinchuk for help on algebraic

groups.
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1. Reductive Groups over Pseudofinite Fields

An isogeny θ: Ĥ → H of algebraic groups is an epimorphism with a finite kernel. If θ

is defined over a field F and F is algebraically closed, then θ(Ĥ(F )) = H(F ). In the

general case, θ(Ĥ(F )) is a subgroup of H(F ) which may be proper.

We denote the absolute Galois group of a field F by Gal(F ). The field F is PAC

if every absolutely irreducible variety over F has an F -rational point. The field F is

pseudofinite if F is perfect, PAC, and Gal(F ) ∼= Ẑ.

Hrushovski-Pillay use heavy model theory to prove the following result. We sug-

gest an alternative proof which uses cohomological arguments:

Lemma 1.1 ([HrP, Lemma 5.5]): Let F be a pseudo-finite field and θ: H → G an

isogeny of connected algebraic groups over F . Then |Ker(θ)(F )| = (G(F ) : θ(H(F ))).

Proof (Prasad): Put K = Ker(θ). Then the short exact sequence

1 −→ K(F̃ ) −→ H(F̃ ) θ−→ G(F̃ ) −→ 1

gives rise to a long exact sequence of nonabelian cohomology groups:

(1) 1 −→ K(F ) −→ H(F ) θ−→ G(F ) −→ H1(Gal(F ),K(F̃ )) −→ H1(Gal(F ),H(F̃ )),

[Ser4, p. 50, Prop. 36]. Each element of H1(Gal(F ),H(F̃ )) may be represented by an

absolutely irreducible variety V which is defined over F such that V ×F F̃ ∼= H [LaT,

Prop. 4]. Since F is PAC, V has an F -rational point. Hence, V represents the trivial

element of H1(Gal(F ),H(F̃ )) [LaT, Prop. 4], so H1(Gal(F ),H(F̃ )) = 1. Therefore, by

(1),

(2) G(F )/θ(H(F )) ∼= H1(Gal(F ),K(F̃ )).

Since K(F̃ ) is finite and normal in H(F̃ ) and H is connected, K(F̃ ) is abelian [Spr2,

Exer. 2.2.2(4)]. Since F is pseudo-finite, Gal(F ) ∼= Ẑ. For each positive integer n,

(3) |H0(Z/nZ,K(F̃ ))| = |H1(Z/nZ,K(F̃ ))|
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[CaF, p. 109, Prop. 11]. Since Ẑ = lim←−Z/nZ, taking direct limit of (3) gives

|H1(Gal(F ),K(F̃ ))| = |H0(Gal(F ),K(F̃ ))| = |K(F )|.

We conclude from (2) that (G(F ) : θ(H(F ))) = |K(F )|.

Let G be a connected linear algebraic group over a field F . A Borel subgroup

of G is a maximal connected solvable subgroup B of G(F̃ ). We say that G quasi-splits

over F if G contains a Borel subgroup which is defined over F . Suppose G is an algebraic

subgroup of GLn. Then G is said to split over F if G has a maximal torus T which is

defined and split over F . Thus, there is g ∈ GLn(F ) such that T (F̃ )g ≤ Dn(F̃ ). It is

known (yet we don’t use it) that if G splits over F , then G quasi-splits over F .

In this section we use the property of being quasi-split to investigate subgroups

of finite index of G(F ) when F is a perfect PAC field. Section 4 will give sufficient

conditions for a reductive group to split over a given perfect field.

Lemma 1.2: Let G be a connected linear group over a perfect PAC field F . Then G

quasi-splits over F .

Proof: Denote the class of all field extensions of F by F . For each F ′ ∈ F let

B(F ′) be the set of all Borel subgroups of G ×F F ′. By [Dem, p. 230, Cor. 5.8.3(i)]

or [BoS, Cor. 8.5], the functor B from F to the class of sets is representable by an

absolutely irreducible variety V over F (which is projective and smooth). In particular,

B(F ) = V (F ). Since F is PAC, V (F ) is nonempty. Hence, there is B ∈ B(F ). Thus, B

is a Borel subgroup of G which is defined over F .

Let G be a linear algebraic group. G is semisimple if it has no infinite solvable

normal subgroup. G is simply connected if there is no isogeny θ: H → G with

Ker(θ) 6= 1. An element g of G is unipotent if G can be embedded in some GLm such

that 1 is the only eigenvalue of g (Then this holds for each embedding of G in GLn.)

A subgroup U of G is unipotent if each element of G is unipotent. In this case, U is

nilpotent, hence solvable. Finally, G is reductive if it has no infinite unipotent normal

subgroup.
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Lemma 1.3 (Prasad): Let F be an infinite perfect field and G a simply connected

quasi-split semisimple linear algebraic group over F . Then each subgroup of G(F ) of

finite index coincides with G(F ).

Proof: Assume J be a proper subgroup of G(F ) of finite index. Replace J by the

intersection of its conjugates, if necessary, to assume J / G(F ).

Suppose first G is almost F -simple (or, in the terminology of [Tit2, p.314]

quasi-simple over F ). This means, G has no connected proper normal subgroup over

F except 1. Denote the subgroup of G(F ) which all unipotent elements generate by

G(F )+. By [Tit2, Main Theorem], G(F )+ is almost simple; that is, every proper

normal subgroup of G(F )+ is contained in the center Z(G) of G. Since G is semisimple,

simply connected, and quasi-split over F and F is perfect, a theorem of Steinberg

asserts that G(F ) = G(F )+ [Ste, p. 65, Cor. 3]. Hence, G(F ) is almost simple. Since

G is semisimple, Z(G) is finite. Hence, every proper normal subgroup of G(F ) is finite.

Since G is reductive, G(F ) is Zariski dense in G(F̃ ) [Bor2, p. 220, Cor. 18.3]. In

particular, G(F ) is infinite. Hence, J is also infinite. Thus, by the preceding paragraph,

J = G(F ).

In the general case let Gi, i = 1, . . . ,m, be the minimal groups among the closed

connected normal F -subgroups of G of positive dimension. Then each Gi is almost

F -simple and there is an F -isogeny θ:
∏m

i=1Gi → G whose restriction to each Gi is

the inclusion [Bor2, Thm. 22.10(i)]. Since G is simply connected, θ is an isomorphism.

Hence, G ∼=
∏m

i=1Gi and each Gi is simply connected. Thus, G(F ) ∼=
∏m

i=1Gi(F ).

For each i, J ∩Gi(F ) has finite index in Gi(F ). Since G is semisimple and quasi-split

over F , so is each Gi [Bor2, Prop. 11.14(1)]. By the special case, J ∩ Gi(F ) = Gi(F ).

Therefore, J = G(F ), as required.

LetN be a field and S a connected semisimple linear algebraic group overN . Then

there exists a connected semisimple linear algebraic group Ŝ and an isogeny θ: Ŝ → S

over N with the following property: For each isogeny θ1: S1 → S over N there exists

an isogeny κ: Ŝ → S1 with θ1 ◦κ = θ [Tit1, p. 38]. The isogeny θ: Ŝ → S is the simply

connected covering of S.
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Lemma 1.4 (Prasad): Let F be a perfect PAC field. Consider a connected semisimple

algebraic group S over F . Let θ: Ŝ → S be the simply connected covering of S over F .

Then, every subgroup of S(F ) of finite index contains θ(Ŝ(F )).

Proof: Let J be a subgroup of S(F ) of a finite index. Then J ′ = θ−1(J ∩ θ(Ŝ(F )))

is a subgroup of Ŝ of a finite index. By Lemma 1.2, Ŝ is quasi-split. By Lemma 1.3,

J ′ = Ŝ(F ). Therefore, θ(Ŝ(F )) ≤ J .

We denote the connected component of 1 of an algebraic group G by G0.

Remark 1.5: Decomposition of reductive groups. LetH be a connected reductive group

over an algebraically closed field C. By [Bor2, §14.2], H = TH ′, where

(4a) T is a torus and H ′ is the commutator subgroup of H;

(4b) H ′ is semisimple; and

(4c) T = Z(H)0, where Z(H) is the center of H.

In particular, T commutes elementwise with H ′. Also, T ∩H ′ is a closed normal

abelian subgroup of H ′. Hence, by (4b), T ∩H ′ is finite. We call T the central torus

of H and H ′ the semisimple part of H. If H is defined over a perfect subfield F of

C, then so are H ′, Z(H), and T .

Conversely, if H = TS where S is semisimple and T is a torus which commutes

elementwise with S, then H is reductive [Bor1, Thm. 5.2].

We supply an algebraic proof to a special case of [HrP, Prop. 3.3] proved by model

theoretic methods.

Lemma 1.6: Let F be a pseudofinite field of characteristic 0, N a subfield of F , H a

connected reductive algebraic group over N , and k a positive integer. Then there exist

a connected reductive algebraic group Ĥ and an isogeny θ: Ĥ → H over N satisfying

this:

(a) θ(Ĥ(F )) is contained in each subgroup of H(F ) of index that divides k.

