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Abstract

We use the method of Scholz and Reichardt and a transfer principle from finite fields

to pseudo finite fields in order to prove the following result.

Theorem: Let G be a group of order ln, where l is a prime number. Let K0 be either a

finite field with |K0| > l4n+4 or a pseudo finite field. Suppose that l 6= char(K0) and that

K0 does not contain the root of unity ζl of order l. Let K = K0(t), with t transcendental

over K0. Then K has a Galois extension L with the following properties: (a) G(L/K) ∼=

G; (b) L/K0 is a regular extension; (c) genus(L) < 1
2nl

2n; (d) K0[t] has exactly n prime

ideals which ramify in L; the degree of each of them is [K0(ζln) : K0]; (e) (t)∞ totally

decomposes in L; (f) L = K(x), with irr(x,K) = X ln + a1(t)X ln−1 + · · · + aln(t),

0 < deg(a1(t)) ≤ 1
2nl

2n and deg(ai(t)) < deg(a1(t)) for i = 1, . . . , ln.
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Introduction

Scholz [Sch] proved that if l is an odd prime, then each l-group occurs as a Galois group

over Q. Here G is an l-group if the order of G is a power of l. Independently, Reichardt

[Rei] gave a simpler and shorter proof to the same theorem. One can find a modern

presentation of Reichardt’s proof in Serre’s course on Galois theory [Se1, §2.1].

The reason why the method of Scholz and Reichardt does not work for l = 2 is that

the primitive root of unity of order 2, namely −1, belongs to Q. The same reason forced

Rzedowski-Calderón and Villa-Salvador [RCV] to exclude all primes l with ζl ∈ Fq,

when they proved that each l-group occurs as a Galois group over Fq(t). Here q is a

power of a prime p 6= l and ζl is a primitive root of unity of order l.

Shafarevich [Sh1] has overcome this difficulty. He used refined combinatorial ar-

guments to prove that for an arbitrary prime number l, for each number field K, and

for each l-group G, there exists a Galois extension L of K such that G(L/K) ∼= G. In a

later work [Sh2], Shafarevich pointed out how to correct an incomplete group theoretic

argument in his earlier work for the case l = 2.

However, Shafarevich had to pay a price for his generalization. The combinatorial

arguments forced him to allow an exponentially growing number of primes of K which

may ramify in L. In contrast, as Serre [Se1, p. 9] emphasizes, the method of Scholz

and Reichardt gives for a group G of order ln, with l odd, a Galois extension L of Q in

which only n primes ramify.

Although Rzedowski-Calderón and Villa-Salvador [RCV] use the method of Scholz

and Reichardt they do not try to bound the number of ramified primes. Indeed for a

given l-group G with l - q and ζl /∈ Fq, they construct a Galois extension L of Fq(t)

such that G(L/Fq(t)) ∼= G and the genus of L is large. Here and in the sequel, t is

a transcendental element over the base field. By the Hurwitz-Riemann genus formula,

this means that the number of primes of Fq(t) which ramify in L is also large.

The goal of this work is to use the method of Scholz and Reichardt to realize each

l-group G over an arbitrary global field with bounded ramification.

Theorem A: Let K be a global field and let l be a prime number such that l 6= char(K)

and ζl /∈ K. Then there exists a nonnegative integer r = r(K) such that for each
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group G of order ln there exists a Galois extension L of K with G(L/K) ∼= G and

|Ram(L/K)| ≤ n+ r.

Here Ram(L/K) denotes the set of primes of K which ramify in L. If K = Q

or K = Fq(t), then r(K) = 0. In the former case we therefore reproduce the result of

[Se1]. In the latter case we improve the result of [RCV].

The extension L/K which Theorem A gives can actually be constructed to satisfy

given ‘local conditions’. See Theorem 7.4 for the exact formulation.

Serre uses cyclotomic fields in his proof. Rzedowski-Calderón and Villa-Salvador

use Carlitz’ analog of cyclotomic fields over Fq(t). Both type of fields are useless for the

construction of l-extensions with bounded ramification over an arbitrary global field K.

We replace their use by a systematic application of class field theory.

In the function field case, we supplement Theorem A with bounds on various

invariants of the extension L/K. We prove that for each large multiple k of [Fq(ζln) : Fq],

the field L can be chosen such that deg(p) = k for each prime p ∈ Ram(L/K) and

(0.1) 2gL − 2 ≤ ln(2gK − 2 + (n+ r(K))k).

Here gK (resp., gL) is the genus of K (resp., L). See Theorem 8.6 for more details.

The bounds of Theorem 9.6 become more explicit if K = Fq(t). For example,

Theorem 9.1 improves (0.1) in this case to

2gL − 2 ≤ ln(nk − 2).

Theorem 10.5 does even better under the assumption that q > l4n+4. It pro-

duces absolutely irreducible polynomials f, g ∈ Fq(T,X) with coefficients of bounded

degrees such that L is the splitting field over K = Fq(t) of both f(t,X) and g(t,X)

and Ram(L/K) consists of those prime of K which divide the discriminants of both

f(t,X) and g(t,X). Of course, G(L/K) ∼= G. Moreover, (t)∞ totally decomposes in L,

gL ≤ 1
2nl

2n, |Ram(L/K)| = n, and deg(p) = [Fq(ζln) : Fq] for each p ∈ Ram(L/K).

It is therefore possible to write down a sentence θ(l, n) in the first order language

of the theory of fields, such that if q > l4n+4, then K = Fq(t) has a Galois extension as

in the preceding paragraph.
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This has an immediate consequence for the infinite models of the theory of finite

fields. They are called pseudo finite fields. For example, each nonprincipal ultra-

product of finite fields is pseudo finite. Also, if F is a countable Hilbertian field (e.g.,

F = Q or F = Fq(t)), then F̃ (σ) is pseudo finite for almost all σ in the absolute Galois

group G(F ) of F [Ja1, Thm. 3.5]. Here F̃ (σ) is the fixed field of σ in the algebraic

closure F̃ of F .

Theorem B: Let K0 be a pseudo finite field and let l be a prime number such that

l - char(K0) and ζl /∈ K0. Let G be a group of order ln. Then K = K0(t) has a

Galois extension L which is regular over K0 such that G(L/K) ∼= G, |Ram(L/K)| = n,

gL ≤ 1
2nl

2n, (t)∞ totally decomposes in L, and deg(p) = [K0(ζln) : K0] for each

p ∈ Ram(L/K).

Note that each pseudo finite field K0 is PAC. That is, each absolutely irreducible

variety over K0 has a K0-rational point. It is known for an arbitrary PAC field K0 and

for each finite group G that there exists a Galois extension L of K0(t) which is regular

over K0 such that G(L/K) ∼= G. This was first proved by Fried and Völklein [FrV] in

characteristic 0. In the general case it follows from a theorem of Harbater [Ja2, Thm.

2.6] which has been recently reproved in an elementary way by Haran and Völklein

[HaV]. However, none of the proofs of this theorem supplies a bound for |Ram(L/K)|.

Theorem B does it in a very special case.
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1. Global fields

Consider a global field K. Thus, K is either a number field, that is, a finite extension

of Q, or K is a function field, that is, K is a regular extension of transcendence

degree 1 of a finite field Fq with q elements. We denote the set of primes of K by

P = P(K). In the number field case, P has a finite subset P∞, the set of archimedean

primes, which correspond to the embeddings of K into C. Each archimedean prime

p is a divisor of the unique archimedean prime ∞ of Q and we write p|∞. All other

primes of K are nonarchimedean. In particular, if K is a function field, then K has

only nonarchimedean primes and we let P∞ = ∅.

Fix a prime number l which does not divide char(K). For each n choose a root

of unity ζln of order ln. Most of our results will assume that ζl /∈ K. If K is a number

field, we denote the finite subset of P that consists of all prime divisors of l by Pl. If K

is a function field, we let Pl = ∅.

Denote the completion of K at a prime p by Kp and let K̄p be its residue field. If

p is archimedean, then Kp is either R (p is real) or C (p is complex). In each case we

let Up = K×
p be the multiplicative group of Kp and set πp = 1. If p is nonarchimedean,

then Kp is a complete discrete valuation field. We denote its normalized valuation by vp

and choose a prime element πp in Kp, that is vp(πp) = 1. Let Up be the group of units

of Kp and Up,1 its group of 1-units. Then K×
p
∼= 〈πp〉×Up and Up/Up,1 is isomorphic to

K̄×
p . If K is a number field, then K̄p is a finite extension of Fp, where p is the rational

prime that lies under p. If K is a function field, then K̄p is a finite extension of Fq and

[K̄p : Fq] = deg(p). In both cases Up,1 is a pro-p group, where p = char(K̄p).

The group IK of ideles of K is the restricted product of the multiplicative groups

K×
p with respect to the subgroups Up. Thus

IK = {α ∈
∏
p∈P

K×
p | αp ∈ Up for all but finitely many p ∈ P}.

A basis for the topology of IK consists of all sets
∏
Vp such that Vp is open in K×

p and

Vp = Up for almost all p. In particular, the group of unit ideles is open in IK :

U =
∏
p∈P

Up.
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This group is the kernel of the divisor map div: IK → Div(K) =
⊕

p-∞ Z · p which

is defined by div(α) =
∑

p-∞ vp(αp)p. The image of the divisor map is the group of

divisors Div(K) of K.

One embeds K× diagonally in IK and calls CK = IK/K
× the idele class group

of K. Its factor by UK×/K× is the ideal class group of K:

(1.1) Cl(K) = IK/UK
× = Div(K)/div(K×).

If K is a number field, then Cl(K) is a finite abelian group, whose order hK is the

class number of K. If K is a function field, then we define the degree function for

ideles deg : IK → Z by deg(α) =
∑

p∈P vp(αp) deg(p) and consider the group of ideles of

degree 0:

I0
K = {α ∈ IK‖deg(α) = 0}

The product formula implies that K× ≤ I0
K . Also, U ≤ I0

K . So, we may consider the

group of idele classes of degree 0: Cl0(K) = I0
K/UK

×. Then Cl(K)/Cl0(K) ∼= Z,

but Cl0(K) is a finite abelian group whose order hK is the class number of K. More

important for us is the l-class rank of K:

rankl(K) = dimFl
Cl(K)l

Here Cl(K)l is the l-torsion part of the finite abelian group Cl(K).

To each finite nonempty subset S of P that contains P∞ one associates the group

KS of S-units. Thus KS consists of all elements x ∈ K such that vp(x) = 0 for all

p /∈ S ∪ P∞. By Dirichlet’s unit theorem, KS
∼= µK × Z|S|−1 where µK is the finite

cyclic group of roots of unity of K [CaF, p. 72]. If K is a function field, then µK = F×q .

If K is a number field and S = P∞, we call rank∞(K) = |P∞| − 1 the unit rank of K

and EK = KP∞ is the group of units of K. If K is a function field, we let EK = µK

and rank∞(K) = 0.

The group of S-ideles of K is the direct product

(1.2) IK,S =
∏
p∈S

K×
p ×

∏
p/∈S

Up.
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It contains U and satisfies

(1.3) KS = IK,S ∩K×.

The restricted topology of IK induces the usual direct product topology on IK,S . In

particular, if h is a homomorphism of IK,S into a finite group C such that h is continuous

on K×
p for each p ∈ S and h(

∏
p/∈S Up) = 1, then h is continuous.

Data 1.1: Basic set. If K is a number field, choose ideles α1, . . . , αhK
which represent

IK modulo UK×. Let S0 be the set of archimedean primes and those nonarchimedean

primes p for which vp(αi,p) 6= 0 for at least one i. Then S0 is a finite set and each set

of primes S which contains S0 satisfies

(1.4) IK = IK,SK
×.

If K is a function field, then we choose α0 ∈ IK of degree 1 and α1, . . . , αhK
which

represent I0
K modulo UK×. Let S0 be the set of primes p such that vp(αi) 6= 0 for at

least one i. Again, S0 is a finite subset of P and each set S0 ⊆ S ⊆ P satisfies (1.4). It

follows from (1.3) and (1.4) that

(1.5) CK = IK,S/KS

We increase S0 now by adding Pl to it, if K is a number field, and possibly finitely

many additional primes which we choose at will. Then we call S0 a basic set and fix

it for the rest of this work.

Example 1.2: The cases K = Q and K = Fq(t). For K = Q the unique factorization

in Z implies that IQ = UQ× and therefore hQ = 1. We may therefore choose α1 = 1

and S0 to be any finite set of primes that contains {∞, l}.

For K = Fq(t) we may choose α0 as the idele whose component at the pole of t

(which we denote by (t)∞) is t−1 and otherwise is 1. Again, the unique factorization in

Fq[t] implies that I0
K = UK× and hK = 1. We may therefore choose S0 to be any finite

set of primes of K that contains (t)∞.
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2. Class field theory

Class field theory teaches us that the idele class group CK controls the abelian extensions

of K. Specifically, for each finite abelian extension L/K the reciprocity law gives a

continuous epimorphism

(2.1) ψ: CK −→ G(L/K),

whose kernel is NL/KCL and which is functorial in L. For details, we refer the reader

to chapters 4 (Serre: local class field theory) and 5 (Tate: global class field theory) of

[CaF] and also to [Neu] (which however handles only the class field theory of number

fields).

For each prime p of K we consider K×
p as the subgroup of IK which consists of all

ideles whose q coordinate is 1 for each q 6= p. Under this identification K×
p ∩K× = 1.

So, we may and we will consider K×
p also as a subgroup of CK . The restriction of ψ to

K×
p gives a continuous epimorphism

(2.2) ψp: K×
p −→ Dp(L/K)

whose kernel is NLp/Kp
L×p . Here, Lp is the completion of L with respect to a prime p′

of L which lies over p and Dp(L/K) is the decomposition group of p in L. Since L/K

is abelian, both the norm group and the decomposition group do not depend on p′. The

fixed field ofDp(L/K) is L∩Kp. It is the maximal subfield of L/K in which p completely

decomposes. In particular p completely decomposes in L if and only if Dp(L/K) = 1.

