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Introduction

The goal of this note is to consider a certain natural family of closed normal subgroups

of G(Q) and to prove that each group in this family is free. More generally, consider

a countable separably Hilbertian field K. Denote the absolute Galois group of K by

G(K). Then, for almost all σ ∈ G(K)e the field Ks(σ) is PAC and e-free [FJ2, Thms.

16.13 and 16.18]. Here Ks is the separable closure of K and Ks(σ) is the fixed field of σ

in Ks. Being PAC means that every nonvoid absolutely irreducible variety defined over

Ks(σ) has a Ks(σ)-rational point. We say that Ks(σ) is e-free if G(Ks(σ)) (i.e., the

closed subgroup 〈σ1, . . . , σe〉 of G(K) generated by σ1, . . . , σe) is free on e generators.

Denote the largest Galois extension of K which is contained in Ks(σ) by Ks[σ].

It is the intersection of all K-conjugates of Ks(σ) and also the fixed field of the smallest

closed normal subgroup of G(K) which contains σ1, . . . , σe. If char(K) = 0, then, for

almost all σ ∈ G(K)e the field Ks[σ] is PAC [FJ2, Thm. 16.47]. Lemma 1.2 below

generalizes this result to arbitrary characteristic. If we knew that Ks[σ] is separably

Hilbertian, then a theorem of Fried-Völklein and Pop would imply that Ks[σ] is ω-

free. That is, G(Ks[σ]) is isomorphic to the free profinite group F̂w on countably many

generators. Unfortunately, it is not clear how to prove the Hilbertianity of almost

all Ks[σ] directly. So, we use instead a forerunner to the above mentioned theorem

of Fried-Völklein-Pop and a recent theorem of Neumann [Neu] to prove directly that

G(Ks[σ]) ∼= F̂ω for almost all σ ∈ G(K)e. A theorem of Roquette, then implies that

Ks[σ] is also separably Hilbertian.

Let K̃ be the algebraic closure of K. Denote the maximal purely inseparable

extension of Ks[σ] by K̃[σ]. Then, for almost all σ ∈ G(K)e, the field K̃[σ] is PAC

and ω-free. If K is a given finitely generated field, this information leads, via Galois

stratification, to a primitive recursive decision procedure for the elementary theory of

the family of almost all fields K̃[σ].

Acknowledgement: The author is indebted to Aharon Razon and Dan Haran for

critical reading which led to improvement of an earlier version of this work.
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1. The field Ks[σ1, . . . , σe]

Let G be a profinite group, and let σ = (σ1, . . . , σe) be an e-tuple of elements of G.

The closed subgroup generated by σ is usually denoted by 〈σ〉. We denote the closed

normal subgroup of G generated by σ by [σ]G or by [σ] if G is clear from the

context. It is the closed subgroup 〈στ
i | τ ∈ G, i = 1, . . . , e〉. It is also the intersection

of all closed normal subgroups of G which contain σ1, . . . , σe.

Let A be a normal subgroup of G. We say that A is normally generated in

G by e elements if there exist σ1, . . . , σe ∈ G such that A = [σ]G. If G is normally

generated in itself by e elements, we just say that G is normally generated by e

elements.

If τ = (τ1, . . . , τf ) is an f -tuple of elements of G, then, by definition, [σ, τ ] =

[σ] · [τ ]. If h: H → G is an epimorphism of profinite groups, then h〈σ〉 = 〈h(σ)〉 and

h([σ]H) = [h(σ)]G. If G is abelian, then [σ] = 〈σ〉.

Let now N/K be a Galois extension, G = G(N/K) and σ ∈ Ge. Then N(σ) is

the fixed field of σ in N , and N [σ]K (or N [σ], if K is clear from the context) is the

maximal Galois extension of K which is contained in N(σ). It is also the fixed field of

[σ] in N . For each τ ∈ Gf we have N [σ] ∩N [τ ] = N [σ, τ ]. If N ′ is a Galois extension

of K which contains N , σ′ ∈ G(N ′/K)e and σ = resNσ′, then N ∩ N ′[σ′] = N [σ].