(b) |Ker(θ)(F )| = (H(F ) : θ(Ĥ(F ))).

Proof: Statement (b) is a special case of Lemma 1.1. We prove (a).
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Let T be the central torus and S the semisimple part of H. The map (t, s) 7→ ts

is an isogeny π: T × S → H, because Ker(π) is a normal closed abelian subgroup of

S. Let κ: T → T be the isogeny defined by κ(t) = tk!. Let σ: Ŝ → S be the simply

connected covering over N . Then θ = π ◦ (κ × σ): T × Ŝ → H is an isogeny over N .

By [Bor1, Thm. 5.1], Ĥ = T × Ŝ is reductive and defined over N (comments preceding

Lemma 1.4). Since both T and Ŝ are connected and linear, so is Ĥ.

Now consider a subgroup B of H(F ) of index that divides k. The intersection

of all conjugates of B is a normal subgroup B0 of H(F ) of index dividing k!. Then

D = π−1(B0) is a normal subgroup of T (F ) × S(F ) of index dividing k!. Hence,

D1 = D ∩ T (F ) is a normal subgroup of T (F ) of index dividing k!. Since T (F ) is

abelian, κ(T (F )) = T (F )k! ≤ D1. Similarly, D2 = D ∩ S(F ) is a normal subgroup of

S(F ) of index dividing k!. By Lemma 1.4, σ(Ŝ(F )) ≤ D2. The N -isogeny θ: Ĥ → H

satisfies

θ(Ĥ(F )) = π
(
κ(T (F ))× σ(Ŝ(F ))

)
≤ π(D1 ×D2) ≤ π(D) ≤ B0 ≤ B.
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2. Axiomatic Approach

Consider a field K and an Abelian variety A of dimension d over K. Let µ = µK be

the normalized Haar measure of Gal(K). Our goal in this section is to give a proof of

the Main Theorem based on certain assumptions which we make on A and K:

Let P be the set of all prime numbers. Recall that the Dirichlet density of a

subset B of P is defined as the limit (if it exists)

δ(B) = lim
s→1+

∑
l∈B l

−s∑
l∈P l

−s
.

It has the following properties:

(1a) δ(P) = 1.

(1b) If
∑

l∈B
1
l <∞, then δ(B) = 0 (because

∑
l∈P

1
l =∞).

(1c) If δ(B) = 0 and C ⊆ B, then δ(C) = 0.

(1d) If B and C are disjoint sets with Dirichlet density, then δ(B ∪ C) = δ(B) + δ(C).

(1e) δ(P rB) = 1− δ(B), if δ(B) exists.

(1f) If δ(B) = 0 and δ(C) exists, then δ(B∪C) = δ(C). This follows from the following

inequality: ∑
l∈C

1
ls
≤

∑
l∈B∪C

1
ls
≤

∑
l∈B

1
ls

+
∑
l∈C

1
ls
.

(1g) If δ(B) = 1 and δ(C) exists, then δ(B ∩ C) = δ(C) (use (1e) and (1f)).

(1h) For each number field N let Splt(N) be the set of all prime numbers l that split

completely in N . Thus, if l ∈ Splt(N) and l is a prime of N over l, then the residue

field of N at l is Fl. Note that l ∈ Splt(N) if and only if l ∈ Splt(N̂), where N̂ is

the Galois closure of N/Q. By the Chebotarev density theorem [FrJ, Thm. 5.6],

δ(Splt(N)) = 1
[N̂ :Q]

.

Construction 2.1: Ultrafilter of prime numbers. Denote the collection of all subsets of

P of the form Splt(N) where N is a number field and the sets of Dirichlet Density 1 by

L0. If N ⊆ N ′ are number fields, then Splt(N ′) ⊆ Splt(N). If δ(B) = 1, then, by (1g)

and (1h), δ(B∩Splt(N)) = δ(Splt(N)) > 0. Thus, the intersection of finitely many sets

in L0 is never empty. Hence, there exists an ultrafilter L of P which contains L0 [FrJ,
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Cor. 6.7]. In particular, L contains no subsets of P of Dirichlet density 0. Hence, by

(1b), if Λ ∈ L, then
∑

l∈Λ
1
l =∞. Denote the ultraproduct

∏
Fl/L by F .

Lemma 2.2: F is a pseudofinite field which contains Q̃.

Proof: For the first statement see [FrJ, §18.9]. To embed Q̃ in F consider an irreducible

polynomial f ∈ Z[X]. Denote the decomposition field of f by N . For all but finitely

many l ∈ Splt(N), f decomposes modulo l into distinct linear factors. So, f decomposes

into distinct linear factors in F . This gives a (noncanonical) embedding of Q̃ into F

which we fix for the whole work.

Construction 2.3: Choice of an extension of l. Let N be a finite Galois extension of

Q. Choose a primitive element x for N which is integral over Z. Put f = irr(x,Q).

By Lemma 2.2, x ∈ F . Choose a system of representatives (x̄l)l for x modulo L.

For each l ∈ Splt(N) denote the local ring of Z at l by Z(l). Then A = {l ∈

Splt(N) | x̄l is a root of f modulo l} belongs to L. For all but finitely many l ∈ A,

Z(l)[x] is the integral closure of Z(l) in N [FrJ, Lemma 5.3]. Hence, the map x 7→ x̄l

defines a prime divisor l of N which extends l with residue field Fl. For all other l ∈ P

choose an extension l of l to N arbitrarily. It follows that for each y ∈ N with a system

of representatives (ȳl)l modulo L there is B ∈ L such that ȳl is the reduction of y

modulo l for each l ∈ B.

In particular, suppose H is an algebraic subgroup of GLn defined over N . Then,

for all but finitely many l ∈ Splt(N) the group H(Fl) of all Fl-rational points of H is

well defined. If a is a point of H(F ) with a system of representative (āl) modulo L,

then {l ∈ Splt(N) | āl ∈ H(Fl)} ∈ L. Moreover, if a ∈ H(N), then for a set of l’s in L,

āl is the reduction of a modulo l.

Denote the ring of integers of a number field N by ON .

For each prime number l choose a basis a1, . . . ,a2d of Al(Q̃) over Fl and let

ρl: Gal(K)→ GL2d(Fl) be the l-ic representation of Gal(K) corresponding to this basis.

Put GK(l) = ρl(Gal(K)). Then ρl induces an isomorphism ρ̄l: Gal(K(Al)/K)→ GK(l).

Assumption 2.4: There exist
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(2a) a finite Galois extension N of Q;

(2b) a set Λ of prime numbers;

(2c) a finite Galois extension L of K;

(2d) a linear algebraic group H ≤ GL2d defined over N ;

(2e) and a positive integer c;

with the following properties:

(3a) H is a connected reductive group of dimension r.

(3b) H contains the group Gm of homotheties.

(3c) Λ ⊆ Splt(N) and Λ ∈ L.

(3d) For each l ∈ Λ we choose a prime l of N which lies over l as in Construction 2.3.

Then H(Fl) is a well defined subgroup of GL2d(Fl).

(3e) GL(l) is a subgroup of H(Fl) of index ≤ c.

(3f) The fields L(Al), l ∈ Λ, are linearly disjoint over L.

Lemma 2.5: In the notation of Construction 2.1, there exist a connected group Ĥ, an

isogeny θ: Ĥ → H over N , and a subset Λ′ ∈ L of Λ such that for each l ∈ Λ′

(4a) θ(Ĥ(Fl)) ≤ GL(l) and

(4b) |Ker(θ)(Fl)| = (H(Fl) : θ(Ĥ(Fl)).

Proof: By (3e), H∗ =
∏
GL(l)/L is a subgroup of H(F ) =

∏
H(Fl)/L of index at

most c. Lemma 1.6 gives a connected algebraic group Ĥ and an isogeny θ: Ĥ → H over

N with θ(Ĥ(F )) ≤ H∗ and (H(F ) : θ(Ĥ(F )) = |Ker(θ)(F )| < ∞. Therefore, there

exists a subset Λ′ ∈ L of Λ such that θ: Ĥ(Fl) → H(Fl) is a homomorphism and (4)

holds for each l ∈ Λ′.

Construction 2.6: A change of N and Λ.

Part A: Intersection with a hypersurface. Let z be a set of variables for the coordi-

nates of the ambient affine space of Ĥ. Let V be the intersection of Ĥ with the hyper-

surface Z(det(1−θ(z))) of that ambient space defined by the equation det(1−θ(z)) = 0.

By (3b), r ≥ 1.
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Claim: V is a union of absolutely irreducible varieties of dimension r−1. Indeed, Ĥ is

absolutely irreducible and θ: Ĥ → H is an isogeny. Hence, dim(Ĥ) = dim(H) = r. By

the dimension theorem [Lan1, p. 36, Thm. 11], it suffices to prove Z(det(1− θ(z)))∩ Ĥ

is nonempty and properly contained in Ĥ.

