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Introduction

Theorem 16.13 of [FrJ] states that for a Hilbertian field K, for a positive integer e, and

for almost all σ = (σ1, . . . , σe) ∈ G(K)e (with respect to the Haar measure), the closed

subgroup 〈σ〉 of G(K)e generated by σ1, . . . , σe is isomorphic to F̂e. Here G(K) is the

absolute Galois group of K, and F̂e is the free profinite group on e generators.

The closed normal subgroup [σ] of G(K) generated by σ1, . . . , σe is expected to

be much larger than 〈σ〉. Indeed, for K Hilbertian and countable, [Jar, Thm. 2.7]

states that for almost all σ ∈ G(K)e, [σ] is isomorphic to the free profinite group

F̂ω on countably many generators. Since F̂ω itself occurs as G(K) for some countable

Hilbertian field K, the same conclusions hold for F̂ω rather than G(K) [Jar, Cor. 3.1].

One may therefore choose a fixed positive integer n, let F = F̂n and ask about

the groups 〈σ〉 and [σ] for a random e-tuple σ ∈ F e.

If n = 1, then F = Ẑ. In this case F is abelian and therefore [σ] = 〈σ〉. By [FrJ,

Lemma 16.15], 〈σ〉 ∼= Ẑ. In addition 〈σ〉 has an infinite index in Ẑ if e = 1 and a finite

index if e ≥ 2. [KaL, Prop. 12] generalizes the latter result to the group A = Ẑn where

now n is an arbitrary positive integer. It says that for almost all σ ∈ Ae, (A : 〈σ〉) = ∞

if e ≤ n but (A : 〈σ〉) <∞ if e > n. We complete this result and prove that for almost

all σ ∈ Ae, 〈σ〉 ∼= Ẑe if e ≤ n and 〈σ〉 ∼= Ẑn if e ≥ n (Theorem 3.1).

Let us now fix n ≥ 2, write again F = F̂ , and choose a random e-tuple σ in F e.

Then 〈σ〉 ∼= F̂e and (F : 〈σ〉) = ∞ [Lub, Thm. 1 and Kal, Prop. 11].

For an extensive study of related questioned about 〈σ〉 when F̂ is replaced by

other finitely generated profinite groups see [Man] and the references therein.

The main goal of this work is the study the closed normal group [σ] for σ ∈ F e.

We expect that [σ] is much larger than 〈σ〉 and therefore ask whether

(1) [σ] ∼= F̂ω.

Since open subgroups of F are finitely generated, (1) is certainly false if [σ] has finite

index. However, we prove that under the condition

(2) (F : [σ]) = ∞,
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(1) holds with probability 1 (Theorem 2.7).

In section 1, we study Condition (2). We prove that it holds for each σ ∈ G(K)e

if e < n, it holds for almost all (but not for all) σ ∈ G(K)e if e = n, and it holds with

probability strictly between 0 and 1 if e > n. The result that (2) holds with probability

less than 1 depends on the classification of finite simple groups.

It follows that if e ≤ n, then (1) holds for almost all σ ∈ F e. If e > n, then (1)

holds for a set of σ’s of measure strictly between 0 and 1.

Since every open subgroup of F is free, it follows that for each e ≥ 1, and for

almost all σ ∈ F e, [σ] is a free profinite group. This is a certain analog to Schreier’s

subgroup theorem of free discrete groups and to Tate’s subgroup theorem for free pro-

p groups. Both theorems assert that subgroups of a free group in the corresponding

category are free. In our case, this theorem is false, even for normal closed subgroups.

But our results say that in a certain sense it holds for the majority of closed normal

subgroups.