The homomorphism ψp maps Up onto the inertia group Ip(L/K) of L/K whose fixed

field is the maximal subfield of L/K in which p is unramified. Thus Ip(L/K) = 1 if

and only if p is unramified in L. If ϕ is unramified at p, then ψp(πp) =
(L/K

p

)
is the

Frobenius automorphism of L/K at p. Finally, the condition Dp(L/K) = Ip(L/K) is

equivalent for nonarchimedean p to L̄p = K̄p.

Let K̃ (resp., Ks) be the algebraic (resp., separable) closure of K and let G(K) =

G(Ks/K) be the absolute Galois group of K. We embed K̃ into K̃p, thereby extending

p to K̃. Then K̃ ∩ Kp = Kp,alg is a Henselian closure (resp., real closure) of K with

respect to p if p is nonarchimedean (resp., archimedean). Its absolute Galois group
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G(Kp,alg) is the absolute decomposition group of p. We denote it by Dp. By

Krasner’s lemma, KsKp = Kp,s. Hence, resKs : G(Kp) → Dp is an isomorphism. We

identify G(Kp) with Dp under this map. We denote the maximal unramified extension

of Kp by Kp,ur (if p is archimedean, we set Kp,ur = Kp) and let Ip = resKs
(G(Kp,ur)).

This is the absolute inertia group of p. If p is nonarchimedean, then the quotient

group Dp/Ip ∼= G(Kp,ur/Kp) is isomorphic to Ẑ and the Frobenius automorphism Frobp

is a canonical generator of this group.

Whenever we consider a homomorphism ϕ: G(K) → G into a finite (not necessar-

ily abelian) group G, we assume that ϕ is continuous. Then, the fixed field L of Ker(ϕ)

in Ks is a finite extension of K. The prime p totally decomposes in L if and only if

ϕ(Dp) = 1, i.e., L ⊆ Kp. We then say that ϕ totally decomposes at p. Similarly,

we say that ϕ is unramified at p if p is unramified in L, that is, if ϕ(Ip) = 1. In this

case ϕ induces a homomorphism of G(Kp,ur) onto G(L/K) which maps Frobp onto the

Frobenius element
[L/K

p′

]
of G(L/K), where p′ is the prime of L which is determined

by the embedding of L into K̃p. If p is nonarchimedean and |Ip| is relatively prime to

char(K̄p), then ϕ is tamely ramified at p. We denote the finite set of primes at which

ϕ ramifies by Ram(ϕ) and also by Ram(L/K). Finally, ϕ(Ip) = ϕ(Dp) if and only if

L̄p = K̄p. Note that all these concepts are independent of the embedding of K̃ into K̃p.

We choose a multiplicative copy Cl of the cyclic group of order l. Let Hom be the

functor of continuous homomorphisms. Then the reciprocity law gives a commutative

diagram

(2.3)

Hom(G(K), Cl) -Ψ Hom(CK , Cl)

? ?

Hom(Dp, Cl) -Ψp Hom(K×
p , Cl)

? ?

Hom(Ip, Cl) -Ψp Hom(Up, Cl)

in which the horizontal maps are isomorphisms and the vertical maps are the nat-

ural restriction maps. Both Ψ and Ψp map epimorphisms onto epimorphisms. If
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h ∈ Hom(Dp, Cl) is trivial on Ip and η = Ψp(h), then η is trivial on Up. In this

case h induces a homomorphism h̄: G(Kp,ur/Kp) → Cl such that h̄(Frobp) = η(πp).
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3. Embedding problems; Scholz extensions

An l-group is a group G whose order is a power of l. Such a group has a central

sequence all of its factors are of order l. We consider central embedding problems

for G(K) of the following type:

(3.1)

G(K)

?

ρ

1 - Cl
- G -α Ḡ - 1

Here the lower sequence is exact, ρ is surjective, and Cl is contained in the center of G. A

weak solution to (3.1) is a homomorphism ϕ: G(K) → G such that α◦ϕ = ρ. If ϕ is in

addition surjective, we call ϕ a solution. In this case let L (resp., L′) be the fixed field in

Ks of Ker(ρ) (resp., Ker(ϕ)). Then ρ (resp., ϕ) induces an isomorphism ρ̄: G(L/K) → Ḡ

(resp., ϕ̄: G(L′/K) → G) such that ρ̄ ◦ resL = α ◦ ϕ̄. The embedding problem splits if

the short exact sequence splits. This is the case if and only if G ∼= Cl × Ḡ and α is the

projection onto the second factor. Each epimorphism from G(K) onto Cl can then be

multiplied with ρ to yield a solution to (3.1) and each solution of (3.1) is of this type.

In the general case, if ϕ is a weak solution to (3.1), then Cl · ϕ(G(K)) = G and hence

the index of ϕ(G(K)) in G divides l. Since G is an l-group, ϕ(G(K)) is normal in G.

Hence, if (3.1) does not split, then Cl ≤ ϕ(G(K)) and therefore ϕ is a solution to (3.1).

In this case, if η: G(K) → Cl is a homomorphism, than the map ϕ′: G(K) → G defined

by ϕ′(σ) = η(σ)ϕ(σ) for σ ∈ G(K) is also a solution to (3.1). Moreover, each solution

to (3.1) is obtained in this way. We write ϕ′ = η · ϕ.

For each prime p of K, (3.1) gives rise to a local embedding problem:

(3.2)

Dp

?

ρp

1 - Cl
- Gp

-αp
Ḡp

- 1

Here Dp is the absolute decomposition group of p (Section 2), ρp = ρ|Dp , Ḡp = ρ(Dp),

Gp = α−1(Ḡp) and αp = α|Gp . If (3.1) is central, then so is (3.2). However, even if

(3.1) does not split, (3.2) may split.
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Class field theory reduces the solvability of the global embedding problem (3.1)

to the solvability of all local embedding problems induced by (3.1) (as we shall see in

the proof of Lemma 4.3). This led Scholz to try to construct the map ρ: G(K) → Ḡ

with conditions that will impose the solvability of all local embedding problems (3.2).

Before we reformulate Scholz’s conditions we fix some ’local data’ which we would like

to impose on ϕ.

Local data 3.1: A set {ϕp: Dp → G‖p ∈ S0} of homomorphisms is a local data for

an l-group G and a positive integer n if it satisfies the following conditions:

(3.3a) ϕp(Ip) = 1 for each p ∈ Pl,

(3.3b) if p ∈ S0 and ϕp(Ip) 6= 1, then ζln ∈ Kp and ϕp(Ip) = ϕp(Dp).

We fix the local data for G for the rest of this work.

Our definition of a Scholz extension depends on a finite set S1 of rankl(K) +

rank∞(K) ‘exceptional primes’ of K which is disjoint from S0. We choose such a set in

§5. It depends on K and on l but not on G.

Definition 3.2: Scholz extension. Let n be a positive integer and let ϕ be an epimor-

phism of G(K) onto an l-group G equipped with a local data as in Local data 3.1 . We

say that ϕ is n-Scholz if

(3.4a) ζln ∈ Kp, for each p ∈ Ram(ϕ),

(3.4b) ϕ(Ip) = ϕ(Dp) for each p ∈ Ram(ϕ), and

(3.4c) ϕ|Dp = ϕp for each p ∈ S0 (Thus, ϕ respects the local data.)

(3.4d) ϕ(Ip) = ϕ(Dp) for each p ∈ S1.

We say that a finite Galois extension L/K is an l-extension, if G(L/K) is an l-group.

In this case L/K is n-Scholz if resL: G(K) → G(L/K) is an n-Scholz epimorphism.

By (3.3a), ϕ ramifies at no p ∈ Pl. In other words, if p ∈ Ram(ϕ), then ϕ is

tamely ramified at p. By (3.3b), ϕ is unramified at each archimedean prime if ln 6= 2.

Condition (3.4a) then means that p totally decomposes in K(ζln). By Hensel’s lemma,

it is also equivalent to ζln ∈ K̄p and also to Np ≡ 1 mod ln (Recall that Np is the

cardinality of K̄p). Condition (3.4b) means that the inertia group of each prime of
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L which ramifies over K coincides with its decomposition group. If ϕp = 1 for some

p ∈ S0, then Condition (3.4c) means that p totally decomposes in L. If on the other

hand, ϕp(Ip) 6= 1, then Condition (3.4c) implies that p ∈ Ram(ϕ). Thus, Ram(ϕ) ∩ S0

is a priori determined by the local data. Note that all conditions are independent of the

particular embedding we have chosen for K̃ into K̃p.

In the notation of (3.1), the local data for G induces a local data for Ḡ. This is the

set {ρp = α ◦ ϕp‖p ∈ S0}. (Note that Condition (3.3) is satified for the ρp’s.) If ϕ is a

solution for the embedding problem (3.1) and ϕ is n-Scholz, then ρ is n-Scholz. But even

if ρ is n-Scholz, ϕ need not be n-Scholz itself. So, in order to continue the induction

on the order of G, we multiply ϕ by an appropriate homomorphism η: G(K) → Cl

such that it will be n-Scholz. We do it in two steps. First we change ϕ in this way

such that Ram(ϕ) ∪ S1 = Ram(ρ) ∪ S1. Then we change the resulting ϕ such that

Ram(ϕ)∪S0∪S1 = Ram(ρ)∪{q}∪S0∪S1 where q is an additional new ramified prime

which arises from an application of the Chebotarev density theorem. At this step we

use the assumption ζl /∈ K. Thus, if the order of G is ln, then we finally realize G as

the Galois group of a Galois extension L/K with |Ram(L/K) r(S0 ∪ S1)| = n.

Note the difference between the roles of the finite sets S0 and S1. The set S0 must

contain some basic primes but otherwise we are free to make it arbitrarily large and we

are completely free to determine ϕ|Dp for each p ∈ S0. In particular, we can assume that

ϕ(Ip) = 1 for each p ∈ S0 and then ϕ will be unramified at each p ∈ S0. The behaviour

of ϕ at p ∈ S1 on the other hand is out of our control. In particular we can not determine

whether or not ϕ is ramified at a given p ∈ S1. However, |S1| = rankl(K) + rank∞(K)

does not depend on G.
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4. Existence of a solution

The first step toward an n-Scholz solution of embedding problem (3.1) is to find a

solution which need not be n-Scholz. The easier case is when (3.1) splits. In this case

(Lemma 4.2) we need to make no assumptions on ρ. In the more difficult case (Lemma

4.3) we have to assume that ρ is an n-Scholz epimorphism.

Lemma 4.1: Let q be a prime of K which does not belong to Pl ∪ P∞. Suppose that

ζl ∈ Kq. Then Uq/U
l
q
∼= Cl.

Proof: We have assumed in the function field case that l 6= char(K). Hence, in

both cases l 6= char(K̄q). Hence ζl ∈ K̄q. By Hensel’s Lemma Uq,1 ≤ U l
q. Hence

Uq/U
l
q
∼= K̄×

q /(K̄
×
q )l ∼= Cl.

Lemma 4.2: Suppose that embedding problem (3.1) splits. Then it has a solution.

Proof: Denote the fixed field of Ker(ρ) by L. Then assume without loss that Ḡ =

G(L/K), G = Cl × G(L/K), ρ = resL, and α is the projection on the second factor.

As K is Hilbertian [FrJ, Cor. 12.8], every finite abelian group is realizable over K

[FrJ, Thm. 24.48]. In particular suppose that Cm
l is the maximal l-elementary abelian

quotient of G(L/K). Let N be a Galois extension of K with G(N/K) ∼= Cm+1
l . Then

N has a subfield M which is linearly disjoint from L over K and G(M/K) ∼= Cl. So,

L′ = LM satisfies G(L′/K) ∼= G(M/K)× G(L/K) and resL′ : G(K) → G(L′/K) gives a

solution to (3.1).

Alternatively, let S = Ram(L/K) ∪ S0 ∪ S1. Choose generators a1, . . . , as for KS

modulo Kl
S and consider the Galois extension N = K(ζl, l

√
a1, . . . , l

√
as) of K. Apply

the Chebotarev density theorem to choose a prime q /∈ S such that
(N/K

q

)
= 1, i.e.,

N ⊂ Kq. In particular, vq(ai) = 0 and ai ∈ U l
q, i = 1, . . . , s. Also, q - l. Hence, by

Lemma 4.1, there exists a continuous epimorphism hq: Uq → Cl. Define a continuous

homomorphism

h: IK,S =
∏
p∈S

K×
p × Uq ×

∏
p/∈S∪{q}

Up −→ Cl

by h(K×
p ) = 1 for p ∈ S, h|Uq = hq, and h(Up) = 1 for p /∈ S ∪ {q}. Since ai ∈ U l

q,

i = 1, . . . , s, h(KS) = 1. Hence, h induces an epimorphism h̄: CK
∼= IK,S/KS → Cl

13



which satisfies h̄(K×
p ) = 1 for p ∈ S, h̄(Uq) = Cl, and h(Up) = 1 for p /∈ S ∪ {q}.

The reciprocity law (2.3) transfers h̄ to an epimorphism η: G(K) → Cl such that

η(Iq) = Cl. Let M be the fixed field of Ker(η) in Ks. Then G(M/K) ∼= Cl and q is

ramified in M . Since q is unramified in L, we have M ∩ L = K. Conclude the proof as

in the second paragraph.

The following local global principle is implicit in [Rei], Ko, p. 35], and [Se, Lemma

2.1.5]. We include a proof of this principle for the convenience of the reader.

Lemma 4.3: If each of the embedding problems (3.2) has a weak solution, then the

embedding problem (3.1) has a solution.

Proof: By lemma 4.2 we may assume that (3.1) does not split. So, by the discussion

in the first paragraph of §3, we have to prove that (3.1) has a weak solution.

To this end let K ′ = K(ζl) and apply class field theory to write a commutative

diagram of cohomology groups:

(4.1)

H2(Ḡ, Cl) -ρ∗
H2(G(K), Cl) -res H2(G(K ′), Cl)

?
res

?
res

?
res

∏
pH

2(Ḡp, Cl) -ρ∗p ∏
pH

2(G(K̄p), Cl) -res ∏
pH

2(G(K̄ ′
p), Cl)

The Brauer-Hasse-Noether theorem for Brauer groups [CaF, p. 185] implies that the

right vertical map in (4.1) is injective. Since [K ′ : K] is relatively prime to l, the upper

res map in (4.1) is injective [CaF, p. 105]. Hence, the middle vertical map in (4.1) is

injective.