To this end consider λ ∈ Q̃ with λ 6= 0. Since θ: Ĥ(Q̃)→ H(Q̃) is an epimorphism

and Gm ≤ H (Assumption (3b)), there is ĥ ∈ Ĥ(Q̃) with θ(ĥ) = λ. Hence,

det(1− θ(ĥ)) = det(1− λ) = (1− λ)2d.

Thus, ĥ ∈ V (Q̃) if and only if λ = 1.

Denote the absolutely irreducible components of V by V1, . . . , Vm. By the claim,

each of them is of dimension r − 1.

Part B: Change of N and Λ. Let N ′ be a finite Galois extension of Q which contains

N and Vi is defined over N for i = 1, . . . ,m. Let Λ′ be the subset of L which Lemma 2.5

gives. Set Λ′′ = Λ′ ∩ Splt(N ′). Omitting finitely many elements from Λ′, Assumption

2.4 and Condition (4) remain valid if we replace N and Λ, respectively, by N ′ and Λ′′.

Part C: Additional conditions. Replace N by N ′ and Λ by Λ′′, if necessary, to assume

that in addition to (3) and (4) the following conditions hold:

(5a) The intersection V = Ĥ ∩ Z(det(1 − θ(z))) is nonempty. Let V1, . . . , Vm be the

absolutely irreducible components of V . Each of them has dimension r − 1.

(5b) Vi is defined over N for i = 1, . . . ,m and Vi(Fl) is well defined for each l ∈ Λ.

Denote the normalized Haar measure of Gal(L) by µL. For each l ∈ Λ let

S̃l = {σ ∈ Gal(L) | Al(Ks(σ)) 6= 0}

= {σ ∈ Gal(L) | ∃p ∈ Al(Ks): p 6= 0 and σp = p}

and

Sl = {σ ∈ Gal(L(Al)/L) | ∃p ∈ Al(Ks): p 6= 0 and σp = p}.

Then res−1
L(Al)

(Sl) = S̃l, so µL(S̃l) = |Sl|
[L(Al):L] . By (3f), the fields L(Al), l ∈ Λ, are

linearly disjoint over L. Hence, by [FrJ, Lemma 16.11],

(6) the sets S̃l, l ∈ Λ, are µL-independent.
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Lemma 2.7: There exists a constant b > 0 with µL(Sl) > b
l for all l ∈ Λ.

Proof: Consider l ∈ Λ. Since ρ̄l is the isomorphism induced by the action of

Gal(L(Al)/L) on Al, ρ̄l maps Sl bijectively onto the set

S̄l = {h ∈ GK(l) | ∃v ∈ F2d
l : v 6= 0 and hv = v}.

= {h ∈ GL(l) | 1 is an eigenvalue of h}

= {h ∈ GL(l) | det(1− h) = 0}.

By (4a), θ(Ĥ(Fl)) ≤ GL(l). Hence,

S̄l ⊇ {θ(ĥ) ∈ GL(l) | det(1− θ(ĥ)) = 0}.

Thus, in the notation of (5a),

|S̄l| ≥ #{θ(ĥ) ∈ H(Fl) | ĥ ∈ Ĥ(Fl) and det(1− θ(ĥ)) = 0} = |θ(V (Fl))|.

Put m = |Ker(θ)|. By Lemma 2.5 each fiber of the homomorphism θ: Ĥ(Fl) → H(Fl)

consists of at most m elements. Hence,

|V (Fl)| ≤ m · |θ(V (Fl))|.

Therefore,

µL(S̃l) =
|Sl|
|GL(l)|

≥ |θl(V (Fl))|
|GL(l)|

≥ |V (Fl)|
m · |GL(l)|

≥ |V (Fl)|
m|H(Fl)|

.

By (5), V1 is an absolutely irreducible variety of dimension r − 1 defined over N .

By (3a), dim(H) = r. Hence, by Lang-Weil [LaW, Thm. 1], |H(Fl)| = lr +O(lr−
1
2 ) and

|V1(Fl)| = lr−1 +O(lr−
3
2 ). This gives b > 0 independent of l with µL(Sl) ≥ |V1(Fl)|

m|H(Fl)| ≥
b
l

for all l ∈ Λ.

By Construction 2.1,
∑

l∈Λ
1
l = ∞. Hence, by Lemma 2.7,

∑
l∈Λ µL(S̃l) = ∞.

By (6), the sets S̃l, l ∈ Λ, are µL-independent. It follows from Borel-Cantelli [FrJ,

Lemma 16.7(b)] that almost all σ ∈ Gal(L) belong to infinitely many sets S̃l. Thus,

Al(Ks(σ)) 6= 0 for infinitely many l ∈ Λ. This proves the following result:

Proposition 2.8: Let A be an Abelian variety over a field K satisfying Assumption

2.4. Then K has a finite Galois extension L such that for almost all σ ∈ Gal(L) there

are infinitely many prime numbers l with Al(Ls(σ)) 6= 0.

14



3. Finiteness Theorems for Linear Representations

Let F be a field extension of Q̃. The classification theorems for connected semisimple

algebraic groups over Q̃ lead to a finiteness theorem of split connected reductive sub-

groups of GLn over F having a fixed central torus which is defined over Q̃ (Proposition

3.10).

Let H be a connected algebraic group. Then all maximal tori of H are conjugate

[Bor2, Cor. 11.3]. Denote the common dimension of all maximal tori of H by rank(H)
∗.

Let G be an algebraic group over a field N and C an algebraically closed

extension of N . We follow the tradition of the theory of algebraic group that iden-

tifies the group G(C) of C-rational points of G with the group G ×N C obtained by a

base change from N to C.

Algebraic groups G1 and G2 over C are said to be strictly isogeneous of there

exists an algebraic group G over C and separable isogenies θi: G→ Gi, i = 1, 2.

Lemma 3.1: Let C be an algebraically closed field and r a positive integer. Then:

(a) There are only finitely many C-isomorphism classes of connected semisimple groups

of rank r over C. Let H1, . . . ,Hk be representatives of the Q̃-isomorphism classes

of connected semisimple groups of rank r over Q̃.

(b) Suppose Q̃ ⊆ C. Then, H1(C), . . . ,Hk(C) represent the C-isomorphism classes of

connected semisimple algebraic groups over C of rank r.

Proof of (a): By [Tit1, Thm. 1], each connected semisimple algebraic group H over C

is characterized up to strict isogeny by its Dynkin Diagram DH . The cardinality of DH

is rank(H) and there are at most three edges between two given vertices. Hence, there

are only finitely many possibilities for DH with rank(H) fixed. Thus, there are only

finitely many strict isogeny classes of connected semisimple algebraic groups of rank r

over C.

* This definition agrees with those of [Spr2, §7.2.1] and [Hum, p. 135] but differs from that
of [Bor2, §12.2]. The latter defines rank(H) as the dimension of a Cartan subgroup of
H. However, in most of our applications, H is a reductive group. In that case a Cartan
subgroup is just a maximal torus [Bor2, §13.17, Cor. 2(c)], so Borel’s definition agrees
with the one we have made.
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Let now H be a connected semisimple algebraic group over C. Denote the affine

Dynkin diagram of H by D′H . It is obtained from DH by adding one more vertex [Tit1,

1.1.3]. Let G be the strict isogeny class of H. Section 1.5.2 of [Tit1] associates a fi-

nite group Γ(G) with G which is naturally embedded in Aut(D′H). Then [Tit1, 1.5.4]

associates a subgroup Γ′(H) of Γ(G) with H. Both associations are natural, i.e. re-

main unchanged if we replace C by an algebraically closed extension C ′. Moreover, if

H1,H2 ∈ G and Γ′(H1) = Γ′(H2), then H1
∼= H2. Since Aut(D′H) has only finitely many

subgroups, there are only finitely many isomorphism classes in G. Together with the

preceding paragraph, this proves there are only finitely isomorphism classes of connected

semisimple algebraic groups of rank r.

Proof of (b): Let C be an algebraically closed field containing Q̃ and J a connected

semisimple group over C. Then J is strictly isogeneous to a direct product J1×· · ·×Js of

connected simple groups J1, . . . , Js over C [Bor2, p. 191]. For each i [Tit1, Thm. 1] gives

a connected simple algebraic group Gi over Q̃ with DGi
= DJi

. Put G = G1× · · ·×Gs.

Then DG =
⋃
· s

i=1DGi
=

⋃
· s

i=1DJi
= DJ . Hence, by [Tit1, Thm. 1], G(C) and J(C) are

strictly isogeneous over C.

Denote the common strict isogeny class of G(C) and J(C) by G. Denote the strict

isogeny class of G over Q̃ by G0. By [Tit1, §1.5.4, Prop. 1], there is an algebraic group

G′ over Q̃ in G with Γ′(G′) = Γ′(J). By (a), we may take G to be Hi for some 1 ≤ i ≤ k.

Hence, by [Tit1, §1.5.4, Prop. 1], Hi(C) ∼= J(C), as needed.

The following result is a consequence of Weyl’s dimension formula. It follows also

from [Ric, Prop. 12.1 and Prop. 9.2].

Lemma 3.2: Let h a finite dimensional semisimple Lie algebra over C. Then, for each

positive integer n, h has only finitely many n-dimensional irreducible representations.