An essential ingredient in the proofs is the method of “non-commutative local-

ization”: If S is a finite simple group, a pro-S-group is a profinite group whose com-

position factors are all isomorphic to S. When S ∼= Z/pZ, these are just the familiar

pro-p groups. In our work we replace F by its maximal pro-S quotient, which is a

free pro-S group. When S is non-abelian, some new phenomena appear (see §2) which

make the latter group substantially different from the free pro-p groups. This calls for

a systematic study of the free pro-S groups, for non-abelian simple groups S.
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1. On the index of normal subgroups generated by random elements

Let n ≥ 2 and consider the free profinite group F = F̂n on n generators. Let e be

a positive integer and let µ be the normalized Haar measure of the direct product F e

of e copies of F . For each σ = (σ1, . . . , σe) ∈ F e let 〈σ〉 be the closed subgroup of

F generated by σ1, . . . , σe. Also, let [σ] = [σ]F be the closed normal subgroup of F

generated by σ1, . . . , σe. In other words, [σ] is the intersection of all closed normal

subgroups of F that contain 〈σ〉. Note that if E is a normal subgroup of F and σ ∈ Ee,

then [σ]E ≤ [σ]F ≤ E but it may happen that [σ]E < [σ]F .

The purpose of this section is to study the index of [σ] in F .

Remark 1.1: The function dn(S). Let S be a finite nonabelian simple group. De-

note the set of all n-tuples of elements of S that generate S by Dn(S). In particular,

|Dn(S)| ≤ |S|n. If σ1, . . . , σr generate S and r ≤ n, then S is generated by each n-tuple

(σ1, . . . , σr, . . . , σn). It follows that |Dn(S)| ≥ |S|n−r and |Aut(S)| ≤ |S|r.

Denote the maximal number m such that Sm is a quotient of F (recall: F = F̂n),

by dn(S). It is also the number of open normal subgroups of F such that F/N ∼= S. A

theorem of P. Hall [Lub, Lemma 2] states that

(1) dn(S) =
|Dn(S)|
|Aut(S)|

.

Since S is embedded in Aut(S), we have |Aut(S)| ≥ |S|. Hence, by (1),

(2) |S|n−2r ≤ |S|n−r

|Aut(S)|
≤ dn(S) ≤ |S|n−1.

One of the consequences of the classification of finite groups is that S is generated by

two elements [AsG, Thm. B]. Hence, the lower bound of (2) improves to dn(S) ≥ |S|n−4.

For a profinite group G and a closed normal subgroup H we set:

Be(H,G) = {σ ∈ Ge | [σ]G = H}, Be(G) = Be(G,G)

Ce(G) = {σ ∈ Ge | (G : [σ]) = ∞}
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Lemma 1.2: Let G be a profinite group and let H be a closed normal subgroup.

(a) Be(H,G) is closed subset of Ge.

(b) Ce(G) is a measurable subset of Ge.

Proof of (a): For each open normal subgroup N of G, {σ ∈ Ge | [σ]GN = HN} is an

open closed subset of G. The intersection of all these sets is Be(H,G). Hence, Be(H,G)

is closed.

Proof of (b): We have Ce(G) = Ge r ⋃
E Be(E,G), where E ranges over all open

normal subgroup of G. By (a), each Be(E,G) is closed. Hence, Ce is measurable.

Lemma 1.3: Let P be the free pro-p-group of rank n ≥ 2 and let e be a positive integer.

Then, µ(Ce(P )) > 0.

Proof ∗: Assume that µ(Ce(P )) = 0. Take an open normal subgroup Q of P of index

r such that

(3) er ≤ 1
4
(r(n− 1) + 1)2.

Then the Frattini subgroup Φ(Q) of Q is an open subgroup of P . In particular Φ(Q)e

has a positive measure. We may therefore choose σ ∈ Φ(Q)e rCe(P ). Thus N = [σ]

is an open normal subgroup of P and therefore also of Q. Hence G = Q/N is a finite

p-group.

By Nielsen-Schreier formula [FrJ, Prop. 15.27], rank(Q) = r(n − 1) + 1. Since

N ≤ Φ(Q), we have Φ(G) = Φ(Q)/N and rank(G) = rank(G/Φ(G)) = rank(Q/Φ(Q)) =

rank(Q) = r(n− 1) + 1.