Denote now the element of H2(Ḡ, Cl) (resp., H2(Ḡp, Cl)) which corresponds to

the short exact sequence by ε (resp., εp). A necessary and sufficient condition for (3.1)

(resp., (3.2)) to be weakly solvable is that ρ∗(ε) = 1 (resp., ρ∗p(εp) = 1) [Hoe, Lemma

1.1] (Note that Cl is a multiplicative group).

It follows from the preceding paragraph and from the weak solvability of each of

the local embedding problems that (3.1) is weakly solvable.
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Lemma 4.4: Let L/K be an n-Scholz extension with Ḡ = G(L/K). Suppose that the

central embedding problem (3.1) does not split and that the exponent of G is at most

ln. Then (3.1) has a solution.

Proof: By Lemma 4.3, it suffices to prove that each of the local embedding problems

(3.2) that (3.1) induces is solvable. To this end we put Lp = LKp, replace Ḡp by the

group G(Lp/Kp), Dp by G(Kp), and ρp by resLp .

If Lp/Kp is an unramified extension, then ρp decomposes through a map ρ̄p: Ẑ =

G(Kp,ur/Kp) → G(Lp/Kp) and therefore (3.2) is weakly solvable.

If Lp/Kp is ramified, then by (3.4b) and (3.4a), it is totally ramified and ζln ∈ Kp.

By (3.3a) l 6= char(K̄p) and therefore the ramification is tame. Hence Lp is a cyclic

Kummer extension. Since G(Lp/Kp) is isomorphic to a subgroup of Ḡ and since the

exponent of Ḡ is at most ln−1, the order of G(Lp/Kp) is at most ln−1. Thus Lp =

Kp( lm−1√
a) for some m ≤ n and a ∈ Kp with vp(a) = 0 [CaF, p. 32]. If (3.2) splits,

then it certainly has a weak solution. If (3.2) does not split, then Gp is a cyclic group of

order lm. Then L′p = Kp( lm
√
a) is a cyclic extension of Kp of degree lm which contains

Lp. The composition of res: G(Kp) → G(L′p/Kp) with an isomorphism G(L′p/Kp) → Gp

which maps generators of both groups to the same generator of G(Lp/Kp) solves the

local embedding problem (3.2).
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5. Linearly disjoint fields; an exceptional set of primes

The condition that Lemma 5.1 imposes on the subgroup A of F×l to be nontrivial is

translated in Lemma 5.2 to ζl /∈ K. This condition restricts the Scholz-Reichardt

method of realizing l-groups over K to the case where ζl /∈ K. In particular, as ζ2 = −1

belongs to every field, the method fails for l = 2.

The introduction of an ‘exceptional set of primes’ (Definition 5.4, Lemma 5.5, and

Data 5.6) allow us to handle number fields and the case l|hK . To find such a set and

also for further applications we construct a special Galois extension N∗ of K. Then we

use the Chebotarev density theorem and find primes of K whose Artin symbol is the

conjugacy class of a given element of G(N∗/K) and therefore have specific decomposition

behaviour in N∗.

Lemma 5.1: Let A be a nontrivial subgroup of F×l which acts on the direct product

C = Cm
l in a natural way: (c1, . . . , cm)α = (cα1 , . . . , c

α
m). Then the semidirect product

G = C oA has no nontrivial quotients of order l.

Proof: Let h: G→ Cl be a homomorphism. Then the order of h(A) divides both l and

l − 1, and therefore h(A) = 1. Let now 1 6= α ∈ A and c ∈ C. Then h(c)α = h(cα) =

h(α−1cα) = h(α)−1h(c)h(α) = h(c) and hence h(c) = 1. Conclude that h = 1.

Let S be a finite set of primes of K and consider elements a1, . . . , as of KS . We

say that a1, . . . , as are multiplicatively independent modulo Kl
S if each relation

(5.1) al1
1 · · · als

s = bl.

with l1, . . . , ls ∈ Z and b ∈ KS implies that l|li, i = 1, . . . , s. Replace ’b ∈ KS ’ by

’b ∈ K×’ to define the expression multiplicatively independent modulo (K×)l.

Lemma 5.2: Let S be a finite set of primes of K. Let a1, . . . , as be multiplicatively

independent elements of KS modulo Kl
S . Then the fields K(ζl, l

√
a1), . . . ,K(ζl, l

√
as) are

linearly disjoint and of degree l over K(ζl).

Further, suppose that ζl /∈ K. Let L be an l-extension of K and let n be a positive

integer. Then, the fields L(ζln , l
√
a1), . . . , L(ζln , l

√
as) are linearly disjoint and of degree

l over L(ζln). In particular, [L(ζln , l
√
a1, . . . , l

√
as) : L(ζln)] = ls.
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Proof: Observe that a1, . . . , as are even multiplicatively independent modulo (K×)l.

Indeed, let l1, . . . , ls ∈ Z and b ∈ K× such that (5.1) holds. Then lvp(b) = 0 and

therefore vp(b) = 0 for each p /∈ S. So, b ∈ KS . Hence l divides l1, . . . , ls, as desired.

It follows that a1, . . . , as are also multiplicatively independent modulo (K(ζl)×)l.

Indeed, k = [K(ζl) : K] divides l − 1 and is therefore relatively prime to l. If in (5.1)

b ∈ K(ζl), we take the norm of both sides to obtain

akl1
1 · · · akls

s = (NK(ζl)/Kb)l.

By the preceding paragraph l|kli. Hence l|li for i = 1 . . . , s, as desired.

By Kummer theory [Lan, p. 220, Thm. 14], the fields K(ζl, l
√
a1), . . . ,K(ζl, l

√
as)

are linearly disjoint and of degree l over K(ζl). Hence M = K(ζl, l
√
a1, . . . , l

√
as) is a

Galois extension of K and G(M/K) is the semidirect product of G(M/K( l
√
a1, . . . , l

√
as))

with G(M/K(ζl)) ∼= Fs
l . The former group is isomorphic to G(K(ζl)/K) and therefore

to a subgroup of F×l which acts on the latter group by scalar multiplication. Indeed,

if σ ∈ G(M/K( l
√
a1, . . . , l

√
as)) satisfies ζσ

l = ζs
l for some s ∈ F×l and τ ∈ G(M/K(ζl)),

then σ−1τσ = τ s.

We may write K(ζln) = K(ζl)K ′ where K ′ is a cyclic extension of K of de-

gree lm with m ≤ n − 1. So, LK ′ is an l-extension of K. Since, by assumption,

G(K(ζl)/K) is nontrivial, M/K has no Galois subextension of degree l (Lemma 5.1).

Hence M ∩LK ′ = K and therefore M ∩L(ζln) = K(ζl). Let N = L(ζln , l
√
a1, . . . , l

√
as).

Then G(N/L(ζln)) ∼= G(M/K(ζl)). In particular L(ζln , l
√
a1), . . . , L(ζln , l

√
as) are lin-

early disjoint and of degree l over L(ζln).
M N

K(ζl, l
√
ai) L(ζln , l

√
ai)

K(ζl) L(ζl) L(ζln)

K L LK ′
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Remark 5.3: Under the assumption of Lemma 5.2 suppose that L is a function field

over a finite field K0. Then N = L(ζln , l
√
a1, . . . , l

√
as) is a regular extension of K0(ζln).

Indeed, let L(ζl∞) = L(ζl, ζl2 , ζl3 , . . .). Since n is arbitrary in the last paragraph

of the proof of Lemma 5.2, we have that M ∩ L(ζl∞) = K(ζl). Since K0(ζl∞) has no

l-extensions and M/K(ζl) is an l-extension, this implies that M ∩LK̃0 = K(ζl). Hence

N ∩ LK̃0 = L(ζln). Since L/K0 is regular, L(ζln) ∩ K̃0 = K0(ζln). Conclude that

N ∩ K̃0 = K0(ζln), that is N/K0(ζln) is regular.

Definition 5.4: Exceptional set of primes. Let r = rankl(K) and choose α1, . . . , αr in

IK (resp., I0
K) which represent a multiplicative basis over Fl for Cl(K)l (resp., Cl0(K)l)

if K is a number field (resp., function field). By definition there exist µi ∈ U and

a∗i ∈ K× such that

(5.2) αl
i = µia

∗
i , i = 1, . . . , r.

We call a∗1, . . . , a
∗
r an l-basis for K and fix it for the whole work. We also choose

fundamental units of K. These are elements w1, . . . , ws ∈ EK , with s = rank∞(K),

which generate EK modulo µK . We fix them too for the whole work. We also fix the

following basic Galois extension of K:

N∗ = K(ζln , l
√
a∗1, . . . ,

l
√
a∗r ,

l
√
w1, . . . , . . . , l

√
ws).

By (5.2), Ram(N∗/K) ⊆ Pl ∪ P∞.

An n-exceptional set of primes of K is a set of finite primes

(5.3) S1 = {p∗1, . . . , p∗r , q∗1, . . . , q∗s}

which is disjoint from S0 such that for all i, i′ ∈ {1, . . . , r} and all j, j′ ∈ {1, . . . , s} we

have

(5.4)

a∗i ∈ Kl
p∗

i′
⇐⇒ i 6= i′; a∗i ∈ Kl

q∗j
,

wj ∈ Kl
p∗i

; wj ∈ Kl
q∗

j′
⇐⇒ j 6= j′, and

ζln ∈ Kp∗i
, ζln ∈ Kq∗j

.
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Lemma 5.5 (Characterization of exceptional set): Let

Ni = K(ζln , l
√
a∗1, . . . ,

l

√
a∗i−1,

l

√
a∗i+1, . . . ,

l
√
a∗r ,

l
√
w1, . . . , l

√
ws), i = 1, . . . , r

N ′
j = K(ζln , l

√
a∗1, . . . ,

l
√
a∗r ,

l
√
w1, . . . , l

√
wj−1, l

√
wj+1, . . . , l

√
ws), j = 1, . . . , s

Then

(a) N∗/Ni and N∗/N ′
j are cyclic extensions of degree l, N∗/K is a Galois extension of

degree [K(ζn
l ) : K]lr+s, Ni/K and N ′

j/K are Galois extensions, and

(b) the set S1 (of (5.3)) is exceptional if and only if it is disjoint from S0, and

(5.5) Dp∗i
(N∗/K) = G(N∗/Ni) and Dq∗j

(N∗/K) = G(N∗/N ′
j),

for i = 1, . . . , r and j = 1, . . . , s.

Proof: Let S = P∞. Once we prove that a∗1, . . . , a
∗
r , w1, . . . , ws are multiplicatively

independent modulo K×, (a) will follow from Lemma 5.2 with L = K. Since the fixed

field of the decomposition group of a prime p in N∗ is N∗ ∩Kp, statement (b) will then

also hold. Note that since G(N∗/Ni) and G(N∗/N ′
j) are normal subgroups of G(N∗/K),

(5.5) is independent of the embedding we have chosen for K̃ in K̃p∗i
.

Suppose therefore that k1, . . . , kr, l1, . . . , ls are integers and b ∈ K× such that

(5.6) (a∗1)
k1 · · · (a∗r)krwl1

1 · · ·wls
s = bl.

Then, by (5.2),

(5.7) µ−k1
1 · · ·µ−kr

r wl1
1 · · ·wls

s = (α−k1
1 · · ·α−kr

r b)l.

Since the left hand side of (5.7) belongs to U , so is its right hand side and therefore

αk1
1 · · ·αkr

r b−1 ∈ U . Hence αk1
1 · · ·αkr

r ∈ UK×. By the choice of α1, . . . , αr each ki is a

multiple of l.

It follows from (5.6) that there exists c ∈ K× such that wl1
1 · · ·wls

s = cl. Hence

c ∈ EK and since w1, . . . , ws are multiplicatively independent over Z and generate

EK modulo µK , each lj is a multiple of l. Conclude that a∗1 . . . , a
∗
r , w1, . . . , ws are

multiplicatively independent modulo (K×)l.
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Data 5.6: Exceptional set of primes. Choose a generator σ∗i for G(N∗/Ni), let Con(σ∗i )

be the conjugacy class of σ∗i in G(N∗/K) and apply the Chebotarev density theorem

to choose p∗i ∈ P rS0 such that
(N∗/K

p∗i

)
= Con(σ∗i ), i = 1, . . . , r. Similarly, choose a

generator τ∗j for G(N∗/N ′
j) and q∗j ∈ P rS0 such that

(N∗/K
q∗j

)
= Con(τ∗j ), j = 1, . . . , s.

Since the Artin symbol of a prime generates its decomposition group in N∗, (5.5) holds

and therefore, by Lemma 5.5, the set S1 of (5.3), chosen in this way is exceptional. We

fix it for the rest of this work and note that |S1| = rank∞(K) + rankl(K).

Note that if K is a number field, then S1 is empty exactly if either K = Q and

l 6= 2, K = Q(
√
−3) and l 6= 2, 3, or K is another imaginary quadratic field with l 6= 2

and l - hK . If K is a function field, then rank∞(K) = 0 and |S1| = rankl(K). In this

case S1 = ∅ is equivalent to l - hK .
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6. Getting rid of extra ramification

The second step in the solution of embedding problem (3.1) is to change the solution

ψ0 we have found in Lemma 4.4 such that in addition to the primes of Ram(ρ) the only

primes of K at which the solution ramifies belong to the exceptional set S1 which we

have chosen in Data 5.6.

Lemma 6.1: Let S be a finite set of primes which is disjoint from the exceptional set

S1. For each prime p ∈ S let hp: Up → Cl be a continuous homomorphism. Suppose

that ζl /∈ K. Then there exists a continuous homomorphism h: CK → Cl such that

h|Up = hp for each p ∈ S and h(Up) = 1 for each prime p /∈ S ∪ S1

Proof: We break the proof into five parts.

Part A: Definition of hp for p ∈ S1. By (5.4), ζl ∈ Up. Hence, by Lemma 4.1,

Up/U
l
p
∼= Cl. Hence, for each u ∈ Up rU l

p and each c ∈ Cl there exists a continuous

homomorphism h′: Up → Cl such that h′(u) = c.