Lemma 3.3: Let H be a semisimple connected algebraic group over C. Then, for each

positive integer n, H has, up to equivalence, only finitely many n-dimensional linear

representations.

Proof: We may consider H(C) as a complex Lie group. Each n-dimensional linear

representation of H uniquely corresponds (up to equivalence) to a linear representation
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ρ: H(C)→ GLn(C). The latter is uniquely determined by the associated representation

of the Lie-algebra dρ: h→ gln(C) [Var, 2.7.5].

By [Hum, 13.5], h is a semisimple complex Lie-algebra. By [Var, 3.13.1], dρ is the

direct sum of irreducible linear representations of h. By Lemma 3.2, h has only finitely

many n-dimensional irreducible representations. Therefore, H has only finitely many

n-dimensional linear representations.

Let G be an algebraic group over an algebraically closed field C and n a positive

number. Denote the set of equivalence classes of n-dimensional linear representations

of G(C) by Rn(G(C)). Let rn(G(C)) be the cardinality of Rn(G(C)) if it is finite and

∞ otherwise.

Lemma 3.4: Let C ⊆ C ′ be algebraically closed fields and G an algebraic group over

C. Then rn(G(C)) = rn(G(C ′)). If k = rn(G(C)) <∞, and ρ1, . . . , ρk are linear repre-

sentatives of Rn(G(C)), then the canonical extensions of ρ1, . . . , ρk to G(C ′) represent

Rn(G(C ′)).

Proof: Suppose first ρ1, . . . , ρk are inequivalent n-dimensional linear representations

of G(C). Assume ρi is equivalent to ρj over C ′ for some 1 ≤ i, j ≤ k. Then there is

g′ ∈ GLn(C ′) with ρi(a) = ρj(a)g
′

for all a ∈ G(C ′). An appropriate specialization

g ∈ GLn(C) of g′ satisfies ρi(a) = ρj(a)g
′

for all a ∈ GLn(C). Thus, ρi and ρj are

equivalent over C. So, by assumption, i = j. It follows that rn(G(C)) ≤ rn(G(C ′)).

Thus, ρi: G(C)→ GLn(C) is an algebraic homomorphism and for all i 6= j there

exists no g ∈ GLn(C) with ρi(a) = ρj(a)g for all a ∈ G(C). This is an elementary state-

ment with parameters in C which holds in C. Therefore, it holds in C ′ [FrJ, Cor. 8.5].

It follows, ρ1, . . . , ρk, viewed as linear representations of G(C ′) are inequivalent. This

implies, rn(G(C)) ≤ rn(G(C ′)).

Conversely, suppose ψ1, . . . , ψk′ are inequivalent n-dimensional linear represen-

tations of G(C ′). They are defined by polynomials with finitely many coefficients

u1, . . . , um ∈ C ′. Then, “ψ1, . . . , ψk′ are inequivalent n-dimensional linear represen-

tations of G(C ′)” is an elementary statement on u1, . . . , um which holds in C ′. By

[FrJ, Thm. 8.3], there is a C-specialization of (u1, . . . , um) to an m-tuple (ū1, . . . , ūm)
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of elements of C such that the specialized rational functions ψ̄1, . . . , ψ̄m are inequivalent

n-dimensional linear representations of G(C). Hence, rn(G(C ′)) ≤ rn(G(C)).

The combination of the first two paragraphs proves the lemma.

The combination of Lemmas 3.3 and 3.4 yields the following result.

Lemma 3.5: Let H be a connected semisimple group over Q̃ and n a positive integer.

Then rn(H(Q̃)) < ∞. Let ρ1, . . . , ρk be representatives of Rn(H(Q̃)). Then for every

algebraically closed extension C of Q̃ the canonical extensions of ρ1, . . . , ρk to H(C)

form a system of representatives of Rn(H(C)).

Lemma 3.6: Let F be a field of characteristic 0, H a connected semisimple algebraic

group over F , and n a positive integer. Consider n-dimensional linear representations

ρ, ρ′ of H over F . Suppose ρ and ρ′ become equivalent over a field extension F ′ of F .

Then ρ and ρ′ are equivalent over F .

Proof: Our assumptions gives g ∈ GLn(F ′) with ρ(h)g = ρ′(h) for all h ∈ H(F ′).

Hence, trace(ρ(h)) = trace(ρ′(h)) for all h ∈ H(F ). By [Spr1, Prop. 3.9(a)], ρ and

ρ′ are semisimple representations of H(F ). Hence, by [Lan2, p. 650, Cor. 3.8], ρ and

ρ′ are equivalent representations of H(F ). That is, there is b ∈ GLn(F ) such that

ρ(h)b = ρ′(b) for all h ∈ H(F ). Since H(F ) is Zariski-dense in H(F̃ ) [Bor2, Cor. 18.3],

ρ(h)b = ρ′(h) for all h ∈ H(F̃ ). In other words, ρ and ρ′ are F -equivalent.

For the rest of this section fix a direct product G =
∏p

i=1 GLni
. A G-represen-

tation of an algebraic group H is just a homomorphism ρ: H → G. Suppose ρ and ρ′

are G-representations of H over a field F . We say ρ and ρ′ are equivalent over F if

there is b ∈ G(F ) such that ρ′(h) = ρ(h)b for all h ∈ H(F̃ ).

Lemma 3.7: Let F be a field of characteristic 0 and H a connected semisimple algebraic

group over F . Consider G-representations ρ, ρ′ of H over F . Suppose ρ and ρ′ become

equivalent over a field extension F ′ of F . Then ρ and ρ′ are equivalent over F .

Proof: Let πi: G → GLni
be the projection on the ith factor. By assumption, there

is b ∈ G(F ′) with ρ′(h) = ρ(h)b for all h ∈ H(F̃ ′). Hence, for each i, πi(ρ′(h)) =

πi(ρ(h))πi(b) for all h ∈ H(F̃ ′). By Lemma 3.6, there is ai ∈ GLni
(F ) with πi(ρ′(h)) =
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πi(ρ(h))ai for all h ∈ H(F̃ ). Then a = (a1, . . . ,ap) ∈ G(F ) and ρ′(h) = ρ(h)a for all

h ∈ H(F̃ ). Thus, ρ and ρ′ are equivalent over F .

Lemma 3.8: There are connected semisimple subgroups S1, . . . , Sm of G(Q̃) with this

property: For every field F which contains Q̃, every connected semisimple algebraic

subgroup of G which is defined and split over F is conjugate over F to Si×Q̃F for some

i between 1 and m.

Proof: The dimension of each subtorus of G is at most n =
∑p

j=1 nj . Let H1, . . . ,Hk

be representatives of the isomorphism classes of connected semisimple algebraic groups

of rank at most n over Q̃ (Lemma 3.1(a)). By Lemma 3.5, each Hi has only finitely

many equivalence classes of nj-dimensional linear representations over Q̃. Hence, each

Hi has only finitely many equivalence classes of G-representations over Q̃. Let ρij ,

j = 1, . . . , qi be representatives of the classes of faithful G-representations of Hi over Q̃.

Then list the distinct groups among the ρij(H) as S1, . . . , Sm. Each Sk is a connected

semisimple subgroup of G(Q̃).

Consider now a field F which contains Q̃. Let H be a connected semisimple

algebraic subgroup of G which is defined and split over F . Lemma 3.1(b) gives i

with H(F̃ ) ∼= Hi(F̃ ). By [Tit1, Thm. 2] or [Sat, p. 233, last paragraph], there is

an isomorphism θ: Hi ×Q̃ F → H over F . View θ as a faithful G-representation of

Hi ×Q̃ F . By the preceding paragraph, there is j such that θ is equivalent to ρij over

F̃ . Hence, by Lemma 3.7, θ is equivalent over F to ρij . In particular, H = θ(Hi ×Q̃ F )

is conjugate over F to ρij(H) by an element of G(F ), that is to one of the groups

S1 ×Q̃ F, . . . , Sm ×Q̃ F .

Lemma 3.9: Let C be an algebraically closed field and T a subtorus of GLn(C). Then

the centralizer of T in GLn is conjugate to
∏p

j=1 GLnj with n1, . . . , np positive numbers

and
∑p

j=1 nj = n.

Proof: Denote the centralizer of T in GLn(C) by G. Let χ1, . . . , χp be the weights of

T . Thus, χj : T → Gm is a homomorphism and the vector space Vj = {v ∈ Cn | tv =

χj(t)v for all t ∈ T (C)} is not zero. Put nj = dim(Vj). Then Cn =
⊕p

j=1 Vj [Bor2,

§8.17]. For each j choose a basis Bj of Vj . Then B = B1 ∪ · · · ∪ Bp is a basis of Cn.
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Using conjugation in GLn(C), we may assume B to be the standard base of Cn.

Consider now an element g ∈ G(C) which commutes with T . Then, gVj = Vj .

Hence, g ∈
∏p

j=1 GL(Vj) =
∏p

j=1 GLnj
(C). Conversely, every matrix in the latter group

belongs to G. Therefore, G =
∏p

j=1 GLnj
(C).