On the other hand, let τ1, . . . , τr be representatives for the left cosets of P modulo

Q. Then N = [στj

i | i = 1, . . . , e, j = 1, . . . , r]Q, (i.e., N is the closed normal sub-

group of Q generated by σ1, . . . , σe). In other words, relation.rank(G) ≤ er. By the

Golod-Shafarevich inequality, relation.rank(G) > 1
4 rank(G)2 (e.g., Roquette in [CaF,

p. 237, Thm. 10]). Hence, er > 1
4 (r(n− 1) + 1)2. This contradiction to (3) proves that

µ(Ce(P )) > 0.

* The authors are indebted to the referee for suggesting to replace a former proof which used
a sharpened form of the Golod-Shafarevich inequality by the original simpler inequality.
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Theorem 1.4: Let F be the free profinite group on n ≥ 2 generators.

(a1) If e ≤ n, then µ(Be(F )) = 0. In fact, if e < n, then Be(F ) = ∅ while if e = n, then

Be(F ) 6= ∅.

(a2) If e > n, then 0 < µ(Be(F )) < 1.

(b1) If e ≤ n, then µ(Ce(F )) = 1. In fact, if e < n, then Ce(F ) = F e while if e = n,

then Ce(F ) 6= F e.

(b2) If e > n, then 0 < µ(Ce(F )) < 1.

The proof naturally breaks up into several parts.

Part A: In each case µ(Ce(F )) > 0. Choose a prime number p, and let P = F̂n(p)

be the free pro-p group on n generators. Let π: F → P be an epimorphism. If σ ∈ F e,

then π([σ]) = [π(σ)]. Hence, if [π(σ)] has infinite index in P , then [σ] has infinite index

in F . By Lemma 1.3, µ(Ce(P )) > 0. Also, π−1(Ce(P )) ⊆ Ce(F ). Hence, µ(Ce(F )) > 0.

Part B: If e < n, then (F : [σ]) = ∞ for each σ ∈ F e. Again, choose a prime number

p. Let σ be an arbitrary e-tuple of F . Let ϕ: F → Zn
p be an epimorphism. Each open

subgroup of Zn
p is isomorphic to Zn

p and therefore can not be generated by less than n

elements. Since ϕ([σ]) = [ϕ(σ)] = 〈ϕ(σ)〉, this implies that the index of ϕ([σ]) in Zn
p is

infinite. It follows that (F : [σ]) = ∞.

Part C: If e = n, then µ(Ce(F )) = 1. Consider an epimorphism ϕ: F → Ẑn. By

[KaL, Prop. 12(ii)], [σ] = 〈σ〉 has an infinite index in Ẑn for almost all σ ∈ (Ẑn)n.

Hence [F : [σ]) = ∞ for almost all σ ∈ Fn.

Part D: If e > n, then µ(Be(F )) > 0. Let C = Be(F ). We have to prove that

µ(F e rC) < 1. To this end note that

F e rC =
⋃
p

⋃
F/N∼=Z/pZ

Ne ∪
⋃

S∈SNA

⋃
F/N∼=S

Ne.

Here SNA is the set of all non-abelian finite simple groups.

Recall that if A and B are independent subsets of a probability space, then 1 −

µ(A ∪B) = (1− µ(A))(1− µ(B)). Also, if B is a union of a sequence B1, B2, B3, . . . of
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independent sets, then 1− µ(B) =
∏∞

i=1(1− µ(Bi)). Hence µ(A∪B) < 1 if and only if

1− µ(A) > 0 and
∑∞

i=1 µ(Bi) <∞.

Let in our case A =
⋃

p

⋃
F/N=Z/pZ N

e and let Bj range over all Ne with F/N ∈

SNA. Then A,B1, B2, B3, . . . are indeed independent. Moreover, µ(A) is equal to the

measure of all σ ∈ (Ẑn)e which are contained in a maximal subgroup of prime index.

The latter measure is equal to the measure of all σ ∈ (Ẑn)e which do not generate Ẑn.

Thus, by [KaL, Prop. 12(i)], 1− µ(A) =
∏

e−n<i≤e ζ(i)
−1 > 0, where ζ is the Riemann

zeta function.