By (5.2) and (5.4), µi ∈ Up∗i
rU l

p∗i
. Hence, there exists a continuous homomor-

phism hp∗i
: Up∗i

→ Cl such that

(6.1)
( ∏

p∈S

hp(µi,p)
)
· hp∗i

(µi,p∗i
) = 1, i = 1, . . . , r.

Here, µi,p is the pth component of µi. For the same reason, there exists a continuous

homomorphism hq∗j
: Uq∗j

→ Cl such that

(6.2)
( ∏

p∈S

hp(wj)
)
· hq∗j

(wj) = 1, j = 1, . . . , s.

This completes the definition of hp for each p ∈ S1.

By (5.2) and (5.4), µi ∈ U l
p and therefore

(6.3) hp(µi,p) = 1 for each p ∈ S1 r{p∗i }

By (5.4), wj ∈ U l
p and therefore

(6.4) hp(wj) = 1 for each p ∈ S1 r{q∗j}
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Part B: Definition of f ′ on UK×/K×. The formula

(6.5) f(µ) =
∏

p∈S∪S1

hp(µp)

defines a continuous homomorphism f from the open subgroup U of IK into Cl that

is trivial on Up for each p /∈ S ∪ S1 and coincides with hp on Up for each p ∈ S ∪ S1.

By (6.2) and (6.4), f(wj) = 1 for j = 1, . . . , s. Since |µK | is relatively prime to l, f is

trivial on µK . It follows that f is trivial EK = U ∩K×. So, f defines a homomorphism

f̄ : U/EK → Cl which we compose with the isomorphism UK×/K× ∼= U/EK to get a

continuous homomorphism f ′: UK×/K× → Cl.

Part C: Claim: I l
KK

×∩UK× = U lK×·
∏r

i=1〈µi〉. Indeed, as µi = αl
i(a

∗
i )
−1, by (5.2),

the right hand side is contained in the left hand side. Each element of the left hand side

has the form ξ = αla = µb with α ∈ IK , a, b ∈ K×, and µ ∈ U . Thus αl = µba−1 ∈

UK×. If K is a function field, then l deg(α) = deg(µ) + deg(ba−1) = 0 and hence

deg(α) = 0, so that α ∈ I0
K . So, in any case α = νc

∏r
i=1 α

ki
i for some ν ∈ U , c ∈ K×,

and ki ∈ Z, i = 1, . . . , r. It follows from (5.2) that ξ = νl(cl
∏r

i=1(a
∗
i )

ki)
∏r

i=1 µ
ki
i

belongs to the right hand side. This concludes the proof of the claim.

Part D: Definition of g on I l
KUK

×/K×. By (6.1) and (6.3), f(µi) = 1, i = 1, . . . , r.

Hence, by Part C, f ′ is trivial on (I l
KK

× ∩ UK×)/K×. So, f ′ extends to a continuous

homomorphism g: I l
KUK

×/K× → Cl which is trivial on I l
KK

×/K×, coincides with hp

on Up for each p ∈ S ∪ S1, and is trivial Up for each p /∈ S ∩ S1.

I l
KK

× I l
KUK

×

I l
KK

× ∩ UK× UK×

Part E: Conclusion of the proof. Finally observe that IK/UK× is a finitely generated

abelian profinite group (Section 1). Hence, I l
KUK

×/I l
KK

× is an open subgroup of

CK/C
l
K . The latter group may be considered as a vector space over Fl and I l

KUK
×/K×

has a closed complement in it. So, g extends to a continuous homomorphism h: CK →

Cl.
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Lemma 6.2: Suppose that the central embedding problem (3.1) does not split. Assume

that ζl /∈ K. If the central embedding problem (3.1) has a solution ψ0, then (3.1) also

has a solution ψ: G(K) → G for which Ram(ψ) ⊆ Ram(ρ) ∪ S1.

Proof: Let S = Ram(ψ0) r(S1 ∪ Ram(ρ)). If p ∈ S, then ρ(Ip) = 1 and therefore

ψ0(Ip) ≤ Cl. (Actually, as p ∈ Ram(ψ0), we have ψ0(Ip) 6= 1 and therefore ψ0(Ip) = Cl.)

The reciprocity law (2.3) associates with ψ0|Ip a continuous homomorphism hp: Up →

Cl. By Lemma 6.1 there exists a continuous homomorphism h: CK → Cl such that

h|Up = hp for each p ∈ S and h(Up) = 1 for each p /∈ S∪S1. Apply again the reciprocity

law to obtain a continuous homomorphism η: G(K) → Cl such that η|Ip = ψ0|Ip for

each p ∈ S and η(Ip) = 1 for each p /∈ S ∪ S1. Consider the solution ψ = η−1 · ψ0

to (3.1). Then, ψ(Ip) = 1 for each p ∈ S ∪ [P r (
Ram(ψ0 ∪ S1)

)
]. Hence, Ram(ψ) ⊆

(P rS) ∩ [Ram(ψ0) ∪ S1] ⊆ Ram(ρ) ∪ S1, as desired.
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7. Scholz solution of a nonsplitting embedding problem

The last step in the solution of embedding problem (3.1) is to multiply the solution

which Lemma 6.2 gives with a homomorphism η: G(G) → Cl such that the resulting

solution will be n-Scholz.

Lemma 7.1: Let S be a finite set of primes of K which contains S0. Let L be a finite

l-extension of K and let n be a positive integer. For each p ∈ S let hp: K×
p → Cl be a

homomorphism. Suppose that ζl /∈ K.

Then there exists a prime q of K and there exists a continuous homomorphism

h: CK → Cl such that

(a) q /∈ S and L(ζln) ⊆ Kq,

(b) h|K×
p

= hp for each p ∈ S,

(c) h(Uq) = Cl,

(d) h(Up) = 1 for each p /∈ S ∪ {q}.

Proof: We break the proof into five parts.

Part A: Reduction of the lemma to constructing a homomorphism g: ĪK,S/K̄S → Cl.

Let (KS : Kl
S) = ls. Choose generators a1, . . . , as for KS modulo Kl

S . For each q /∈ S

we can decompose IK,S as

IK,S =
∏
p∈S

K×
p × Uq ×

∏
p/∈S∪{q}

Up.

Use a bar to denote the reduction of elements and subgroups of IK,S modulo I l
K,S . In

particular∗

(7.1) ĪK,S =
∏
p∈S

K×
p × Ūq ×

∏
p/∈S∪{q}

Ūp.

and

(7.2) K̄S = 〈ā1, . . . , ās〉

* Do not confuse K×p ∼= K×p /(K×p )l with the multiplicative group of the K̄×p of the residue
field K̄p, for p /∈ P∞.
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Also, hp: K×
p → Cl induces a homomorphism h̄p: K×

p → Cl. Then ĪK,S/K̄S =

(IK,S/I
l
K,S)/(KSI

l
K,S/I

l
K,S) is a quotient of CK = IK,S/KS (See (1.5)). Hence, it

suffices to find a prime q of K which satisfies (a) and to construct a homomorphism

g: ĪK,S → Cl such that

(7.3a) g|
K×

p

= h̄p for each p ∈ S,

(7.3b) g(Ūq) = Cl,

(7.3c) g(Ūp) = 1 for each p /∈ S ∪ {q}.

(7.3d) g(āi) = 1 for i = 1, . . . , s.

By (7.1) and (7.3), g will induce a homomorphism ḡ: ĪK,S/K̄S → Cl which will compose

with the canonical homomorphism CK → ĪK,S/K̄S to the desired homomorphism h.

Part B: Presentation of āi as an idele. For each i between 1 and s and each p let aip

be ai considered as an element of Kp and let

(7.6) δi =
∏
p∈S

hp(aip)

If q satisfies (a), then a1, . . . , as, ζl ∈ Uq and Ūq
∼= Cl (Lemma 4.1). Choose a generator

ūq of Ūq. For each i there exists then 0 ≤ βi < l such that āiq = ūβi
q . The representation

of āi as an idele will therefore take the form:

(7.7) āi =
∏
p∈S

āip · ūβi
q ·

∏
p/∈S∪{p}

āip.

Conditions (7.3a) and (7.3c) force that g(āip) = h(āip) for p ∈ S and g(āip) = 1 for

p /∈ S ∪{q}. Condition (7.3b) is equivalent to g(ūq) 6= 1. We have therefore to choose q

such that (a) will hold and to define g(ūq) as a nonzero element of Cl such that (7.3d)

will be satisfied.

If δi = 1 for i = 1, . . . , r we may use the Chebotarev density theorem to choose

q /∈ S such that

(7.8) N = L(ζln , l
√
a1, . . . , l

√
as) ⊆ Kq.

In particular (a) holds and aiq ∈ U l
q so that βi = 0 for i = 1, . . . , s. We therefore define

g(ūq) to be a generator of Cl and derive from (7.7) that g(āi) = δi · g(ūq)βi = 1, so that

(7.3d) holds.
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Part C: The main case. We may and we will from now assume that

(7.9) δ1 6= 1

Under this assumption there exists 0 ≤ εi < l such that in Cl

(7.10) δεi
1 = δi, i = 1, 2, . . . , s.

In particular ε1 = 1. Define

(7.11) b1 = a1 and bi = ai/a
εi
1 , for i = 2, . . . , s.

As a1, . . . , as are multiplicatively independent modulo Kl
S , so are b1, . . . , bs. By Lemma

5.2, L(ζln , l
√
b1), . . . , L(ζln , l

√
bs) are linearly disjoint fields of degree l over L(ζln).

Part D: Choosing q. Part C allows us to choose σ ∈ G(N/L(ζln)) with σ l
√
a1 = ζl l

√
a1

and σ l
√
bi = l

√
bi, i = 2, . . . , s.

Chebotarev density theorem gives a prime q /∈ S such that
(N/K

q

)
= Con(σ).

Thus, L(ζln) ⊆ Kq but Kq(ζln , l
√
a1) is an unramified extension of Kq of degree l. In

particular a1 ∈ Uq rU l
q. On the other hand bi ∈ U l

q and therefore, by (7.11)

(7.12) āiq = āεi
1q i = 2, . . . , s.

Part E: Definition of g. By Part B, ā1q = ūβ
1q with 0 < β < l. We may therefore

define g(ūq) as the element of Cl that satisfies

(7.13) g(ūq)β = δ−1
1

In particular g(ūq) 6= 1. By (7.12), āiq = ūβεi
q , i = 2, . . . , s. As ε1 = 1 the latter equality

also holds for i = 1. This gives (7.7) the following form:

(7.14) āi =
∏
p∈S

āip · ūβεi
q

∏
p/∈S∪{q}

āip.

Apply g on (7.14) and use (7.3a), (7.3c), (7.6), (7.13), and (7.10) to get that

g(āi) =
( ∏

p∈S

g(āip)
)
· g(ūq)βεi = δiδ

−εi
1 = 1.

So (7.3d) holds and the proof is complete.
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Lemma 7.2: Suppose that (3.1) is a central embedding problem such that ρ is an n-

Scholz epimorphism which respects the local data {ρp = α◦ϕp‖p ∈ S0}. Suppose further

that ζl /∈ K and that (3.1) has a solution ψ such that Ram(ψ) ∪ S1 = Ram(ρ) ∪ S1.

Then there exists a prime q /∈ Ram(ψ) ∪ S0 ∪ S1 at which ρ totally decomposes and

there exists an n-Scholz solution ϕ: G(K) → G to (3.1) which respects the local data

{ϕp | p ∈ S0} such that Ram(ϕ) ∪ S0 = Ram(ψ) ∪ {q} ∪ S0.

Proof: Let L (resp., L′) be the fixed field of Ker(ρ) (resp., Ker(ψ)) in Ks. For each

p ∈ S = Ram(ψ) ∪ S0 ∪ S1 we define a homomorphism ηp: Dp → Cl as follows:

If p ∈ (Ram(ψ) rS0)∪ S1, then p ∈ Ram(ρ)∪ S1. Choose a lifting of Frobp to an

element σp of Dp. Since ρ is n-Scholz, we have α ◦ ψ(σp) = ρ(σp) ∈ ρ(Dp) = ρ(Ip) =

α ◦ ψ(Ip). Hence, there exists τ ∈ Ip and γp ∈ Cl such that ψ(σp) = γpψ(τ). Replace

σp by σpτ
−1, if necessary, to assume that ψ(σp) = γp. Now define a homomorphism

η̄p from 〈Frobp〉 = Dp/Ip ∼= Ẑ to Cl by η̄(Frobp) = γ−1
p . Then compose η̄p with the

canonical map Dp → Dp/Ip to a homomorphism ηp: Dp → Cl. It satisfies

(7.15) ηp(Ip) = 1 and ηp(σp) = ψ(σp)−1.

If p ∈ S0, then α ◦ ψ|Dp = ρp = α ◦ ϕp. Hence ϕp = ηp · ψ|Dp with a map

ηp: Dp → Cl. Since Cl is contained in the center of G, ηp is a homomorphism.

Lemma 7.1, applied to L′ instead of to L and the reciprocity law (2.3) supply a

prime q ∈ P and a continuous epimorphism η: G(K) → Cl such that

(7.16a) q /∈ S and L′(ζln) ⊆ Kq; in particular ψ(Dq) = 1,

(7.16b) η|Dp = ηp for each p ∈ S,

(7.16c) η(Iq) = Cl, and

(7.16d) η(Ip) = 1 for each p /∈ S ∪ {q}.

We prove that ϕ = η · ψ: G(K) → G satisfies the requirements of the lemma. To

this end, let p be a prime of K. We have to prove that if p /∈ S0, then ϕ(Ip) 6= 1 if and

only if ψ(Ip) 6= 1 or p = q. In addition, if ϕ(Ip) 6= 1 or p ∈ S1, then ϕ(Ip) = ϕ(Dp)

should hold. Finally, we have to prove that ϕ|Dp = ϕp for each p ∈ S0. We distinguish

between several cases:
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Case A: p ∈ (Ram(ψ) rS0) ∪ S1. Then, by (7.15), ϕ|Ip = η|Ip · ψ|Ip = ψ|Ip . So,

ψ(Ip) 6= 1 if and only if ϕ(Ip) 6= 1. Also, by (7.15) and (7.16b) ϕ(σp) = ηp(σp)ψ(σp) = 1.