Proposition 3.10: Let n be a positive integer and T a subtorus of GLn(Q̃). Then

there exist connected reductive subgroups H1, . . . ,Hm of GLn(Q̃) with this property:

Let F be a field which contains Q̃ and H a connected reductive subgroup of GLn over

F . Suppose T ×Q̃ F is the central torus of H and the semisimple part H ′ of H splits

over F . Then H is conjugate over F to Hi for some i between 1 and m.

Proof: Let G be the centralizer of T in GLn. By Lemma 3.9, G is conjugate over Q̃ to∏p
j=1 GLnj

for some positive integers n1, . . . , np with n1 + · · ·+np = n. Let S1, . . . , Sm

be as in Lemma 3.8. For each i, Si commutes with T . Hence, Hi = TSi is a connected

reductive group over Q̃ (Remark 1.5).

Consider now F and H as in the Proposition. Then H = TH ′ and H ′ commutes

with T . Hence, H ′ ≤ G. Also, H ′ is connected, semisimple and splits over F . Hence,

by Lemma 3.8, there are i between 1 and m and a ∈ G(F ) with H ′(F̃ ) = Si(F̃ )a.

Therefore, Hi(F̃ )a = T (F̃ )Si(F̃ )a = T (F̃ )H ′(F̃ ) = H(F̃ ), as required.
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4. Splitting of Reductive Groups

We prove in this section a criterion for a connected reductive group to split over a

field K: There exists a K-rational point with the maximal possible number of different

eigenvalues, each of them is in K.

Let C a universal extension ofK. That is, C is an algebraically closed extension

of K with trans.deg(C/K) =∞. Consider a point x ∈ GLn(C). Let

(1) fx(X) = det(X · 1− x)

be the characteristic polynomial of x and ξ1, . . . , ξm the distinct roots of fx(X) in C.

Thus,

(2) fx(X) =
m∏

i=1

(X − ξi)ei ,

with e1, . . . , em ≥ 1 and
∑m

i=1 ei = n. Put ν(x) = m.

Suppose x → x′ is a K-specialization. That is, x′ ∈ GLn(C) and the map

x → x′ extends to a K-homomorphism K[x] → K[x′]. By (1), fx ∈ K[x, X] and ϕ

uniquely extends to a homomorphism ϕ: K[x, X] → K[x′, X] with ϕ(X) = X and

ϕ(fx) = fx′ . Moreover, ξ1, . . . , ξm are integral over K[x]. Hence, ϕ further extends to a

homomorphism ϕ: K[x, X, ξ1, . . . , ξm]→ K[x′, X, ξ′1, . . . , ξ
′
m] with fx′(X) =

∏m
i=1(X −

ξ′i)
ei . It follows, ν(x) ≥ ν(x′). If ν(x′) = ν(x), then ϕ maps {ξ1, . . . , ξm} bijectively

onto {ξ′1, . . . , ξ′m}.

Consider a connected subgroup H of GLn(C) which is defined over K. Let x be a

generic point of H over K. Thus, x ∈ H(C) and x→ x′ is a K-specialization for every

x′ ∈ H(C). By the preceding paragraph, ν(x) = max{ν(x′) | x′ ∈ H(C)}. Denote the

latter number by ν(H). Each point a ∈ H(C) with ν(a) = ν(H) is said to be strongly

regular.

Define a morphism cl: GLn → An over Z in the following way: Let R be a

commutative ring with 1 and a ∈ GLn(R). Then let fa(X) = Xn + b1X
n−1 + · · ·+ bn

with b1, . . . , bn−1 ∈ R and bn ∈ R× and set cl(a) = b. When R is an integral domain

with quotient field F we write ν(b) = ν(a) for the number of distinct roots of fa in F̃ .
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Now suppose H and x are as above. Let fx(X) = Xn +y1Xn−1 + · · ·+yn. Denote

the Zariski closure of cl(H) by P . Then P is an absolutely irreducible subvariety of An

defined over K with generic point y. As above ν(y) = max{ν(y′) | y′ ∈ P (C)}. and

ν(P ) = ν(y) = ν(x) = ν(H).

Lemma 4.1: Let K be a field, C a universal extension of K, H a connected subgroup

of GLn over K, and T a maximal subtorus of H over K. Set P = cl(H). Then:

(a) ν(ah) = ν(a) for all a ∈ H(C) and h ∈ GLn(C).

(b) Let a = asau be the Jordan decomposition of a point a of H(C) with as semisimple

and au unipotent. Then ν(a) = ν(as).

(c) ν(H) = ν(T ).

(d) ν(T ) is the number of weights of T .

(e) Suppose K is infinite and T splits over K. Then H has a strongly regular K-rational

point whose eigenvalues belong to K.

(f) The set {y′ ∈ P (C) | ν(y′) = ν(P )} is nonempty and Zariski open in P .

(g) The set of strongly regular points of H(C) is a nonempty Zariski open subset which

is closed under conjugation.

Proof of (a): Conjugate points have the same characteristic polynomials.

Proof of (b): Conjugate a by an element of GLn(C), if necessary, to assume a is in a

Jordan normal form. Then as is the diagonal part of a. This implies, fas
= fa. Hence,

ν(a) = ν(as).

Proof of (c): By definition, ν(T ) ≤ ν(H). To prove the inverse equality, consider

a ∈ H(C). Then as is contained in a maximal torus T ′ of H. By [Bor2, Cor. 11.3(1)],

T ′(C) is conjugate to T (C) in H(C). Hence, by (a) and (b), ν(a) = ν(as) ≤ ν(T ). This

implies ν(H) ≤ ν(T ). We conclude that ν(H) = ν(T ).

Proof of (d): Let χi, i = 1, . . . ,m be the distinct weights of T . Thus, the χi are those

characters of T with a nonzero eigenspace Vi. Then Cn =
⊕m

i=1 Vi [Bor2, §8.17]. Choose

a basis for each Vi and take the union of these bases. A computation of the characteristic

polynomial with respect to the latter basis of Cn gives fa(X) =
∏m

i=1(X − χi(a))ei ,

where ei = dim(Vi). It follows ν(T ) ≤ m.
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Since χ1, . . . , χm are distinct, there is a ∈ T (C) such that χ1(a), . . . , χm(a) are

distinct. Then, ν(a) = m, so ν(T ) = m, as claimed.

Proof of (e): Since K is infinite and χ1, . . . , χm are distinct, there is a ∈ T (K) with

χ1(a), . . . , χm(a) distinct. Then a is a K-rational strongly regular point of H whose

eigenvalues, χ1(a), . . . , χm(a), are in K.

Proof of (f) and (g): Let m = ν(H) = ν(P ). Denote the set of all x′ ∈ H(C) with

ν(x′) = m by H0. Then H0 is closed under conjugation. Denote the set of all y′ ∈ P (C)

with ν(y′) = m by P0. Let x be a generic point of H over C, write

fx(X) = Xn + y1X
n−1 + · · ·+ yn =

n∏
i=1

(X − zi)

where the roots z1, . . . , zn of fx are ordered such that z1, . . . , zm are distinct. Then

y = cl(x) is a generic point of P over C. Let Z = Spec(K[z]) be the variety generated

by z over K.

The yi’s are, up to a sign, the values of the fundamental symmetric polynomials

in n variables at (z1, . . . , zn). Since fx is monic, the map (z1, . . . , zn) 7→ (y1, . . . , yn)

defines a finite morphism π: Z → P . In particular, π is surjective and closed. Also,

Z1 =
⋃

1≤i<j≤m{z′ ∈ Z(C) | z′i = z′j} is a Zariski closed subset of Z(C). Hence,

P1 = π(Z1) is Zariski closed in P (C). By definition, P (C) = P0 ·∪ P1, so P0 is Zariski

open in P , which proves (f). Finally, H0 = cl−1(P0), so H0 is Zariski open in H, as

contended by (g).

A point a of H(C) is said to be regular in H, if as is contained in a unique

maximal torus of H .

Lemma 4.2: Let H be a connected reductive subgroup of GLn over a field K and

a ∈ H(K̃). Suppose a is strongly regular. Then a is a regular point of H.

Proof: Let m = ν(H). Since as ∈ H(K̃) and ν(a) = ν(as), we may assume a is

semisimple. Conjugating H by an element of GLn(K̃), we may assume

a = Diag(α1Ie1 , . . . , αmIem
)
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with α1, . . . , αm ∈ K̃ distinct, where Iei is the unit matrix of order ei × ei.

Let T be a maximal torus of H over K̃ with a ∈ T (K̃). Choose a generic point t

of T over K̃. Then ta = at. The block structure of a corresponds to a decomposition

Cn =
⊕m

i=1 Vi where Vi = {v ∈ Cn | av = αiv}. Thus, tVi = Vi, i = 1, . . . ,m. This

implies t = Diag(t1, . . . , tm) is a diagonal block matrix with ti ∈ GLei(C), i = 1, . . . ,m.