To prove the condition on the Bj ’s, let S ∈ SNA and use the inequality dn(S) ≤

|Dn(S)| ≤ |S|n. Note that any sequence N1, N2, N3, . . . of distinct open normal sub-

groups of F with coquotient in SNA is independent. By (2),

(4)
∑

S∈SNA

∑
F/N∼=S

µ(Ne) =
∑

S∈SNA

dn(S)
|S|e

≤
∑

S∈SNA

1
|S|e+1−n

≤
∑

S∈SNA

1
|S|2

<∞.

The last inequality holds because for each positive integer n there are at most 2 simple

groups of order n ([KLS, Thm. 5.1] proves this result by using the classification of finite

simple groups). Conclude that µ(C) > 0.

Part E: Conclusion of the proof. Let C = Be(F ). If e < n, then F is not generated

by e elements (e.g., because (Z/pZ)n, which is a quotient of F , is not generated by

e elements.) and therefore C = ∅. If e = n, then F is generated by e elements and

therefore C 6= ∅. However, since C ⊆ F e rCe(F ), Part C implies that µ(C) = 0. This

concludes the proof of (a1).

Part D of the proof takes care of the first inequality of (a2). In order to prove also

the second one take a proper open normal subgroup E of F . Then Ee ⊆ F e rBe(F )

and µ(Ee) > 0. Conclude that µ(B0(F, F )) < 1.

Parts B and C give (b1).

Finally, if e > n, then, by Part D, µ(F e rCe(F )) ≥ µ(Be(F )) > 0. Together with

Part A we get 0 < µ(Ce(F )) < 1.

Remark 1.5: Note that the only application of the classification of simple groups in

the proof of Theorem 1.4 occurs in the proof of Part D, and therefore in the proof of

the inequalities µ(Be(F )) > 0 and µ(Ce(F )) < 1.
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If e > n, then [σ] is, with a positive probability, of infinite index. The next result

supplies some information about the quotient F/[σ].

Proposition 1.6: Let e > n. Then almost all σ ∈ F e have the following properties:

(a) The maximal abelian quotient of F/[σ] is finite.

(b) There are only finitely many open maximal normal subgroups N of F which contain

[σ] such that F/N is simple and nonabelian.

Proof of (a): Let A be the set of all σ ∈ (Ẑn)e such that (Zn : 〈σ〉) < ∞. By [KaL,

Prop. 12(ii)], the measure of A in (Ẑn)e is 1. Choose an epimorphism ψ: F → Ẑn and let

K = Ker(ψ). Then µ(ψ−1(A)) = 1. For each σ ∈ Fn the maximal abelian quotient of

F/[σ] is F/[σ]K. Moreover [σ]K = ψ−1〈σ〉. Hence, (F : [σ]K) = (Zn : 〈σ〉). Conclude

that if σ ∈ ψ−1(A), then the maximal abelian extension of F/[σ] is finite.

Proof of (b): By (4) and by a lemma of Borel-Cantelli [FrJ, Lemma 16.7(a)], almost all

σ ∈ F e belong to only finitely many open normal subgroups S such that S/N ∈ SNA.

This proves (b).
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2. Normal subgroups generated by random elements are free

As in Section 1, we fix an integer n ≥ 2, let F = F̂n, and let e be a positive integer. We

wish to prove that [σ] is a free profinite group for almost all σ ∈ F e. The case where

the index if finite is well known. So, we prove that [σ] ∼= F̂ω for almost all σ ∈ F e

which satisfy (F : [σ]) = ∞. A basic tool is the following criterion of Melnikov:

Lemma 2.1: Let N be a normal closed subgroup of F such that

(1a) for each prime number p, the group Z/pZ is a quotient of N .

(1b) for each finite simple nonabelian group S and for each positive integer q, the group

Sq is a quotient of N ; and

Then N ∼= F̂ω.