Hence, ϕ(Dp) = ϕ(〈σp, Ip〉) = ϕ(Ip).

Case B: p ∈ S0. By (7.16b), ϕ|Dp = ηp · ψ|Dp = ϕp. So, ϕ respects the given local

data.

Case C: p = q. By (7.16a), ψ(Dq) = 1 and hence, by (7.16c), ϕ(Iq) = Cl. Also, for

each σ ∈ Dq we have ϕ(σ) = η(σ) · 1 ∈ Cl. Hence Cl = ϕ(Iq) ≤ ϕ(Dq) ≤ Cl. So,

ϕ(Iq) = ϕ(Dq).

Case D: p /∈ S ∪ {q}. Then ϕ|Ip = η|Ip · ψ|Ip = 1.

In each case all the requirements are fulfilled.

We combine Lemmas 4.2, 4.3, 6.2, and 7.2:

Proposition 7.3 (Solution of an embedding problem): Let K be a global field and

let l 6= char(K) be a prime such that ζl /∈ K. Let S0 be a basic set of primes (Data

1.1), let n be a positive integer, and let S1 be an n-exeptional set of primes (Data 5.6).

Consider an embedding problem (3.1) for G(K) for which G is an l-group of exponent

ln. Let {ϕp | p ∈ S0} be a local data for G and n. Suppose that ρ is an n-Scholz

epimorphism which respects the local data {α ◦ ϕp‖p ∈ S0}. Then there exists a prime

q /∈ Ram(ρ) ∪ S0 ∪ S1 and there exists an n-Scholz solution ϕ for (3.1) which respects

the local data {ϕp | p ∈ S0} such that

(7.17) Ram(ϕ) ∪ S0 ∪ S1 = Ram(ρ) ∪ {q} ∪ S0 ∪ S1

Theorem 7.4 (Realization of l-groups): Let K be a global field and let l 6= char(K)

be a prime such that ζl /∈ K. Let S0 be a basic set of primes (Data 1.1), let m ≤ n be

positive integers, and let S1 be an n-exeptional set of primes (Data 5.6). Consider

a group G of order lm and a local data {ϕp: Dp → G‖p ∈ S0} for G. Then K

has a finite Galois extension L which is n-Scholz such that G(L/K) ∼= G, for each

p ∈ S0 the map res: Dp → Dp(L/K) coincides with ϕp, and there exist m primes

q1, . . . , qm ∈ P r(S0 ∪ S1) such that

(3.18) Ram(L/K) ∪ S0 ∪ S1 = {q1, . . . , qm} ·∪ S0
·∪ S1.
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In particular, if each p ∈ S0 completely decomposes in L, then

(3.19) m ≤ |Ram(L/K)| ≤ m+ rankl(K) + rank∞(K).

Proof: Suppose without loss thatm ≥ 1 and embed Cl in the center ofG, let Ḡ = G/Cl,

and let α: G → Ḡ be the canonical map. Induction on the order of the group gives

an n-Scholz epimorphism ρ: G(K) → Ḡ which respects the local data {α ◦ ϕp‖p ∈ S0}

such that |Ram(ρ) r(S0 ∪ S1)| = m − 1. This creates an embedding problem (3.1).

Proposition 7.3 supplies an n-Scholz solution of this problem such that (7.17) holds.

Conclude that (7.18) is true. As |S1| = rankl(K) + rank∞(K), this gives the estimates

(7.19).

Example 7.5: Necessity of many ramified primes. We prove in this example that if L/K

is an l-elementary abelian extension, then Ram(L/K) must be ‘big’. More precisely,

we compute a constant r0 such that if [L : K] = lr and l is unramified in L, then

|Ram(L/K)| ≥ r − r0.

Indeed, let T be a finite set of m primes which is disjoint from Pl ∪ P∞ and let

S = Pl ∪ P∞ ∪ T . Let r be the maximal integer for which K admits a Galois extension

N which is unramified outside S such that G(N/K) ∼= Cr
l . Class field theory suggests

a bound on r which does not depend on T .

Claim: The following inequalities hold for a number field K:

(7.20a) r ≤ [K : Q] + |Pl|+ rankl(K) +m, if l 6= 2;

(7.20b) r ≤ [K : Q] + |P2|+ # real archimedean primes + rank2(K) +m, if l = 2

(7.20c) r ≤ 1 +m, if K = Q and l 6= 2,

(7.20d) r = 2 +m, if K = Q and l = 2,

The follwing inequalities hold for a function field K:

(7.20e) r ≤ 1 + rankl(K) +m, if K is a function field,

(7.20f) r ≤ 1 +m, if K = Fq(t).

Indeed, let V =
∏

p/∈S Up. By the reciprocity law (2.3), r is the maximal integer for

which there exists a homomorphism h: IK → Cr
l which is trivial on V K×. As V ≤ U

(in the notation of Section 1), we have the following short exact sequence

1 - UK×/V K× - IK/V K
× - Cl(K) - 1.
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Observe that UK×/V K× is a homomorphic image of U/V ∼=
∏

p∈S Up. Hence

r = dimFl
(IK/V K×)/(IK/V K×)l

≤ dimFl
(UK×/V K×/(UK×/V K×)l + dimFl

Cl(K)/Cl(K)l(7.21)

≤
∑
p∈S

dimFl
Up/U

l
p + dimFl

Cl(K)/Cl(K)l.

For each p ∈ Pl the dimension of Up/U
l
p over Fl is [Kp : Ql] + 1 if ζl ∈ Kp and [Kp : Ql]

if ζl /∈ Kp. If p ∈ P∞, then Up = U l
p unless l = 2 and p is real. In the latter case

Up = R× and so dimF2 Up/U
2
p = 1. If p /∈ Pl ∪ P∞, then Up = U l

p unless ζl ∈ Up, in

which case dimFl
Up/U

l
p = 1. Thus

r ≤
∑
p∈Pl

([Kp : Ql] + 1) +
( ∑

p real

1
)

+m+ dimFl
Cl(K)/Cl(K)l(7.22a)

≤ [K : Q] + |Pl|+ # real archimedean primes + dimFl
Cl(K)/Cl(K)l +m(7.22b)

where the term ‘#real archimedean primes’ appears only if l = 2.

If K is a number field, then dimFl
Cl(K)/Cl(K)l = rankl(K). If l 6= 2, then we

can drop
∑

p real 1 from (7.22b). So, (7.20a) and (7.20b) hold.

If K = Q, then Cl(K) = 1 and therefore dimFl
Cl(K)/Cl(K)l = 0. If in addition,

l 6= 2, that ζl /∈ Ql and therefore Pl = {l} contributes 1 to the sum
∑

p∈S dimFl
Up/U

l
p.

If instead, l = 2, then #real archimedean primes = 1. This gives (7.20c) and (7.20d).

If K is a function field, then |Pl| = |P∞| = 0 but

dimFl
Cl(K)/Cl(K)l = rankl(K) + 1.

This gives (7.20e). Finally, if K = Fq(t), then rankl(K) = 0 and so (7.20f) is true.

Thus, in each case, there exists a constant r0 that does not depend on m such

that r ≤ r0 + m. If L/K is a Galois extension with G(L/K) ∼= Cr
l and we take

T = Ram(L/K) r Pl, then we find that r − r0 ≤ |T |, which is somewhat stronger than

claimed.

Consider now the case in which l 6= 2 and K = Q. Then r0 = 1 and Q has

a unique extension L0 of degree l in which l ramifies. It is the unique extension of
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degree l which is contained in Q(ζl2). No other prime execpt l is ramified in L0. If

L is a Galois extension of Q with G(L/Q) ∼= Cr
l which does not contain L0, then

G(LL0/Q) ∼= Cr+1
l . Hence, by the preceding paragraph |Ram(LL0/Q)− Pl| ≥ r. Since

Ram(L/Q) and Ram(L0/Q) = {l} are disjoint, we conclude that Ram(L/Q) contains

at least r elements.

Similarly, let L be a Galois extension of Fq(t) with Galois group isomorphic to Cr
l

which is regular over Fq. Then L is disjoint from the unique unramified extension Fql

of degree l of Fq(t). As in the preceding paragraph, |Ram(L/Fq(t))| ≥ r.

Thus, if K = Q or K = Fq(t), Theorem 7.4 gives the most economic realization

of Cr
l in terms of number of ramified primes.
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8. Estimates

In this section we consider the case where K is a function field of one variable over the

field K0 = Fq, where q is a prime power. Our goal is to estimate some of the invariants

of the field L of Theorem 7.4.

Data 8.1: We fix the following notation for the whole section:

t = transcendental element over K which we also consider as a variable

K = finite separable extension of K0(t) which is regular over K0

gK = the genus of K

d = [K : K0(t)]

l = prime element 6= char(K)

n = positive integer

dn = [K0(ζln) : K0]

S0 = basic set for K (Data 1.1); put s0 = |S0|;

N∗ = basic extension of K (Definition 5.4)

S1 = exceptional set of primes for K. Note that s1 = |S1| = ranklK (Data 5.6).

Lemma 8.2: Let N be a finite Galois extension of K. Denote the algebraic closure of

K0 in N by K ′
0. Let C be a conjugacy class in G(N/K), and let c = |C|. Let k be a

multiple of [K ′
0 : K0]. Denote the number of primes q of K which do not ramify over

K0(t) nor in N , are of degree k, and such that
(N/K

q

)
= C by ν. Let ν0 be a positive

integer and suppose that

(8.1)

k log q ≥ max
{

2 log(2gN + (d+ 1)[N : K ′] + 3), 4 log(3gK + 1), 2 log
(ν0k
c

[N : K ′]
)}

then ν > ν0.

Proof: Let K ′ = KK ′
0 and let m = [N : K ′]. By (8.1), qk/2 ≥ ν0km/c and qk/2 ≥

2gN +2m+3. Also, (13.1) holds with K and N , respectively instead of E and F . Hence,

by Corollary 13.5

ν >
c

km
· qk − 2c

km
· (m+ gN + 1) · qk/2

=
c

km
qk/2 ·

(
qk/2 − 2(gN +m+ 1)

)
≥ ν0 · 1 = ν0.
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This proves our claim.

For a finite set T of primes of a function field K/K0 we write

deg(T ) =
∑
p∈T

deg(p)

Lemma 8.3: Let L/K be a finite tamely ramified extension of function fields of one

variable over the same constant field. Then their genera satisfy the following inequality:

(8.3)
2gL − 2
[L : K]

≤ (2gK − 2) + deg(Ram(L/K))

Proof: The Riemann-Hurwitz genus formula for L/K is

(8.4) 2gL − 2 = [L : K](2gK − 2) +
∑

p∈Ram(L/K)

∑
P|p

(e(P/p)− 1) deg(P)

[FrJ, p. 24]. In the second sum P ranges over all prime divisors of L which lie over p

and e(P/p) denotes the relative ramification index. We also denote the relative residue

degree of P/p by f(P/p). Then∑
p∈Ram(L/K)

∑
P|p

(e(P/p)− 1) deg(P) ≤
∑

p∈Ram(L/K)

( ∑
P/p

e(P/p)f(P/p)
)
deg(p)

=
∑

p∈Ram(L/K)

[L : K] deg(p)

= [L : K] deg(Ram(L/K))

Hence, inequality (8.3) follows from (8.4).

Lemma 8.4: Let T be a finite set of primes of K. Suppose that ζl /∈ K. Let L/K be a

finite l-extension such that L is regular over K0 and let S = Ram(L/K) ∪ T . Consider

elements a1, . . . , ar of KS which are multiplicatively independent modulo Kl
S and let

N = L(ζln , l
√
a1, . . . , l

√
ar). Then

(8.5)
2gN − 1
lr[L : K]

≤ 2gK − 2 + deg(S).

Proof: We apply Lemma 8.3 to N/K(ζln) instead of to L/K.

Let K ′
0 = K0(ζln), K ′ = K(ζln), and L′ = L(ζln). Then K ′/K ′

0 is a regular

extension which is obtained from the function field K/K0 by a finite separable extension
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of the field of constants. Hence gK′ = gK [Deu, p. 132]. Let S′ be the set of primes

of K ′/K ′
0 which lie over S. Since each prime of K ′ is unramified over K ′

0, we have

deg(S′) = deg(S) [Deu, 132].

By Remark 5.3, N is a regular extension of K ′
0 and by Lemma 5.2, [N : K ′] =

lr[L : K]. Since l is relatively prime to char(K), the extension N/K ′ is tamely ramified.

If a prime p of K ′/K ′
0 does not belong to S and P is an extension of p to L′, then

vP(ai) = vp(ai) = 0. Hence, P is unramified in L′( l
√
ai) (a consequence of [CaF, p. 32,

Prop. 1]) and therefore p is unramified in N . Thus, Ram(N/K ′) ⊆ S′.

It follows that (8.5) is a consequence of (8.3).

Lemma 8.5: Let T be a finite set of primes of K. Suppose that ζl /∈ K. Let L/K be a

Galois extension of degree lm such that L is regular over K0 and let S = Ram(L/K)∪T .

Consider elements a1, . . . , as of KS which are multiplicatively independent modulo Kl
S

and let N = L(ζln , l
√
a1, . . . , l

√
as). Suppose that k is a multiple of dn such that deg(p) ≤

k for each p ∈ S. Let

(8.6) µ = 3gK + d+ 1 + |S|

and let C be a conjugacy class in G(N/K(ζln)). Suppose that

(8.7) k log q ≥ 4 log 8 + 4(m+ s) log l + 4 log µ.

Then there exists q ∈ P rS such that deg(q) = k and
(N/K

q

)
= C.

Proof: Let K ′
0 = K0(ζln) and K ′ = K(ζln). By Lemma 5.2, [N : K ′] = lm+s. If

m + s = 0, then N = K(ζln). Then gN = gK and the constant m of Lemma 8.2

becomes 1. Let ν be the number of q ∈ P such that deg(q) = k and
(N/K

q

)
= C.

We have to prove that ν > |S|. Indeed, the inequality of Lemma 8.2 simplifies to

ν > qk/2

k (qk/2 − 2gK − 2). Since qk/2 ≥ 2k/2 ≥ k and qk/2 ≥ µ2 (by (8.7)), we have

ν > µ2 − ν > |S|.