The specialization

(t1, . . . , tm)→ (α1Ie1 , . . . , αmIem)

extends to a specialization of the eigenvalues of ti onto αi. It follows, the sets of

eigenvalues of ti and tj are disjoint, if i 6= j. If for some i, ti had more than one

eigenvalue, then ν(t) > m. This contradiction proves that each ti has exactly one

eigenvalue τi.

Since t is semisimple, so is each ti. Thus, ti is conjugate in GLei(C) to a diagonal

matrix. By the preceding paragraph, that matrix is τiIei . Therefore, ti = τiIei , so

t = Diag(τ1Ie1 , . . . , τmIem
) is a diagonal matrix.

Now suppose T ′ is another maximal torus of H over K̃ with a ∈ T ′(K̃). Let

t′ be a generic point of T ′ over K̃. Then, as before, t′ = Diag(τ ′1Ie1 , . . . , τ
′
mIem

).

Hence, tt′ = t′t. Thus, t′ belongs to the centralizer of T (C) in H(C) which is T (C)

itself, because H is reductive [Bor2, p. 175, Cor. 2]. Therefore, T ′(C) ≤ T (C). The

maximality of T ′ implies T ′ = T . It follows that a is a regular point of H.

The converse of Lemma 4.2 is not true. Every point of a torus T of dimension at

least 2 is regular in T but the unit is not strongly regular.

Lemma 4.3 ([Ser7]): Let K be a perfect field, H a connected reductive subgroup of

GLn over K. Suppose H has a K-rational strongly regular point a whose eigenvalues

belong to K. Then H splits over K.

Proof: Since K is perfect, as ∈ H(K) [Bor2, p. 81, Cor. 1(3)]. Let T be a maximal

torus of H over K̃ with as ∈ T (K̃). Conjugating H with an element of GLn(K̃), if

necessary, we may assume T (K̃) ≤ Dn(K̃).
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For each σ ∈ Gal(K) we have as ∈ T σ(K). By Lemma 4.2, T σ = T . Since K is

perfect, T is defined over K. Therefore, since T ≤ Dn, T splits over K, as claimed.
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5. Special Semisimple Groups

Ultraproducts of algebraic subgroups of GLn(F̃l) need not be Zariski closed because the

degrees of the polynomials that define the subgroups need not be bounded. Fortunately,

the semisimple groups associated with the l-ic representations of abelian varieties are

“special” and yield the needed bound. We discuss these “special semisimple groups” in

this section.

It is well known that the concept of absolute irreducibility of algebraic sets is

elementary. Unfortunately, we have not been able to find a reference to this fact with a

solid proof. We therefore give here a short proof based on classical elimination theory.

Denote the first order language of rings by L(ring) [FrJ, Example 6.1]. Let I be

the set of all n-tuples (i1, . . . , in) of nonnegative integers with i1 + · · · + in ≤ d. Put

r = |I|. Choose a bijective map j: I → {1, . . . , r}. Then the general polynomial in

X1, . . . , Xn of degree d can be written as f(T, X1, . . . , Xn) =
∑

i∈I Tj(i)X
i1
1 · · ·Xin

n ,

with T = (T1, . . . , Tr). Given a ring R, every polynomial in R[X1, . . . , Xn] of degree at

most d can then be written as f(a, X1, . . . , Xn) with a ∈ Rr.

Lemma 5.1: For all positive integers d,m, n there is a formula θ(T1, . . . ,Tm) in L(ring)

satisfying this: Let F be a field and f1, . . . , fm be polynomials in F [X1, . . . , Xn] of degree

at most d with vectors of coefficients a1, . . . ,am, respectively. Then the Zariski F -closed

subset of An defined by the system of equations f(ai, X1, . . . , Xn) = 0, i = 1, . . . ,m, is

absolutely irreducible if and only if θ(a1, . . . ,am) holds in F .

Proof: Let F be a field and V a Zariski closed subset of An defined by polynomials

in F [X1, . . . , Xn] of degrees at most d. Classical elimination theory gives an effective

procedure to decompose V into irreducible F -components, if the basic field operations

of F are explicitly given and if one can effectively decompose polynomials in F [X] into

a product of irreducible factors. The proof of this procedure, as presented in [FrJ,

Lemma 17.18 and Proposition 17.20] gives, for general F , a bound on the degrees of the

polynomials defining the irreducible F -components of V in terms of the degrees of the

polynomials defining F . Thus, there exist positive integers e, s, and k depending only

on n and d such that ”V is irreducible over F̃” is equivalent to the following statement:
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(1) There exist no polynomials gij ∈ F̃ [X1, . . . , Xn], i = 1, . . . , k, j = 1, . . . , s, of degree

at most e and with k ≥ 2 such that

V =
k⋃

i=1

V (gi1, . . . , gis)

and no V (gi1, . . . , gis) is contained in the other.

For all distinct i, i′ the statement “V (gi1, . . . , gis) 6⊆ V (gi′1, . . . , gi′s)” is equivalent

over F̃ to “There exists x with gi1(x) = · · · = gir(x) = 0 and gi′j(x) 6= 0 for at least one

j.” Statement (1) is therefore equivalent to a formula θ̃(T1, . . . ,Tm) of L(ring) with

the following property:

(2) Let F̃ be an algebraically closed field and a1, . . . ,am ∈ F̃ r. Then

V (f(a1,X), . . . , f(am,X)) is irreducible over F̃ if and only if θ̃(a1, . . . ,am) is true

in F̃ .

Elimination of quantifiers [FrJ, Thm. 8.3] gives a quantifier free formula

θ(T1, . . . ,Tm) which is equivalent to θ̃(T1, . . . ,Tm) over every algebraically closed field.

Observe that a quantifier free formula with parameters in F is true in F if and only if

it is true in F̃ . Consequently, for every field F and all a1, . . . ,am ∈ F r the following

chain of equivalencies holds:

θ(a1, . . . ,am) is true in F

⇐⇒ θ(a1, . . . ,am) is true in F̃

⇐⇒ θ̃(a1, . . . ,am) is true in F̃

⇐⇒ V (f1, . . . , fm) is irreducible over F̃

⇐⇒ V (f1, . . . , fm) is absolutely irreducible.

This completes the proof of the proposition.

Lemma 5.2: Let D be an ultrafilter of a set I and n a positive integer. For each i ∈ I

let Fi be a perfect field and Gi a connected reductive subgroup of GLn over Fi. Denote

the ideal of all polynomials in Fi[Xjk]1≤j,k≤n which vanish on Gi by Ji. Suppose Ji is

generated by polynomials of bounded degree. Let F =
∏

i∈I Fi/D and J =
∏

i∈I Ji/D.
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Then the Zariski closed subset G of GLn which the ideal J of F [Xjk]1≤j,k≤n defines

over F is a connected reductive subgroup of GLn and G(F ) =
∏

i∈I Gi(Fi)/D.

Proof: By assumption, we may choose generators fi1, . . . , fim of Ji of degree at most d

with d and m independent of i. Put fj =
∏

i∈I fij/D, j = 1, . . . ,m. Then let G be the

Zariski closed subset of GLn defined by f1, . . . , fm. By Lemma 5.1, G is a connected

subgroup of GLn defined over F . Moreover, G(F ) =
∏

i∈I G(Fi)/D.

Assume G is not reductive. Then G has a connected unipotent normal sub-

group U of positive dimension over F . Since F is perfect, U(F ) is Zariski dense in U

[Bor2,Cor. 18.3]. Hence, U(F ) is infinite. Moreover, (u − 1)n = 0 for each u ∈ U(F ).

Let g1, . . . , gr be a set of generators in F [Xjk]1≤j,k≤n for the ideal of all polynomials

vanishing on U(F ). They satisfy for x,y ∈ GLn

(3)
g1(x) = . . . = gr(x) = 0, f1(y) = . . . = fm(y) = 0

=⇒ g1(y−1xy) = . . . = gr(y−1xy) = 0

Choose representatives (gi1)i∈I , . . . , (gir)i∈I of g1, . . . , gr, respectively, modulo D. For

each i ∈ I let Ui be the Zariski closed subset of Gi which gi1, . . . , gir define. Then

U =
∏

i∈I Ui/D. By Lemma 5.1 there is a set I0 ∈ D such that for each i ∈ I0, Ui is a

connected algebraic subgroup of Gi and (3) holds for the i-components (so, Ui is normal

in Gi), and |Ui(Fi)| ≥ 2. Since a connected group of dimension 0 is trivial, dim(Ui) ≥ 1.

Moreover, (u − 1)n = 0 for each u ∈ Ui(Fi). Since Fi is perfect, (u − 1)n = 0 for

each u ∈ U(F̃i). Hence, Ui is unipotent. This contradicts the assumption that Gi is

reductive. We conclude that G is reductive.

Notation 5.3: Choice of H1, . . . ,Hm and a number field N . Let n be a positive integer

and T a subtorus of GLn over Q̃. Following Proposition 3.10, we choose connected

reductive subgroups H1, . . . ,Hm of GLn(Q̃) with the following property:

(4) Let F be a field which contains Q̃ and H a connected reductive subgroup of GLn

over F . Suppose H splits over F and T ×Q̃ F is the central torus of H. Then H is

conjugate over F to Hi for some i between 1 and m.