Proof: Since each open subgroup of F is finitely generated, (1b) and the right hand

side of (2) of §1 imply that (F : N) = ∞. By [Mel, Prop. 3.1], each finite embedding

problem for N is solvable. Hence, by Iwasawa’s criterion [FrJ, Cor. 24.2], N ∼= F̂ω.

Lemma 2.2: For almost all σ ∈ F e, and for each prime number p, the group Z/pZ is a

quotient of [σ].

Proof: For each p let Np be the smallest closed normal subgroup N of F such that

F/N is a pro-p-group. Then Np has an infinite index.

Otherwise, Np would be open and therefore a free profinite group [FrJ, Prop. 15.27]

of rank at least 2. Hence, Np would have an open normal subgroup M such that

Np/M ∼= Z/pZ. Let M0 be the intersection of all conjugates of M in F . Then M0 is

an open normal subgroup of F and F/M0 is an p-group. This contradicts the choice of

Np.

It follows that the union U =
⋃
Ne

p , where p ranges over all prime numbers is a

zero subset of F e. If σ /∈ U , then for each p, the quotient [σ] · Np/Np is a nontrivial

pro-p-group. As such it has Z/pZ as a quotient. Conclude that Z/pZ is a quotient of

[σ].

Lemma 2.2 settles condition (1a) of Melnikov’s criterion. To handle also condition

(1b), we study the notion of S-rank of a profinite group. This depends on two Lemmas:

8



Lemma 2.3: Let H be a closed subgroup of a profinite group G. Let N be a nonempty

family of closed normal subgroups of G which is closed under finite intersections and

such that HN = G for each N ∈ N . Let N0 be the intersection of all N ∈ N . Then

HN0 = G.

Proof: Let g ∈ G. For each N ∈ N there exist h ∈ H and n ∈ N such that

hn = g. Hence, the closed subset H ∩ gN of G is nonempty. Since N is closed under

finite intersections, so is the family {H ∩ gN | N ∈ N}. By compactness, H ∩ gN0 =⋂
N∈N (H ∩gN) 6= ∅. Thus, there exists n0 ∈ N0 and h0 ∈ H such that h0n0 = g.

To give an example where the assumptions of Lemma 2.3 are satisfied we consider

a profinite group G and a closed subgroup H of G. Denote the family of all closed

normal subgroups M of G such that HM = G by N (G,H). Denote the intersection of

all M ∈ N (G,H) by N(G,H).

In the proof of Lemma 2.5 and elsewhere we will use Rule 2.4 below.

Rule 2.4: Let G be a profinite group, H an open subgroup of G, and M and N closed

normal subgroups of G such that M ≤ N . Then HM = G if and only if HN = M and

(H ∩N)M = N .

Lemma 2.5: Let S be a simple nonabelian group and let G be a profinite group. Con-

sider a positive integer k and an open normal subgroup H of G such that G/H ∼= Sk.

Then N (G,H) is closed under finite intersections. Hence, by Lemma 2.3, H ·N(G,H) =

G.

Proof: It suffices to prove that if M and N are open normal subgroups of G such that

HM = HN = G, then H(M ∩ N) = G. We prove this statement by induction on k

and starts with the case k = 1.

By assumption, HM/H = G/H ∼= S is a nonabelian simple group. Hence, there

exist m,m′ ∈ M such that [m,m′] /∈ H. Since HN = G there exist h ∈ H and

n ∈ N such that m′ = hn. Use the identity [m,m′] = [m,hn] = [m,n][m,h]n and the

relation [m,h]n ∈ H to conclude that [m,n] /∈ H. Since [m,n] ∈M ∩N , it follows that

M ∩N 6≤ H. Finally, since G/H ∼= S is simple, we have H(M ∩N) = G.
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Suppose now that k > 1 and that the statement is true for k − 1. Then G has an

open normal subgroup E which contains H such that G/E ∼= S and E/H ∼= Sk−1. It

satisfies, EM = EN = G. By rule 2.4, H(E ∩M) = E and H(E ∩ N) = E. By the

induction hypothesis applied to E instead of to G we have H · (E ∩M ∩N) = E. By

the case k = 1, E(M ∩N) = G. Hence, by Rule 2.4, H(M ∩N) = G.