So, assume from now on that m+ s ≥ 1. By Lemma 8.2, it suffices to prove (8.1)

with ν0 = |S|.
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The inequality k log q ≥ 4 log(2gK + 1) follows from (8.6) and (8.7). Hence, it

suffices to prove

k

2
log q ≥ log(2gN + (d+ 1)lm+s + 3)(8.8)

k

2
log q ≥ log(klm+s|S|).(8.9)

By Lemma 8.4 and by the assumption ‘deg(p) ≤ k for each p ∈ S’ we have

(8.10) 2gN − 2 ≤ lm+s(2gK − 2 + deg(S)) ≤ lm+s(2gK − 2 + k|S|).

Since 5 ≤ 2lm+s, (8.10) gives

(8.11) 2gN + (d+ 1)lm+s + 3 ≤ lm+s(2gK + k|S|+ d+ 1).

Nest observe that log x
x is a decreasing function for x ≥ e and that log 16

16 = log 2
4 .

Hence, for k ≥ 16, log k ≤ k
4 log 2 ≤ k

4 log q. If k ≤ 16, then by (8.6), µ ≥ 2 and then by

(8.7), k log q ≥ 4 log(8µ) ≥ 4 log k. Thus, in each case log k ≤ k
4 log q. It follows from

(8.7) that

(8.12)
log k + (m+ s) log l + logµ ≤ k

4
log q + (m+ s) log l + logµ

≤ k

4
log q +

k

4
log q =

k

2
log q.

Hence, by (8.11)

log(2gN + (d+ 1)lm+s + 3) ≤ (m+ s) log l + log k + log(2gK + |S|+ d+ 1)

= log k + (m+ s) log l + logµ ≤ k

2
log q,

which proves (8.8). Finally, (8.9) follows from (8.13) and the inequality |S| ≤ µ.

Theorem 8.6: Let K be a function field of one variable over Fq and let S0 and S1 be

sets of primes as in Data 8.1. Let G be a group of order lm and let n ≥ m. Suppose

that ζl /∈ K. Then K has an n-Scholz extension L which is regular over Fq such that

G(L/K) ∼= G, |Ram(L/K)∪S1| = m+ ranklK, and each p ∈ S0 totally decomposes in

L.
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Moreover, let µ = 3gK + d +m + s0 + ranklK + 1 and let k be a multiple of dn

such that

(8.13) k log q ≥ 4 log 8 + 4(m+ ranklK) log l + 4 log µ.

Then we can choose S1 and L such that deg(p) = k for each p ∈ Ram(L/K) ∪ S1. The

genus of L is estimated by

(8.14) 2gL − 2 ≤ lm(2gK − 2 + (m+ rankl(K))k).

Proof: Denote Fq by K0. Assume without loss that m ≥ 1. Embed Cl in the center

of G and let Ḡ = G/Cl. By induction, K has an n-Scholz extension L which is regular

over K0 such that G(L/K) ∼= Ḡ, and the above conditions are satisfied for m−1 instead

of for m. Now consider the following central embedding problem

(8.15)

G(K)

?
res

1 - Cl
- G -α G(L/K) - 1

Lemmas 4.2 and 4.4 give a solution ψ to (8.15), which however, need not be n-Scholz.

Use Lemma 6.2 to replace ψ by another solution, if necessary, to assume that Ram(ψ) ⊆

Ram(L/K)∪S1. Then Lemma 7.2 gives a prime q /∈ S0∪S1∪Ram(L/K) and an n-Scholz

solution ψ to (8.15) such that Ram(ϕ) = Ram(ψ) ∪ {q}. The fixed field L∗ of Ker(ϕ)

is an n-Scholz extension of K with G(L∗/L) ∼= G and Ram(L∗/K) = Ram(ψ)∪ {q}. In

particular L∗/L ramifies. Hence, as L is regular over K0, so is L∗.

Now suppose that (8.13) holds. Then apply Lemma 8.5 to choose the exceptional

set S1 with primes of degree k. Here we follow the construction of Data 5.6 with r =

rankl(K) and s = rank∞(K) = 0. Let N∗ and wi be as in Lemma 5.5. Then we choose

a generator τi for G(N∗/Ni) and apply Lemma 8.5 to choose p∗i ∈ P r Ram(N∗/K)∪S0

such that
(N∗/K

p∗i

)
= Con(σi), i = 1, . . . , r.

In order to choose q /∈ S0 ∪ S1 ∪ Ram(L/K) as in Lemma 7.2 we have tp apply

Lemma 7.1. The latter Lemma chooses generators a1, . . . , as for KS modulo Kl
S , puts

N = L(ζln , l
√
a1, . . . , l

√
as) and chooses σ ∈ G(N/L(ζln)) in a special way (Part D, after
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the proof). Then it applies the Chebotarev density theorem to choose q ∈ P rS such

that either
(N/K

q

)
= 1 (in Part B) or

(N/K
q

)
= Con(σ) (in Part D). Since (8.13) holds, we

may apply Lemma 8.5, which is an effective version of the Chebotarev density theorem,

and choose q such that in addition to the above, deg(q) = k.

Finally, (8.14) follows from Lemma 8.3.
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9. Field of rational function

The case where K = Fq(t) is simpler than the general one. In this case, in the notation

of Data 8.1, we have

(9.1) d = 1, hK = 1, N∗ = Fq(t, ζln), Ram(N∗/K) = ∅, rankl(K) = 0, S1 = ∅, and

gK = 0. We take S0 as a finite set of primes of K/Fq which contains (t)∞.

Note that ζl /∈ K is equivalent to l - q − 1 and l 6= char(K) is equivalent to l - q. Thus

Theorem 8.6 specializes in this case to the following result:

Theorem 9.1: Let q be a prime power and let l be a prime such that l - (q − 1)q. Let

G be a group of order ln and let S0 be a finite set of primes of Fq(t) which contains

(t)∞. Then Fq(t) has an n-Scholz extension L which is regular over Fq such that

G(L/Fq(t)) ∼= G, |Ram(L/Fq(t))| = n, and such that each p ∈ S0 totally decomposes in

L. Moreover, let k be a multiple of dn such that k log q ≥ 4 log(8ln(1+n+ |S0|)). Then

we can choose L such that deg(p) = k for each p ∈ Ram(L/K) and 2gL−2 ≤ ln(nk−2).

By the primitive element theorem, there exists a Galois polynomial f ∈ Fq[t,X]

such that G(f(t,X),Fq(t)) ∼= G. The degree of f in X is of course ln. The following

result will enable us to choose f with bounded degree in t.

Lemma 9.2: Let K0 be an arbitrary field and consider a Galois extension L of K =

K0(t) of degree d which is regular over K0.

(a) Suppose that (t)∞ totally decomposes in L. Let p be a prime divisor of L/K0 which

divides (t)∞ and let x be an element of L such that (x)∞ = kp for some positive

integer k. Then x is integral over K0[t], L = K(x) and f = irr(x,K(t)) has the

form

(9.1) f(t,X) = Xd + a1(t)Xd−1 + · · ·+ ad(t).

with ai ∈ K0[t] and deg(ai(t)) ≤ deg(a1(t)) = k, i = 1, . . . , d.

(b) Conversely, suppose that x ∈ L and that f = irr(x,K(t)) is given by (9.1) such that

ai(t) ∈ K0[t], deg(a1(t)) > 0, and deg(ai(t)) ≤ deg(a1(t)), i = 1, . . . , d. Then (t)∞

totally decomposes in L.

Proof of (a): Denote the normalized valuation of L/K0 that corresponds to p by v.

Then v(x) = −k and w(x) ≥ 0 for each other valuation w of L/K0. In particular, since
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vσ 6= v, we have v(xσ−1
) = vσ(x) ≥ 0 for each σ ∈ G(L/K), σ 6= 1. Hence xσ−1 6= x for

each σ 6= 1, and therefore L = K(t, x).

In addition w(x) ≥ 0 if w(t) ≥ 0. Hence x is integral over K0[t]. In particular

f(t,X) = irr(x,K(t)) ∈ K0[t,X] is a monic polynomial in X. Since L/K is a Galois

extension, f(t,X) decomposes into distinct linear factors over L:

(9.2) f(t,X) =
∏
σ∈G

(X − xσ).

A comparison of (9.1) and (9.2) gives:

(9.3) ai(t) = (−1)i
∑

S∈Pi

∏
σ∈S

xσ

where Pi is the collection of all subsets of G of cardinality i. Note that v is unramified

overK. Hence the restriction of v toK coincides with the valuation v∞ that corresponds

to (t)∞. Since σ = 1 appears at most once in each of the summands
∏

σ∈S x
σ, and since

v(xσ) = 0 for σ 6= 1, this gives

−deg(ai(t)) = v∞(ai(t)) = v(ai(t)) ≥ min
S∈Pi

∑
σ∈S

v(xσ) = −k.

Also, −deg(a1(t)) = v∞(a1(t)) = v(−x−
∑

σ 6=1 x
σ) = v(x) = −k, as desired.

Proof of (b): Let k = deg(a1(t)). Then z = x/tk satisfies

(9.4) zd + b1(t)zd−1 + b2(t)zd−2 + · · ·+ bd(t) = 0,

where bi(t) = ai(t)/tik. As in (a), choose an extension v of v∞ to a valuation of L,

let e = e(v/v∞) and let p be a prime divsior of L/K0 that corresponds to v. Then

v(b1(t)) = 0 and v(bi(t)) = e(ik − deg(ai(t))) > 0 for i = 2, . . . , d. Hence reduction of

(9.4) modulo p gives z̄d−1(z̄ + b) = 0 for some 0 6= b ∈ K0. By Hensel’s Lemma, the

h(Z) = Zd + b1(t)Zd−1 + · · ·+ bn(t) has a root in the completion K0((t−1)) of K with

respect to (t)∞. Since L = K(z) is Galois over K, all roots of h(Z) are in K0((t−1)).

Conclude that (t)∞ totally decomposes in L.
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Lemma 9.3: Let K0 be an arbitrary field and consider a Galois extension L of K =

K0(t) of degree d which is regular over K0. Suppose that (t)∞ totally decomposes in

L. Then there exists x ∈ L which is integral over K0[t] such that L = K(x) and f =

irr(x,K(t)) = Xd + a1(t)Xd−1 + · · ·+ ad(t) with ai ∈ K0[t] such that 0 < deg(a1(t)) ≤

gL + 1 and deg(ai(t)) ≤ deg(a1(t)), i = 1, . . . , d.

Proof: Let G = G(L/K). By assumption (t)∞ =
∑

σ∈G pσ for some prime divisor

p of L and pσ 6= pτ if σ 6= τ . In particular deg(p) = 1. For each k consider the

vector space L(kp) = {x ∈ L‖(x) + kp ≥ 0} over K. We have dimL(0 · p) = 1 and

dimL((2gL−1)p) = g [FrJ, p. 20], L((k−1)p) ⊆ L(kp) and dimL(lp)−dimL(kp) ≤ l−k

if l ≥ k [FrJ, Chap. 2, Exer. 12]. In particular, dimL(kp) = 1 implies k ≤ g. Hence,

the first k for which dimL(kp) = 2 satisfies k ≤ g + 1. For this k there exists x ∈ L

such that (x)∞ = kp. By Lemma 9.2, x satisfies the requirements of the present lemma.
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10. Bounds

The goal of this section is to realize a given l-group G over Fq(t) with q large with a

bound on all parameters involved in the realization. This will enable us to use model

theory and to realize G over K0(t) for any pseudo finite field K0. In order to do this,

we need to speak about the set of ramified primes in the first order language of fields.

So, we have to express discriminants of field extensions in an elementary way.

Let R be a Dedekind domain with a quotient field K, let L be a finite Galois

extension of K with Galois group G = {σ1, . . . , σd}, and let S be the integral closure of

R in L. The discriminant of S/R is the ideal Disc(S/R) of R which is generated by all

determinants Det(σiwj)2 where w1, . . . , wd ∈ S are linearly independent over K. If p is

a prime ideal of R, we can compute the p-component of the discriminant by localizing

at p. That is Disc(S/R)Rp = Disc(Sp/Rp) [La2, p. 65]. The set of prime ideals of R

which ramify in L coincides with the set of prime divisors of Disc(S/R) [CaF, p. 22]. In

particular, if R = K0[t] for some field K0, and (t)∞ is unramified in L, then Ram(L/K)

consists of the prime divisors of Disc(S/R).

The discriminant of a monic polynomial f ∈ R[X] is given in terms of its roots

x1, . . . , xn by the formula Disc(f) = (−1)d(d−1)/2
∏

i 6=j(xi−xj). It is an element ofR and

equals (−1)d(d−1)/2NL/Kf
′(x1). One can compute Disc(f) in terms of the resultant of

f and its derivative by the formula Resultant(f, f ′) = (−1)d(d−1)/2Disc(f) [La4, p. 211].

Resultant(f, f ′) is a (2d − 1) × (2d − 1) determinant whose entries are the coefficients

of f and f ′. The only nonzero entries in the first column of this determinant are the

leading coefficients of f and f ′. In the case where R = K0[t], this leads to an estimate

on the degree of Disc(f):

(10.1) Suppose that R = K0[t] and char(K0) - d. If f ∈ K0[t,X] is a monic polynomial

of degree d in X and degt(f) ≤ m, then deg(Disc(f)) ≤ m2d−2.

If x is integral over K, L = K(x), and f = irr(x,K), then Disc(f) is a multiple

of Disc(S/R). If in addition S = R[x], then Disc(S/R) = Disc(f)R [CaF, p. 17]. This

situation occurs often in the local case as Lemma 10.1 reveals. Together with the local

nature of the discriminant, this gives us a tool to handle disciminants.
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Lemma 10.1: Let R be a discrete valuation ring of a field K with a maximal ideal p and

a perfect residue field K̄. Let L be a finite Galois extension of K with |K̄| ≥ [L : K].

Denote the integral closure of R in L by S. Then there exists x ∈ S, such that S = R[x].

Moreover, S has only finitely many nonzero prime ideals q1, . . . , qr. If x′ ∈ S satisfies

x′ ≡ x mod q2
i , i = 1, . . . , r, then S = R[x′].