In particular if N = Ks, then Ks[σ] is the maximal Galois extension of K which is

contained in Ks(σ).

Recall [FJ2, p. 381] that a field M is ω-free if every finite embedding problem for

G(M) is solvable. If in addition G(M) has rank ≤ ℵ0 and in particular if M is countable,

then the latter condition is equivalent to G(M) ∼= F̂ω (Iwasawa [FJ2, Cor. 24.2]).

Our goal in this section and in the next one is to prove that if K is a countable

separably Hilbertian field, then for almost all σ ∈ G(K)e the field Ks[σ] is ω-free and

PAC.

One of the two major ingredients in the proof is Proposition 1.1 below. It has been

first proved for fields K of characteristic 0 in [FJ1, Thm. 3.4] and then has been gener-

alized to infinite perfect fields in [GeJ, Cor. I]. Finally Neumann [Neu] has completed

the proof for arbitrary K.
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Recall that a field extension F/K is regular if F is linearly disjoint from K̃ over

K. If F/K is finitely generated, then this condition is equivalent to ‘K is algebraically

closed in F and F/K has a separating transcendence base’ [FJ2, §9.2].

Proposition 1.1: Let F be a finitely generated regular extension of a field K. Then

there exist a positive integer n and a separating transcendence base t1, . . . , tr for F/K

such that the Galois closure F̂ of F/K(t) is regular over K and G(F̂ /K(t)) is isomorphic

to the symmetric group Sn.

The transcendence base t1, . . . , tr of Proposition 1.1 is called a stabilizing base

for F/K.

Lemma 1.2: Let K be a countable separably Hilbertian field. Then, Ks[σ] is PAC for

almost all σ ∈ G(K)e.

Proof: The special case of the lemma in which char(K) = 0 is stated as Theorem

16.47 of [FJ2]. The general case is proved in the same way, using Proposition 1.1. We

reproduce the proof here for the convenience of the reader.

By [FJ2, Thm. 10.4], it suffices to prove that each absolutely irreducible variety

V defined over K has a Ks[σ]-rational point for almost all σ ∈ G(K)e. So, let x =

(x1, . . . , xn) be a generic point of V over K and consider the function field F = K(x)

of V over K. It is a regular extension of K. Let t = (t1, . . . , tr) be a stabilizing base for

F/K (Proposition 1.1) and let F̂ be the Galois closure of F/K(t). Choose a primitive

element y for F̂ /K(t) which is integral over K[t]. Since F̂ /K is a regular extension,

irr(y, K(t)) = f(t, Y ) is an absolutely irreducible polynomial.

The discriminant of f(t, Y ) is a nonzero polynomial d ∈ K[t]. Write xj =

pj(t, y)/p0(t) with pj ∈ K[t, Y ], j = 1, . . . , n, and 0 6= p0 ∈ K[t]. Let y(1), . . . , y(s)

be the conjugates of y over K(t). Write y(k) = qk(t, y)/q0(t) with qk ∈ K[t, Y ], k =

1, . . . , s, and 0 6= q0 ∈ K[t]. Since K is separably Hilbertian, we may use [FJ2, Cor. 11.7]

and inductively construct a sequence of points (ti, yi) such that ti ∈ Kr, the polynomial

f(ti, Y ) is irreducible over K(y1, . . . , yi−1), f(ti, yi) = 0, and d(ti)p0(ti)q0(ti) 6= 0.

Then Li = K(yi) is a Galois extension of degree s, with G(Li/K) ∼= G(F̂ /K(t))

[Lan, p. 248, Prop. 15]. Also, with xij = pj(ti, yi)/p0(ti), the point xi = (xi1, . . . , xin)
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belongs to V (Li). Finally, the sequence L1, L2, L3, . . . of Galois extensions is linearly

disjoint over K.