Let D be a family of finite simple groups. A finite D-group is a finite group whose

composition factors belong to D. An inverse limit of D-groups is a pro-D group. If D

consists of one group S only, then we speak of an S-group and a pro-S-group.

For each profinite group G we denote the intersection of all open normal subgroups

N such that G/N ∼= S by MS(G). Then G/MS(G) ∼= SI for some set I. We denote the

cardinality of I by rS(G) and call it the S-rank of G.

In the notation of Remark 1.1, rS(F ) = dn(S). Also, if F̄ is the free pro-S-group

of rank n, then rS(F̄ ) = rS(F ). Let N be a nontrivial closed subgroup of F̄ of infinite

index. If S = Z/pZ, then rank(N) = ∞ [FrJ, Cor. 24.8] and therefore also rS(N) = ∞.

It is quite surprising that for nonabelian S there exists N such that rS(N) <∞. This

will follow from Lemma 2.6(a). Nevertheless, there are only countably many such N

(Lemma 2.6(d)).

Recall that the rank of a profinite group G is the cardinality of a minimal set of

generators of F .

Lemma 2.6: Let G be a profinite group, let S be a simple nonabelian group, and let k

be a nonnegative integer.

(a) Let H ′ ≤ G′ be open normal subgroups of G such that G′/H ′ ∼= Sk. Then

N(G′,H ′) / G and rS(N(G′,H ′)) = k.

(b) Suppose that N is a closed normal subgroup of G such that rS(N) = k. Then there

exist open normal subgroups H ′ ≤ G′ of G such that G′/H ′ ∼= Sk, H ′N = G′ and

H ′ ∩N = MS(N).

(c) Suppose that G is a pro-S-group. Let N be a closed normal subgroup of G such

that rS(N) = k. Then there exists open normal subgroups H ′ ≤ G′ of G such that

N = N(G′,H ′) and G′/H ′ ∼= Sk.
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(d) Suppose that G is a pro-S-group. The number of closed normal subgroups of G such

that rS(N) <∞ is bounded by max{ℵ0, rank(G)}. In particular, if rank(G) ≤ ℵ0,

then there are at most countably many closed normal subgroups N of G such that

rS(N) <∞.

Proof of (a): Let N = N(G′,H ′) and M = H ′∩N . Observe that the family N (G′,H ′)

is closed under conjugation by elements of G. Hence, N / G.

By Lemma 2.5, H ′N = G′. Hence, N/M ∼= G′/H ′ ∼= Sk and therefore rS(N) ≥ k.

If rS(N) > k, then N would have an open normal subgroup N0 such that N/N0
∼= S

and M 6≤ N0. Since S is simple, this would imply that MN0 = N . The group N0 need

not be normal in G′. So, consider N1 = N(N,M). Then N1 ≤ N0. By the preceding

paragraph, N1 / G
′. By Lemma 2.5, MN1 = N and therefore H ′N1 = G′. By the

definition of N , this would imply that N ≤ N1 ≤ N0 < N . This is a contradiction.

Conclude that rS(N) = k.

Proof of (b): Since N / G, the set of all open N ′ / N such that N/N ′ ∼= S is closed

under conjugation by elements of G. Hence, MS(N) / G. This implies the existence of

G′ and H ′ as in (b).

Proof of (c): Let M = MS(N). By assumption, N/M ∼= Sk. Let G′ and H ′ be as in

(b). Then, N ∈ N (G′,H ′). Hence, N0 = N(G′,H ′) ≤ N . In particular, by Lemma

2.5, N0 is a closed normal subgroup of N which satisfies H ′N0 = G′ and therefore

MN0 = N . Since G is a pro-S group, so is N/N0. Hence, if N0 < N , then N would

contain an open normal subgroup N1 which contains N0 such that N/N1
∼= S. In

particular, MN1 = N . On the other hand, by the definition of M , we would have

M ≤ N1 and therefore N1 = N . This contradiction implies that N0 = N .