Proof: Denote the valuation of K that corresponds to R by v. The ring S is a finitely

generated R-module [La2, p. 6] and has only finitely many prime ideals q1, . . . , qr. They

correspond to the extensions v1, . . . , vr of v to L. In particular each qi is a principal

ideal [La2, p. 15].

For each i let Ki be the decomposition field of qi over K and let Li be its inertia

field. Since K̄ is perfect, the residue fields satisfy K̄i = K̄ = R/p, L̄i = S/qi, and

[L̄i : K̄] = [Li : Ki] [Ser, p. 32]. For the same reason there exists yi ∈ S ∩ Li with

L̄i = K̄[ȳi]. Then gi = irr(yi,Ki) satisfies ḡi = irr(ȳi, K̄) and in particular ḡi
′(ȳi) 6= 0.

Observe that gi ∈ (S ∩ Li)[X].

We may replace each yi by yi + a with a ∈ R. Since ȳi has [Li : Ki] conjugates

over K̄ and since
∑r

i=1[Li : Ki] ≤ [L : K] ≤ |K̄|, we may assume, without loss, that

ȳ1, . . . , ȳr are pairwise nonconjugate over K̄. In other words, ḡ1, . . . , ḡr are distinct.

Choose now πi ∈ S such that vi(πi) = 1 and let xi = yi + πi. Then gi(xi) =

g′i(yi)πi + ci for some ci ∈ S with vi(ci) > 1. Hence vi(gi(xi)) = 1. Since R is vi-dense

in S ∩ Li, there exists hi ∈ R[X] such that vi(hi − gi) > 1. Then vi(hi(xi)) = 1.

Use the chinese remainder theorem to choose x ∈ S such that vi(x − xi) > 1,

i = 1, . . . , r. Then x modulo pi = qi ∩ R[x] generates L̄i. Also, with π′i = hi(x) ∈ R[x]

we have vi(π′i) = 1. It follows that qi = π′iS = piS and hence p1, . . . , pr are distinct.

Since q1, . . . , qr are the only nonzero prime ideals of S and qi ∩ R[x] = pi, qi is the

only prime ideal of S which lies over pi. Also, as S/R[x] is an integral extension, each

nonzero prime ideal of R[x] lies under some qi. Thus p1, . . . , pr are all nonzero prime

ideals of R[x].

It suffices now to prove that S = R[x]. To this end consider the local rings R[x]i =

R[x]pi and Si = Sqi . Then Si is the unique valuation ring of L that contains R[x]i. It

follows that Si is the integral closure of R[x]i in L [La3, p. 14]. Hence Si is a finitely
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generated R[x]i-Modul. Also, π′i generates the maximal ideal of Si and π′i ∈ R[x]i. By

construction, Si/π
′
iSi = L̄i = R[x]i/piR[x]i. It follows that Si = R[x]i + π′iSi. By

Nakayama’s Lemma, Si = R[x]i. Conclude that S =
⋂r

i=1 Si =
⋂r

i=1R[x]i = R[x].

Lemma 10.2 (Strong approximation theorem): Let L be a function field of one variable

over a field K0. Let Q be a finite set of primes of L/K0 and let q∞ be a prime of L/K0

which does not belong to Q. Suppose that for each q ∈ Q we are given an element

yq ∈ L and a positive integer mq. Suppose also that m satisfies

(10.2) m · deg(q∞) > 2gL − 2 +
∑
q∈Q

mq deg(q).

Then there exists y ∈ L such that vq(y − yq) ≥ mq for each q ∈ Q, vq∞(y) ≥ −m, and

vp(y) ≥ 0 for each prime p /∈ S ∪ {q∞}.

Proof: Consider the divisor a = mq∞ −
∑

q∈Qmqq of L/K0. In the adele ring A of

L/K0 consider the vector space

Λ(a) = {α ∈ A‖vp(α) + vp(a) ≥ 0 for every p}.

By (10.2), deg(a) > 2gL − 2. Hence, by the Riemann-Roch theorem, dim(A/(Λ(a) +

L)) = 0 [FrJ, Sec. 2.6]. It follows that A = Λ(a)+L. Define η ∈ A by ηq = yq for q ∈ Q

and ηp = 0 for p /∈ Q. Then there exists y ∈ L such that y − η ∈ Λ(a). This y satisfies

the requirements of the Lemma.

Notation 10.3: The set Fk(L/K). Let K0 be a field, let K = K0(t), let L be a Galois

extension of K of degree d, and let k be a positive integer. We define Fk(L/K0) to be

the set of all absolutely irreducible polynomials

h(T,X) = Xd + c1(T )Xd−1 + · · ·+ cd(T )

with ci(T ) ∈ K0[T ] such that 0 < deg(c1(T )) ≤ (k + d)2d, deg(ci(T )) ≤ deg(c1(T )),

i = 1, . . . , d, and L = K(z) with h(t, z) = 0.
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Lemma 10.4: Let K0 be a perfect field, R = K0[t], and K = K0(t). Consider a Galois

extension L of K of degree d > 1 which is regular over K0 and let S be the integral

closure of R in L.

Suppose that (t)∞ totally decomposes in L, char(K0) - d, and |K0| ≥ d. Suppose

that Fk(L/K) contains a polynomial f(T,X) = Xd + a1(T )Xd−1 + · · · + ad(T ) with

deg(a1(T )) = k > 0. Then the following two statements hold:

(a) There exists g ∈ Fk(L/K) such that

(10.3) Disc(S/R) = gcd(Disc(f(t,X)),Disc(g(t,X)))R.

(b) Let f1, g1 ∈ Fk(L/K) be polynomials such that

d1(t) = gcd(Disc(f1(t,X)),Disc(g1(t,X)))

divides Disc(h(t,X)) for each h ∈ Fk(L/K). Then Disc(S/R) = d1(t)R.

Proof of (a): The total degree of f(T,X) is k + d− 1. Hence, by [FrJ, Cor. 4.8]

(10.4) gL ≤
1
2
(k + d− 2)(k + d− 3) <

1
2
(k + d)2.

Denote the set of prime divisors of K/K0 which correspond to the irrreducible factors

of Disc(f(t,X)) by P and note that (t)∞ /∈ P . By (10.1)

(10.5)
∑
p∈P

deg(p) ≤ deg(Disc(f(t,X))) ≤ k2d−2.

For each p ∈ P consider the localization Rp and Sp of R and S, respectively, at p.

Then Rp is a discrete valuation ring with residue field which contains K0, and therefore

of cardinality at least d, and Sp is its integral closure in L. By Lemma 10.1 there exists

yp ∈ Sp such that Sp = Rp[yp]. Moreover, let Qp be the set of prime divisors of p in L.

Then, Sp = Rp[y] for each y ∈ Sp which satisfies vq(y − yp) > 1 for each q ∈ Qp. Since

p =
∑

q∈Qp
e(q/p)q, we have

(10.6)
∑

q∈Qp

deg(q) ≤
∑

q∈Qp

e(q/p) deg(q) = deg(p).
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Choose now a prime divsor q∞ of L which divides (t)∞ and let m = 2gL − 1 +∑
p∈P

∑
q∈Qp

2 deg(q). By (10.4), (10.5), and (10.6)

(10.7) m ≤ (k + d)2 + 2k2d−2 ≤ 3(k + d)2d−2 ≤ (k + d)2d

By assumption, deg(q∞) = 1. Hence, by Lemma 10.2 with Q =
⋃

p∈P Qp and mq = 2,

there exists y ∈ L such that vq(y − yp) ≥ 2 for each p ∈ P and each q ∈ Qp, vq∞(y) ≥

−m, and vq(y) ≥ 0 for each q /∈ Q ∪ {q∞}. Since vq(yp) ≥ 0 for each p ∈ P and each

q ∈ Qp, we have vq(y) ≥ 0 for each prime of q 6= q∞. Hence y ∈ S. Also, Sp = Rp[y] for

each p ∈ P . In particular L = K(y). Hence y /∈ K0 and therefore there exists a positive

integer k0 ≤ m such that (y)∞ = k0q∞.

Let g = irr(y,K) ∈ R[X]. Then g(t,X) is monic and Galois in X, and since L/K0

is regular, g(T,X) is absolutely irreducible. By Lemma 10.2(a) applied to y, g, and k0

instead of to x, f , and k and by (10.7), g(T,X) = Xd + b1(T )Xd−1 · · · + bd(T ) with

bi(T ) ∈ K0[T ] and deg(bi(T )) ≤ deg(b1(T )) = k0 ≤ m ≤ (k+d)2d. Hence g ∈ Fk(L/K).

In order to conclude the proof of (a) recall first that the left hand side of (10.3)

divides its right hand side. To prove the other direction consider a prime divisor p 6= (t)∞

of K/K0. Then we may identify p with a nonzero prime ideal of R. If p ∈ P , then

Disc(S/R)Rp = Disc(Sp/Rp) = Disc(Rp[y]/Rp) = Disc(g(t,X))Rp. If p /∈ P , then

vp(Disc(f(t,X))) = 0 and therefore vp(Disc(S/R)) = 0. Thus, in each case the value of

vp at both sides of (10.3) is the same. So, (a) holds.

Proof of (b): Again, Disc(S/R) divides both Disc(f1(t,X)) and Disc(g1(t,X)) and

therefore also d1(t). Conversely, by assumption, d1(t) divides both Disc(f(t,X)) and

Disc(g(t,X)). Hence, by (10.3), d1(t)|Disc(S/R). Conclude that Disc(S/R) = d1(t)R,

as desired.

Theorem 10.5: Let q be a prime power, let G be a group of order ln with l a prime,

and let t be a transcendental element over Fq. Suppose that l 6= char(Fq), ζl /∈ Fq, and

q > l4n+4. Then there exist absolutely irreducible polynomials f, g ∈ Fq[T,X] which

are monic and Galois in X such that

(a) f(T,X) = X ln + a1(T )X ln−1 + · · · + aln(T ), 0 < deg(a1(T )) ≤ 1
2nl

2n, and

deg(ai(T )) ≤ deg(a1(T )), i = 1, . . . , ln,
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(b) f(t,X) and g(t,X) have the same splitting field L over K = Fq(t); L is obtained

by adjoining one root of f(t,X) or of g(t,X) to K,

(c) L is a regular extension of Fq and G(L/K) ∼= G,

(d) g ∈ Fk(L/K), where k = deg(a1(T )),

(e) (t)∞ totally decomposes in L; in particular, L has ln prime divisors of degree 1,

(f) gL < 1
2nl

2n,

(g) |Ram(L/K)| = n and deg(p) = [Fq(ζln) : Fq] for each p ∈ Ram(L/K),

(h) Let R = K0[t] and let S be the integral closure of R in L. Then Disc(S/R) =

gcd(Disc(f(t,X)),Disc(g(t,X)))R. Thus Ram(L/K) consists of those primes 6=

(t)∞ of K/K0 that divide both Disc(f(t,X)) and Disc(g(t,X)).

Proof: Assume without loss that n ≥ 1. Since ζl /∈ Fq, we have l ≥ 3 and 2 ≤ dn =

[Fq(ζln) : Fq] ≤ ln. Then qdn/4 ≥ q1/2 > l2+2n > 8ln(2 + n). Hence, Theorem 9.1 with

k = dn and S0 = {(t)∞} gives a Galois extension L of K with G(L/K) ∼= G which is

regular over Fq such that 2gL−2 ≤ ln(ndn−2), |Ram(L/K)| = n, deg(p) = dn for each

p ∈ Ram(L/K) and (t)∞ totally decomposes in L. Hence gL < 1
2nl

2n and so (f) is true.

By Lemma 9.3, there exists x ∈ L which is integral over Fq[t] such that L = Fq(t, x)

and f(t,X) = irr(x,K) satisfies (a). In particular f(t,X) is monic and Galois in X.

Since L/Fq is regular, f(T,X) is absolutely irreducible.

Since q > l4n+4 > ln = [L : K], Lemma 10.4, with d = ln gives an absolutely

irreducible polynomial g ∈ Fk(L/K) such that Disc(S/R) is the greatest common di-

visor of the ideal of Fq[t] generated by Disc(f(t,X)) and Disc(g(t,X)). Since (t)∞ is

unramified in L this gives (h) and concludes the proof of the theorem.
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11. Pseudo finite fields

A field K0 is pseudo finite it satisfies one of the following equivalent conditions [Ax,

Thm. 9]:

(11.1a) K0 is a perfect, G(K0) ∼= Ẑ, and each nonempty absolutely irreducible variety

which is defined over K0 has a K0-rational point (Thus, in the terminology of

[FrJ], K0 is a perfect, 1-free PAC field.)

(11.1b) Every elementary statement about fields which is true in all but finitely many

finite fields is true in K0.

(11.1c) K0 is an infinite model of the theory of finite fields.

Fried and Völklein [FrV] prove that if K0 is a PAC field of characteristic 0 and

G is a finite group, then K = K0(t) has a Galois extension L which is regular over K0

such that G(L/K) ∼= G. The same result without any restriction on the characteristic

follows from a theorem of Harbater [Har] by an observation of Florian Pop [private

communication]. However, in none of these results there is a bound on the cardinality

of Ram(L/K) in terms of G. The following result suggests such a bound in the case

where K0 is pseudo finite and G is an l-group such that l - char(K0) and ζl /∈ K0.

Theorem 11.1: Let K0 be a pseudo finite field and let G be a group of order ln with a

prime l. Suppose that l 6= char(K0) and ζl /∈ K0. Let dn = [K0(ζln) : K0]. Then there

exist absolutely irreducible polynomials f, g ∈ K0[T,X] which are monic and Galois in

X such that

(a) f(T,X) = X ln + a1(T )X ln−1 + · · · + aln(T ), with 0 < deg(a1(T )) ≤ 1
2nl

2n, and

deg(ai(T )) ≤ deg(a1(T )), i = 1, . . . , ln;

(b) f(t,X) and g(t,X) have the same splitting field L over K = K0(t);

(c) L is a regular extension of K0 and G(L/K) ∼= G;

(d) g ∈ Fk(L/K) where k = deg(a1(T )) (Notation 11.3) and degT g ≤ ( 1
2nl

2n + ln)2ln ;

(e) gL < 1
2nl

2n;

(f) (t)∞ totally decomposes in L;

(g) |Ram(L/K)| = n and deg(p) = [K0(ζln) : K0] for each p ∈ Ram(L/K);

(h) Let R = K0[t] and let S be the integral closure of R in L. Then Disc(S/R) =

gcd(Disc(f(t,X)),Disc(g(t,X))). In particular Ram(L/K) consists of the primes
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6= (t)∞ of L/K0 that divides both Disc(f(t,X)) and Disc(g(t,X)).