Now choose a number field N over which H1, . . . ,Hm are defined. As in Construction

2.1, let L be an ultrafilter of P which contains Splt(N ′) for every number field N ′ and
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all sets of Dirichlet density 1. For each l ∈ P choose a prime divisor l of N as in

Construction 2.3.

Definition 5.4: Special semisimple groups. Let l be a prime number and S be a con-

nected algebraic subgroup of GLn(F̃l). Call S a special semisimple group (abbrevi-

ated, S-group) if it satisfies the following condition.

(5a) S is semisimple and acts semisimply on F̃n
l .

(5b) S is generated by all elements of the form exp(ag) =
∑l−1

k=0
1
k! (ag)k where g ∈

S(Fl) satisfies gl = 0 and a ∈ F̃×l .

Lemma 5.5: Let L be the ultrafilter of Construction 2.1 and Λ a set in L. Let N a

number field, n be a positive integer, and T a subtorus of GLn which is defined and

split over N . For each l ∈ Λ let Hl be a connected reductive subgroup of GLn over Fl

satisfying the following conditions:

(6a) Hl has a strongly regular Fl-rational point al with all eigenvalues in Fl.

(6b) The central torus of Hl is the reduction T̄l of T modulo l (We use the convention

of Construction 2.3.)

(6c) The commutator subgroup H ′
l of Hl is an S-group.

Then there is an i between 1 and m and there is Λ′ ∈ L which is contained in

Λ ∩ Splt(N) such that Hi(F̃l) is conjugate to Hl(F̃l) by an element of GL(Fl) for each

l ∈ Λ′.

Proof: Let F =
∏

Fl/L and C =
∏

F̃l/L. Then F is a pseudofinite field which

contains Q̃ (Lemma 2.2) and C is an algebraically closed field which contains F . Let

Il be the ideal of polynomials in Fl[Xij ]1≤i,j≤n which defines H ′
l . By (6c) and [Ser3,

p. 62, Théorème analogue] Il has a system of generators of bounded degree. Note that

the latter theorem is a consequence of [Ser3, p. 60, Théorème] which is also [Ser5, p. 38,

Théorème]. Thus, by Lemma 5.2, H ′ =
∏
H ′

l/L is a connected reductive subgroup of

GLn over F . In particular, H ′(F ) =
∏
H ′

l(Fl)/L and H ′(C) =
∏
H ′(F̃l)/L.

Since H ′
l is semisimple, H ′′(F̃l) = H ′(F̃l). Hence, H ′′(C) = H ′(C). By [Bor2,

p. 182. Cor], H ′ is semisimple.

By (6b), T (F ) =
∏
T̄l(Fl)/L =

∏
T (Fl)/L and T (C) =

∏
T̄l(F̃l)/L =

∏
T (F̃)/L.
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Consider the subgroup H(C) =
∏
Hl(F̃l)/L of GLn(C). It satisfies H(C)′ =

H ′(C), H(C) = T (C)H ′(C), and T (C) commutes with H ′(C), because these relations

hold over F̃l for each l ∈ Λ. By Remark 1.5, H is a connected reductive group over F .

For each m ≤ n let Λm = {l ∈ Λ | ν(H) = m}. Then Λ =
⋃n

m=0 Λm. By the

basic properties of ultrafilters, there is a unique m with Λm ∈ L. Replace Λ by Λm, if

necessary, to assume m = ν(Hl) for all l ∈ Λ.

By (6a), the characteristic polynomial fal
∈ Fl[X] of al has exactly m roots all

of whom are in Fl. Also, a =
∏

al/L belongs to H(F ). On the other hand, fx has at

most m roots in Fl for all l ∈ Λ and x ∈ Hl(F̃l). Hence, fx has at most m roots in C

for all x ∈ H(C). Thus, ν(a) = m = ν(H). By Lemma 4.3, H splits over F .

Condition (4) gives i in {1, . . . ,m} and b ∈ GLn(F ) with Hi(C) = H(C)b. Hence,

there is a subset Λ′ of Λ such that Λ′ ∈ L andHl(F̃l) is conjugate toHi(Fl) by an element

of GLn(Fl) for each l ∈ Λ′. This concludes the proof of the lemma.
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6. Abelian Varieties over Number Fields

We extract in this section results of Serre which, together with the lemmas proved in

the preceding sections, prove Assumption 2.4 for Abelian varieties over number fields.

This leads to the proof of the Main Theorem.

Let K be a number field and A an abelian variety over K of dimension d. As in

Section 2, let P be the set of prime numbers. For l ∈ P choose a basis a1, . . . ,a2d for the

Tate module Tl(A). Apply the canonical map Tl(A)→ Al on a1, . . . ,a2d to get a basis

ā1, . . . , ā2d of Al. Let ρl∞ : Gal(K) → GL(2d,Zl) and ρl: Gal(K) → GL(2d,Fl) be the

l-adic and the l-ic representations of Gal(K) corresponding to these bases, respectively.

Write GK(l) = ρl(Gal(K)) and GK(l∞) = ρl∞(Gal(K)).

Proposition 6.1 (Serre): In the above notation there are a finite Galois extension L

of K, a subtorus T of GL2d which is defined over Q, a positive integer c, and a cofinite

subset P0 of P with the following properties:

(a) For each l ∈ P0 there is a connected reductive subgroup Hl of GL2d which is defined

over Fl and satisfies:

(a1) The group of homotheties Gm is contained in T .

(a2) The central torus of Hl is the reduction T̄l of T modulo l.

(a3) GL(l) ≤ Hl(Fl).

(a4) (Hl(Fl) : GL(l)) ≤ c.

(a5) The semisimple part H ′
l of Hl is an S-group.

(b) The fields L(Al), l ∈ P0, are linearly disjoint over L.

(c) Let Hl∞ be the connected component of the Zariski closed subgroup of GLn gener-

ated over Ql by GK(l∞). Then GL(l∞) is an l-adically open subgroup of Hl∞(Zl).

Proof: Conditions (a1), (a2), (a3), and (a4) are announced in [Ser2, §2.5]. Condition

(a1) is proved in [Ser5, p. 48, Lemme]. Conditions (a2), (a3), and (a4) are proved in

[Ser5, p. 44, Théorème].

To prove (a5) note first that Hl(Fl) acts semisimply on Fl. This follows from a

well known result of Faltings [Ser2, §2.5.4 or Ser5, bottom of p. 42]. By definition [Ser2,

§3.2 or Ser3, p. 72], H ′
l is generated by all elements exp(a(g − 1)) with a ∈ F̃×l and
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g ∈ GL(l) of order l. Thus, H ′
l is an S-group.

Condition (b) is announced in [Ser2, §2.1, Thm. 1] and proved in [Ser3, p. 86] and

[Ser6, p. 56, Cor.].

Statement (c) is due to Bogomolov [Bog].

Lemma 6.2: Let p be a prime number, H a connected subgroup of GLn over Zp , W

a nonempty Zariski open subset of H, and G a p-adically closed subgroup of H(Zp) of

finite index. Then the Haar measure of the p-adic boundary of G∩W (Zp) in G is zero.

Proof: Since W is Zariski open in H, W (Zp) is p-adically open in H(Zp). Hence,

G∩W (Zp) is p-adically open in G. Therefore, the boundary of G∩W (Zp) is contained

in GrW (Zp), hence in H(Zp) rW (Zp).

Let s = dim(H). Since H is smooth, s is also the p-adic dimension of H(Zp).

Since dim(H rW ) < dim(H), the p-adic dimension of H(Zp) rW (Zp) is smaller than

the p-adic dimension of H(Zp). This implies the Haar measure of H(Zp) rW (Zp) in

H(Zp) is 0. By the preceding paragraph, the boundary of G∩W (Zp) has Haar measure

0 in H(Zp). Since the Haar measure of the compact groups H(Zp) and G differ only by

the finite factor (H(Zp) : G), the Haar measure of the boundary of G ∩W (Zp) in G is

0.

Proposition 6.3 ([Ser7]): LetHl be as in Proposition 6.1. Then, there exists a number

fieldN0 such that for each large l ∈ Splt(N0) there is a strongly regular point al ∈ Hl(Fl)

with all eigenvalues in Fl.

Proof: Let C be an algebraically closed field which contains Ql for all prime numbers

l. Part A of the proof gives a bound for ν(Hl). In Part B we choose a large prime

number p, a prime q of L, a Frobenius element σq,p in Gal(L(Ap∞)/L), and point out

that the characteristic polynomial fq of σq,p is independent of p (for p large). Using the

splitting field N0 of fq over Q, we show that all large l ∈ Splt(N0) satisfy the conclusion

of the Proposition.