Proof of (d): The cardinality of the set of all open normal subgroups of G is at most

max{ℵ0, rank(G)} [FrJ, Supplement 15.12]. Now use (c).

Theorem 2.7: [σ] ∼= F̂ω for almost all σ ∈ Ce(F ).

Proof: By Lemmas 2.1 and 2.2 it suffices to consider a nonabelian simple group S and

to prove that rS([σ]) = ∞ for almost all σ ∈ Ce(F ).
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To this end denote the set of all open normal subgroups of F by E . Each E ∈ E

is a free profinite group and rank(E) = 1 + (F : E)(n− 1) [FrJ, Prop. 15.27]. So, there

is an epimorphism hE of E onto the free pro-S-group with rank(E) generators. Denote

the latter group by Ē. If σ ∈ E, then [σ] = [σ]F is a normal subgroup of E. Hence,

hE([σ]) is a normal subgroup of Ē. (Nevertheless, since [σ] may properly contain [σ]E ,

we may have that [hE(σ)]Ē < hE([σ]).) Let

Ce(F,E) = {σ ∈ Ce(F ) ∩ Ee | (Ē : hE [σ]) = ∞} C =
⋃

E∈E
Ce(F,E),

Suppose first that σ ∈ Ce(F ) rC. Then, (F : [σ]) = ∞ and for each open normal

subgroup E of F that contains [σ], hE([σ]) is an open normal subgroup of Ē. By [Mel,

Prop. 2.1], hE([σ]) is a free pro-S-group. Moreover, r̄ = rank(hE([σ])) ≥ rank(Ē) =

rank(E) = 1 + (F : E)(n− 1). Let m = rank(S). By the remarks preceding Lemma 2.6

and by (2) of §1, rS([σ]) ≥ rS(hE([σ])) = dr̄(S) ≥ |S|r̄−m

|Aut(S)| . As (F : E) is unbounded

and n > 1, and since r̄ tends to infinity with (F : E), we find that rS([σ]) = ∞.

Next, for each E ∈ E let B(Ē) be the set of all pairs (G′,H ′) such that H ′ ≤ G′

are open normal subgroups of Ē and (Ē : N(G′,H ′)) = ∞. Let B(Ē) be the union

of all the sets N(G′,H ′)e with (G′,H ′) ∈ B(Ē). By the index assumption, each set

N(G′,H ′)e with (G′,H ′) ∈ B(Ē) has measure zero. Since B(Ē) is countable, B(Ē) is a

zero set in Ēe. It follows that B =
⋃

E∈E h
−1
E (B(Ē)) is a zero set in F e.

If σ ∈ C rB, then there exists E ∈ E such that σ ∈ Ce(F,E) and hE(σ) /∈

B(Ē). In particular, hE([σ]) is a closed normal subgroup of Ē of an infinite index. If

rS(hE([σ])) < ∞, there would exist (G′,H ′) ∈ B(Ē) such that hE([σ]) = N(G′,H ′)

(Lemma 2.6(c)). Since hE(σ) ∈ hE([σ])e, we would have that σ ∈ B(Ē). This contra-

diction proves that rS([σ]) ≥ rS(hE([σ])) = ∞.

Conclude that for all σ ∈ Ce(F ) rB, we have rS([σ]) = ∞, as desired.

Corollary 2.8:

(a) If e ≤ n then [σ] ∼= F̂ω for almost all σ ∈ F e.

(b) If e > n, then [σ] ∼= F̂ω for a set of σ ∈ F e of a positive measure (but less than 1).

Proof: By Theorem 1.4, µ(Ce(F )) = 1 (resp., µ(Ce(F )) > 0) if e ≤ n (resp., if e > n).

Now apply Theorem 2.7 .
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Corollary 2.9: For each e ≥ 1 and for almost all σ ∈ F e, [σ] is a free profinite

group.