Proof: Let dn be a divisor of (l−1)ln−1 and let 2 ≤ k ≤ 1
2nl

2n. Denote the conjunction

of the following elementary statements on K0 by θ(dn, k) (see [FrJ, proof of Lemma 10.8]

for the absolute irreduciblity and [FrJ, Prop. 18.2] for the statement about the Galois

group):

(11.2a) l 6= char(K0), ζl /∈ K0, and dn = [K0(ζln) : K0].

(11.2b) There exist absolutely irreducible polynomials f, g ∈ K0[T,X] which are monic

and Galois in X such that f(T,X) = X ln + a1(T )X ln−1 + · · · + aln(T ) with

deg(ai(T )) ≤ deg(a1(T )) = k, i = 1, . . . , ln, f(t,X) and g(t,X) have the same

splitting field L over K = K0(t) with G(L/K) ∼= G, g ∈ Fk(L/K), and d(t) =

gcd(Disc(f(t,X)),Disc(g(t,X))) divides Disc(h(t,X)) for each h ∈ Fk(L/K),

and d(t) has exactly n distinct irreducible divisors, each of them of degree dn.

Let θ be the disjunction of all the above θ(dn, k)’s. By Theorem 10.5, for all but finitely

many prime powers q the statement θ, with K0 replaced by Fq, is true Fq. Hence, by

(11.1b), θ is true in K0. So, there exist dn and k such that θ(dn, k) is true in K0. In

particular (a), (b), (c), and (d) are true. By Lemma 9.2(b), (t)∞ totally decomposes

in L. Hence, by Lemma (10.4a), and with the notation of (11.2b), Disc(S/R) = d(t)R.

In particular the primes in Ram(L/K) correspond to the irreducible divisors of d(t).

Hence (g) is true. Finally, by Lemma 8.3, 2gL − 2 ≤ [L : K](−2 + deg(Ram(L/K)) =

ln(−2 + ndn) ≤ nl2n. So, (e) is also true.

The absolute Galois group G(F ) of a field F admits a unique normalized Haar

measure. In the following Corollary we use the expression “almost all” with respect to

this measure. For each σ ∈ G(F ) we deonte the fixed field of the unique extension of σ

to F̃ by F̃ (σ).

Corollary 11.2: Let F be a countable Hilbertian field. Then for almost all σ ∈ G(F ),

the field K0 = F̃ (σ) satisfies the conclusion of Theorem 11.1.

Proof: By [FrJ, Thm. 18.14], F̃ (σ) is a pseudo finite field for almost all σ ∈ G(F ).

Now apply Theorem 11.1.
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12. Zl-extensions

We have proved that if K0 is a finite field or if K0 = F̃ (σ) where F is a global field,

σ ∈ G(F ) is taken at random, and ζl /∈ K0, then for each l-group G there exists a Galois

extension L of K = K0(t) which is regular over K0 such that G(L/K) ∼= G. We then

say that G is regular over K0.

If K is a function field of one variable over a finite field K0 with l - char(K0), then

it has no Galois extension L which is regular over K0 such that G(L/K) ∼= Zl [GeJ,

Thm. 1.1]. In particular, Zl is not regular over K0. Since K0 has a unique extension

with Galois group Zl, K has a unique Zl-extension.

Iwasaswa proves [Iwa, Thm. 2] that a number field K has at most n = [K : Q]

linearly independent Zl extensions. In particular, Zn+1
l is not realizable over K. For

a finitely generated field K of positive characteristic [GeJ, Thm. 1.1] says that K has

exactly one Zl extension. Thus the realization results of finite l-groups do not generalize

to pro-l groups.

The goal of this section is to prove an analog of these results for almost all field

F̃ (σ), where F is a global field.

Lemma 12.1: LetK be a function field of one variable over a fieldK0 with char(K0) 6= l.

Let L1/K be a cyclic extension of degree l such that L1 is regular over K0. Suppose

that L1 is contained in a cyclic extension Ln of K of degree ln. Suppose that p is a

prime of K/K0 which ramifies in L1. Then p totally ramifies in Ln and its residue field

contains K0(ζln). In particular |Ram(L1K̃0/KK̃0| ≥ [K0(ζln) : K0].

Proof: Denote Ln by L. The inertia group Ip(L1/K) of p coincides with G(L1/K).

Since resL1 : G(L/K) → G(L1/K) maps Ip(L/K) onto Ip(L1/K), we have Ip(L/K) =

G(L/K). In other words, p totally ramifies in L.

Let K̂p be the completion of K at p and let L̂p = LK̂p. Then L̂p/K̂p is a cyclic

totally and tamely ramified extension of complete discrete valuation fields. Hence ζln ∈

K̂p [CaF, p. 32] and therefore ζln ∈ K̄p. It follows that there are at least [K0(ζln) : K0]

distinct primes p̃ of KK̃0 which lie over p. Each of them totally ramifies in LK̃0 and

therefore also in L1K̃0. Thus |Ram(L1K̃0/KK̃0)| ≥ [K0(ζln) : K0].
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Proposition 12.2: Let K be a function field of one variable over a field K0 of char-

acteristic 6= l such that [K0(ζln) : K0] is unbounded. Then K has no ramified Galois

extension L which is regular over K0 such that G(L/K) ∼= Zl. In particular, Zl is not

regular over K0.

Proof: Assume that there exists L as above. Then L is the ascending union of Ga-

lois extensions Ln of K with G(Ln/K) ∼= Z/lnZ. Each Ln is a regular extension of

K and for large m, Lm+1/Lm is ramified. Replace K by such Lm, if necessary to

assume that L1/K is ramified. By Lemma 12.1, [K0(ζln) : K0] ≤ |Ram(L1K̃0/KK̃0)|,

a contradiction.

Finally recall that if K = K0(t), then L1/K is ramified [FrJ, Prop. 2.15]. Hence,

K admits no Zl-extension L which is regular over K0.

Proposition 12.3: Let F be a global field of characteristic 6= l. Then for almost all

σ ∈ G(F ), the group Zl is not regular over F̃ (σ).

Proof: Let N = F (ζl, ζl2 , ζl3 , . . .). Then N = KL with K ∩ L = F , G(K/F ) ∼= Zl,

and G(L/F ) = A is a finite group. Thus G(N/F ) = G(N/K)×G(N/L). If H is a finite

subgroup of G(N/F ), then its projection on G(N/L) is also finite and therefore trivial.

Thus H ≤ G(N/K). It follows that if for some σ ∈ G(F ) the degree [F̃ (σ)(ζln) : F̃ (σ)] is

bounded, then G(N/N ∩ F̃ (σ)) is finite and therefore K ⊆ F̃ (σ). Since K/F is infinite,

almost no σ ∈ G(F ) satisfies the latter condition. Hence, for almost all σ ∈ G(F ),

[F̃ (σ)(ζln) : F̃ (σ)] is unbounded. For each of these σ, Proposition 12.2, asserts that Zl

is not regular over K0.

50



13. Appendix: Effective form of the Chebotarev density theorem

Lemma 5.2 uses an effective form of the Chebotarev density theorem for function fields.

One may find such a form in [FrJ, §5.4] and in [HKo]. Unfortunately, the proof of [FrJ,

Prop 5.16] applies [FrJ, Lemma 5.14] in a faulty way. Indeed, on [FrJ, page 63, line

-3] d should be replaced by md. The same mistake occurs in [HKo]. We therefore take

this opportunity to correct the mistake and at the same time to improve the estimate

of [FrJ, Prop 5.16].

Data 13.1: We fix the following notation for the whole section.

q = a power of a prime number

t = a transcendental element over Fq

K = a finite separable extension over Fq(t) which is regular over Fq

d = [K : Fq(t)]

L = a finite Galois extension of K

Fqn = the algebraic closure of Fq in L

P(K) = the set of all prime divisors of K/Fq

P′(K) = {p ∈ P(K) | p is unramified over Fq(t) or in L}

Pk(K) = {p ∈ P(K) | deg(p) = k}

P′k(K) = {p ∈ P′(K) | deg(p) = k}

C = a conjugacy class in G(L/K); c = |C|

Ck(L/K, C) = {p ∈ P′k(K) |
(L/K

p

)
= C}

Our first result improves [FrJ, Lemma 5.14].

Lemma 13.2: Suppose that L = KFqn , C = {τ}, and τ |Fqn = ϕ. Then

(13.1) |#C1(L/K, C)− q| < 2(gL
√
q + gL + d).

Proof: Note first that C1(L/K, C) = P′1(K) and that each p ∈ P(K) is unramified in L.

Thus, P1(K) rC1(L/K, C) consists exactly of all prime divisors of Different(K/Fq(t)).

By the Riemann-Hurwitz genus formula, deg(Different(K/Fq(t)) = 2(gK + d− 1) [FrJ,

P. 24]. By Weil’s theorem |#P1(K) − (q + 1)| ≤ 2gK
√
q [FrJ, Thm. 3.14]. Hence,
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|#C1(L/K, C) − q| ≤ 2gK
√
q + 1 + 2(gK + d − 1). Since gK = gL, this proves (13.1).

Next we improve [FrJ, Lemma 5.15]. Here we use the notation ‘a pd b’ to mean

‘a properly divides b’.

Lemma 13.3: Let K ′ be an extension of K of degree km which contains Fqk . For each

q ∈ P(K ′) we denote the prime of K which lies under q by qK . Then

(13.2) #{q ∈ P(K ′) | deg(qK) pd k} ≤ m(qk/2 + (3gK + 1)qk/4).

Proof: If j|k and p ∈ P(K), then Fqj ⊆ Fqk and therefore p decomposes in KFqj into

j prime divisors of degree 1. Each of them has exactly one extension to KFqk and the

latter decomposes in K ′ into at most m prime divisors. Hence, by Weil’s theorem

#{q ∈ P(K ′) | deg(qK) pd k} ≤ m
∑

j≤k/2

1
j
|P1(KFqj )|(13.3)

≤ m
∑

j≤k/2

1
j
(qj + 2gKq

j/2 + 1).

Induction on k shows that for q ≥ 2

(13.4)
∑

j≤k/2

qj

j
≤ qk/2.

A direct check for k ≤ 5 and an induction for k ≥ 6 shows that for q ≥ 9
7

(13.5)
∑

j≤k/2

qj

j
≤ 3

2
qk/2.

If q is a power of a prime, then q1/2 ≥
√

2 ≥ 9/7. Hence, (13.2) is a consequence of

(13.3), (13.4), and (13.5).

Finally we improve [FrJ, Prop. 5.16].

Proposition 13.4: In the notation of Data 13.1 let a be a positive integer and let

τ be an element of C such that τ |Fqn = ϕa. Let k be a positive integer such that

k ≡ a mod n. Then

(13.6) |#CK(L/K, C)− c

km
qk| < c

km

[
(m+2gL)qk/2 +m(3gK +1)qk/4 +2(gL +dm)

]
.
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Proof: Let n′ = nk · ord(τ) and extend L to L′ = LFqn′ . Then [L′ : KFqn′ ] =

[L : KFqn ] = m. Since k ≡ a mod n there exists τ ′ ∈ G(L′/K) such that τ ′|L = τ

and τ ′|F
qn′ = ϕk. Then ord(τ ′) = lcm(ord(τ), ord(ϕk)) = lcm(ord(τ), [Fqn′ : Fqk ]) =

lcm(ord(τ), n · ord(τ)) = n · ord(τ). Denote the conjugacy class of τ ′ in G(L′/K) by C′.

By [FrJ, Lemma 5.12(c)], Ck(L′/K, C′) = Ck(L/K, C).

Denote the fixed field of τ ′ in L′ by K ′. Then K ′ ∩ Fqn′ = K ′ ∩ F̃q = Fqk and

K ′Fqn′ = L′.

K ′ ord(τ ′)
L′

m m

K KFqk KFqn′

d d

Fq(t) Fqk(t) Fqn′ (t)

Fq Fqk Fqn′

Then [K ′ : KFqk ] = [L : KFqn′ ] = m and therefore [K ′ : Fqk(t)] = dm. By [FrJ, Cor.

5.11] applied to L′, K, C′, {τ ′}, k instead of F , E, C, C′, r,

|Ck(L′/K, C′)| = c

[K ′ : K]
|C1(L′/K ′, {τ ′}) r{q ∈ P(K ′) | deg(qK) pd k}|.

Since [K ′ : K] = km, we have by Lemma 13.3,

|#Ck(L′/K, C′)− c

km
#C1(L′/K ′, {τ ′})| ≤ c

km
#{q ∈ P(K ′) | deg(qK) pd k}(13.7)

≤ c

km
·m(qk/2 + (3gK + 1)qk/4)

By Lemma 13.2 applied to K ′, L′, n′, τ ′, qk instead of to K, L, n, τ , q

(13.8) |#C1(L′/K ′, {τ ′})− qk| < 2(gL′q
k/2 + gL′ + dm).

Multiply (13.8) by c
km and replace gL′ by gL. Then replace CK(L′/K, C′) in(13.7) by

Ck(L/K, C). Finally combine the two inequalities obtained in this way to (13.6).
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Corollary 13.5: If in the situation of Proposition 13.4

(13.9) k log q ≥ max{2 log(gL + dm), 4 log(3gK + 1)},

then

(13.10) |#Ck(L/K, C)− c

km
qk| < 2c

km
(m+ gL + 1)qk/2.

Proof: By (13.9), 3gK + 1 ≤ qk/4 and gL + dm ≤ qk/2. Hence

(m+ 2gL)qk/2 +m(3gK + 1)qk/4 + 2(gL + dm) ≤ (m+ 2gL +m+ 2)qk/2.

Now combine this inequality with (13.6) to get (13.10).
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