Part A: Bounding ν(Hl) by ν(Hl∞). The proof of [Ser5, Thm. 2] gives an absolutely

irreducible variety P over Z such that for all large l we have cl(Hl∞) = P and cl(Hl)
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is the reduction modulo l of P . Thus, for l large, m = ν(Hl∞) = ν(P ) is independent

of l and ν(cl(Hl)) ≤ ν(P ) = m. Let U be a nonempty Zariski open subset of P with

ν(c) = m for all c ∈ U(C) (Lemma 4.1(f)). Let Wl∞ be the inverse image of U under

cl: Hl∞ → P . Then Wl∞ is a nonempty Zariski open subset of Hl∞ which is closed

under conjugation. In addition, ν(a) = m for each a ∈Wl∞(C).

Part B: Preparing use of the Chebotarev density theorem. We choose a large prime

number p. By Proposition 6.1(c), GL(p∞) is a p-adically closed subgroup of Hp∞(Zp)

of finite index. Hence, by Lemma 6.2, the boundary of GL(p∞) ∩Wp∞(Zp) has Haar

measure 0 in GL(p∞).

Let ρ: Gal(L(Ap∞)/L) → GL(p∞) be the isomorphism induced by ρp∞ . Like

every isomorphism between compact groups, ρ preserves the Haar measure. Hence, the

boundary of ρ−1(Wp∞(Zp)) has Haar measure 0 in Gal(L(Ap∞)/L) and is closed under

conjugation in Gal(L(Ap∞)/L).

Part C: Choosing of a Frobenius element. Denote the finite set of primes of L at

which A has bad reduction by Bad(A). Let Bad(A)p be the union of Bad(A) with the

prime divisors of p in L. Then Bad(A)p is a finite set and each prime of L outside

Bad(A)p is unramified in L(Ap∞) [SeT, Thm. 1]. Therefore, by Part B, the Chebotarev

density theorem for infinite Galois extensions [JaJ2, Prop. 4.3] gives a prime q of L

such that each Frobenius element of Gal(L(Ap∞)/L) over q belongs to ρ−1(Wp∞(Zp)).

Choose a Frobenius element σq,p in Gal(L(Ap∞)/L) corresponding to q. Set sq,p =

ρ(σq,p) and let fq = fq,p be the characteristic polynomial of σq,p. Then fq has coefficients

in Z which do not depend on p [SeT, p. 499, Thm. 3]. Since sq,p ∈ Wl∞(Zp), fq has

exactly m distinct roots.

Part D: The splitting field N0 of fq over Q satisfies the conclusion of the proposition.

Consider a large l in Splt(N0) which lies under no prime in Bad(A)p and the reduction

of fq modulo l has exactly m distinct roots. Now choose a Frobenius element σq,l in

Gal(L(Al∞)/L) corresponding to q. Let sq,l = ρl∞(σq,l) ∈ GL(l∞). By Part C, fq is the

characteristic polynomial of sq,l. The reduction s̄q,l of sq,l modulo l is a point of GL(l),

hence of Hl(Fl). Moreover, fs̄q,l
is the reduction modulo l of fq. Hence, it has exactly
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m roots and all of them are in Fl. Therefore, by Part A, ν(s̄q,l) = ν(Hl). Consequently,

s̄q,l is strongly regular, as required.

Theorem 6.4: Let A an Abelian variety over a number field K. Then K has a finite

Galois extension L such that for almost all σ ∈ Gal(L) there are infinitely many prime

numbers l with Al(Q̃(σ)) 6= 0.

Proof: Let d = dim(A). Proposition 6.1 gives a finite Galois extension L of K, a

subtorus T of GL2d over Q, a positive integer c, and a cofinite subset P0 of P which

satisfy (a), (b), and (c) of that Proposition. For each l ∈ P0 we may choose a connected

reductive subgroup Hl of GL2d over Fl which satisfies Conditions (a1)-(a5) of Proposi-

tion 6.1. Making P0 smaller, Proposition 6.3 gives a number field N0 such that for each

l ∈ P0 ∩ Splt(N0) there is a strongly regular point in Hl(Fl) with all eigenvalues in Fl.

Thus, Conditions (6a)-(6c) of Lemma 5.5 hold for each l ∈ P0 ∩ Splt(N0). Therefore,

Lemma 5.5 gives a subgroup H of GL2d(Q̃) and a subset Λ of P0 ∩ Splt(N0) such that

H(Fl) is conjugate to Hl(Fl) in GL2d(Fl) for each l ∈ Λ. After an appropriate change

of the base of Al definining ρl we get that GL(l) ≤ H(Fl) for each l ∈ Λ.

Let N be a number field which contains N0 such that H is defined over N . Thus,

K, A, and L satisfy Conditions (3a)-(3f) of Assumption 2.4. It follows from Proposition

2.8 that for almost all σ ∈ Gal(L) there exist infinitely many l with Al(Q̃(σ)) 6= 0. This

concludes the proof of the theorem.
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7. Special Cases

We are able to prove the Main Theorem in the stronger form with L = K in several

special cases:

Lemma 7.1: Let L/K be a finite field extension. For each i in a set I let Ki be a finite

Galois extension of K and put Li = LKi. Suppose, [Ki : K] = [Li : L] for each i ∈ I.

Suppose in addition Li, i ∈ I, are linearly disjoint over L. Then Ki, i ∈ I, are linearly

disjoint over K.

Proof: We may assume that I is a finite set. Let K ′ =
∏

i∈I Ki and L′ = LK ′. Then

[L′ : L] ≤ [K ′ : K] ≤
∏
i∈I

[Ki : K] =
∏
i∈I

[Li : L] = [L′ : L].

Hence, [K ′ : K] =
∏

i∈I [Ki : K]. Therefore, Ki, i ∈ I, are linearly disjoint over K.

The following results uses the ultrafilter L which Construction 2.1 introduces.

Proposition 7.2: Let A be an abelian variety over a field K. Suppose there exist a

number field N , a set Λ ∈ L, and an algebraic group H over K, such that Λ ⊆ Splt(N)

and GK′(l) = H(Fl) for each finite extension K ′ of K and each sufficiently large l ∈ Λ.

Then, for almost all σ ∈ Gal(K) there are infinitely many l ∈ Λ with Al(K̃(σ)) 6= 0.

Proof: Proposition 6.1 gives a prime number l0, such that L(Al), l ≥ l0, are linearly

disjoint over L. Making l0 larger, if necessary, we get [K(Al) : K] = [L(Al) : L] for all

l ≥ l0. Hence, by Lemma 7.1, K(Al), l ≥ l0, are linearly disjoint over K.

We may assume l ≥ l0 for each l ∈ Λ. Let V be the intersection of H with the

hypersurface defined by det(1 − z) = 0 where z is a 2d × 2d matrix of indeterminates.

Let N ′ be a finite extension of N over which all absolutely irreducible components of V

are defined. Let Λ′ = Λ ∩ Splt(N ′). Write S̃l = {σ ∈ Gal(K) | A(K̃(σ)) 6= 0}. By the

preceding paragraph, the sets S̃l, l ∈ Λ, are µK-independent. As in the introduction

or in Section 2,
∑

l∈Λ′ µL(S̃l) = ∞. By Borel-Cantelli, almost all σ ∈ Gal(K) belong

to infinitely many S̃l. Therefore, there are infinitely many l ∈ Λ with Al(K̃(σ)) 6= 0.
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There are at least two cases where the assumptions of Proposition 7.2 are satisfied:

Theorem 7.3: Let A be an abelian variety of dimension n over a number field K.

Suppose one of the following conditions holds:

(a) E = Q⊗EndCA is a totally real number field with [E : Q] = n and there is a prime

of K at which A has no potential good reduction.

(b) EndCA = Z and dim(A) is 2, 6, or an odd positive integer.

Then, for almost all σ ∈ Gal(K) there are infinitely many l with Al(K̃(σ)) 6= 0.

Proof: It suffices to prove that the conditions of Proposition 7.2 hold in each of the

cases.

Case (a): Let n = [E : Q]. Define an algebraic subgroup H of GL2n over Z by

H(R) =
{(

Diag(a) Diag(b)
Diag(c) Diag(d)

)
∈ GL2n(R) | aidi − bici = a1d1 − b1c1, i = 2, . . . , n

}
for each commutative ring R with 1. Here Diag(a) is the diagonal matrix in GLn(Fl)

with entries a1, . . . , an along the main diagonal. Let O be the ring of integers of E.

Then, for all large l

GK(l) ∼= {g ∈ GL2(O/lO) | det(g) ∈ F×l }

[Rib, p. 752]. Then, for all large l ∈ Splt(E), O/lO ∼= Fn
l and there is an isomorphism

of GK(l) with H(Fl) which is compatible with the actions of the groups on Al(K̃) and

F2n
l , respectively.

The same statement holds for each finite extension K ′ of K, where one has to

exclude possibly more l than for K. Thus, the conditions of Proposition 7.2 hold for

N = E and Λ = Splt(E).

Case (b): The conditions of Proposition 7.2 hold in this case with N = Q, Λ cofinite

in P, and H = GSp2n [Ser5, p. 51, Cor.].
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