Proof: If σ ∈ F e rCe(F ), then [σ] is open in F and is therefore a free profinite group

[FrJ, Prop. 15.27]. By Theorem 2.7, [σ] is free for almost all σ ∈ Ce(F ). Hence, [σ] is

free for almost all σ ∈ F e.

Remark 2.10: Exceptional σ. Denote the intersection of all open normal subgroups N

of F such that F/N is a solvable group by F solv. The index of F solv in F is infinite.

Each open normal subgroup N of F solv is the intersection of F solv with an open normal

subgroup of F . In particular, if F/N is simple, it is non-abelian. It follows that

F solv 6= F̂ω.

Let N be the set of all open normal subgroups N of F solv such that F solv/N is

simple. Denote the intersection of all N ∈ N by M . Then F solv/M is the direct product

of simple non-abelian groups. Hence, there exists σ ∈ F solv such that σ /∈ N for all

N ∈ N . So, [σ] = F solv. Thus, the conclusion of Corollary 2.8 does not hold for all

σ ∈ F e.
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3. Appendix: The group Ẑn

By [FrJ, Lemma 16.15], 〈z〉 ∼= Ẑ for almost all z ∈ Ẑe. [KaL] and [Lub] consider the

group A = Ẑn and compute the index of the subgroup 〈a〉 of A generated by a random

e-tuple a ∈ Ae. However, they do not identify that subgroup. So, we fill up this gap

here and generalize [FrJ, Lemma 16.15] for an arbitrary n ≥ 1.

Theorem 3.1: For a positive integer n let A = Ẑn. Then the following statement holds

for almost all a ∈ Ae:

(a) If e ≥ n, then 〈a〉 ∼= Ẑn.

(b) If e < n, then 〈a〉 ∼= Ẑe.

Proof of (a): Suppose first that e > n. Then, for almost all a ∈ Ae the group 〈a〉 is

open in A [KaL, Prop. 12]. Hence 〈a〉 is the completion of a subgroup of Zn of a finite

index [FrJ, Lemma 15.4]. The latter is isomorphic to Zn. Conclude that 〈a〉 ∼= Ẑn.

Let therefore e = n. For each prime number p consider the quotient group Ap = Zn
p

of A. By the claim below, almost all a ∈ An have each abelian group which is generated

by n elements as a quotient. Since 〈a〉 is generated by n elements, [FrJ, Lemma 15.4]

will give that 〈a〉 ∼= Ẑn.

Claim: For almost all a ∈ An
p we have 〈a〉 ∼= Zn

p . Consider each a ∈ An
p as a column

of height n whose ith entry is a row ai = (ai1, ai2, . . . , ain) of elements of Zp. In this

way we identify a with an n×n matrix with entries in Zp. Then 〈a〉 is a free Zp-module

of rank which is equal to the rank of the matrix a. Thus, 〈a〉 6∼= Ẑn if and only if

det(a) = 0. But the latter condition is satisfied only for a subset of Mn(Zp) of measure

0. Hence, our claim is true.

Proof of (b): Consider now each a = (a1, . . . ,an) ∈ An also as a pair a = (b, c), where

b = (a1, . . . ,ae) ∈ Ae and c = (ae+1, . . . ,an) ∈ An−e. If

(1) 〈a〉 ∼= Ẑn,

then for each abelian profinite group B and each (b′1, . . . , b
′
e) ∈ Be, we may extend the

map (b1, . . . ,be) 7→ (b′1, . . . , b
′
e) to a map of a into B (say ai 7→ 0, i = e+ 1, . . . , n) and

14



therefore to a homomorphism h: 〈a〉 → B. The restriction of h to 〈b〉 is a homomor-

phism into B. It follows that 〈b〉 ∼= Ẑe.

By (a), (1) holds for almost all a ∈ An. Hence, by Fubini’s theorem [Hal, p. 147,

Thm. A], for almost all b ∈ Ae the set of c ∈ An−e such that (1) holds for a = (b, c) has

measure 1. In particular, this set is nonempty. It follows from the preceding paragraph,

that 〈b〉 ∼= Ẑe for almost all b ∈ Ae.
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