By [FJ2, Lemma 16.11], for almost all σ ∈ G(K)e there exists i such that Li ⊆

Ks(σ). Since Li is Galois, it is contained in Ks[σ]. In particular, xi is Ks[σ]-rational.

Lemma 1.3: Let K be a separably Hilbertian field. For almost all (σ, τ) ∈ G(K)e+1,

the field Ks[σ, τ ] is properly contained in Ks[σ].

Proof: For each finite abelian group A, [FJ2, Lemma 24.46] gives a purely transcen-

dental extension E = K(t1, . . . , tr) of K and a Galois extension F of E which is regular

over K such that G(F/E) ∼= A. Since K is separably Hilbertian, [FJ2, Lemma 15.8]

allows us to specialize t infinitely many times onto an r-tuple with coordinates in K and

to get a linearly disjoint sequence L1, L2, L3, . . . of Galois extensions of K with Galois

group A.

Apply this construction to A = (Z/2Z)e+1. For each i let σi1, . . . , σie, τi be a

system of generators for G(Li/K). For almost all (σ, τ) ∈ G(K)e+1 there exists i such

that resLi
(σ, τ) = (σi, τi) [FJ2, Lemma 16.11]. Since A is not generated by e elements

and since A is abelian, K = Li(σi, τi) = Li[σi, τi] is properly contained in Li(σi) =

Li[σi]. Hence, if (σ, τ) is as above, Li[σi, τi] = Li ∩Ks[σ, τ ] and Li[σi] = Li ∩Ks[σ].

So, Ks[σ, τ ] ⊂ Ks[σ]. This concludes the proof of the lemma.

The following result is a special case of [FJ2, Cor. 12.15].

Proposition 1.4 (Weissauer): Let N be a Galois extension of a separably Hilbertian

field K. Then every proper finite separable extension M of N is separably Hilbertian.

Proposition 1.5 ([FV2, Thm. A] for characteristic 0 and [Pop, Thm. 1] for arbitrary

characteristic): Every PAC separably Hilbertian field is ω-free.

Lemma 1.6: Let K be a countable separably Hilbertian field. Then, for almost all

σ ∈ G(K)e, the field Ks[σ] is a Galois extension of an ω-free PAC field.

Proof: By Lemmas 1.2 and 1.3, almost all (σ, τ) ∈ G(K)e+1 have these properties:

(1a) Ks[σ, τ ] is PAC, and
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(1b) Ks[σ] is a proper extension of Ks[σ, τ ].

So, Ks[σ, τ ] has a proper finite extension M which is contained in Ks[σ]. By Proposition

1.4, M is separably Hilbertian. Since by (1a), M is a separable algebraic extension of

a PAC field, it is itself PAC [FJ2, Cor. 10.7]. Conclude from Proposition 1.5 that M is

ω-free.
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2. The absolute Galois group of Ks[σ1, . . . , σe]

By Lemma 1.6 and by [FJ2, Cor. 24.4], for almost all σ ∈ G(K)e the group [σ] has the

embedding property. That is, every finite embedding problem (ϕ: [σ] → A, α: B →

A) has a solution provided B is a quotient of [σ]. Thus, in order to prove that Ks[σ] is

ω-free, it would suffice now to prove that each finite group is realizable over it. This, I

have not been able to do. Fortunately, the following result of Melnikov allows us to get

away with less:

Lemma 2.1: A closed normal subgroup N of F̂ω is isomorphic to F̂ω if and only if the

following groups are quotients of N :

(a) Sn, for each finite nonabelian simple group S and for each positive integer n; and

(b) Z/pZ, for each prime number p.

Proof: For each finite simple group S let MS(N) be the intersection of all open normal

subgroups M of N such that N/M ∼= S. Then N/MS(N) ∼= Sm, where m is a cardinal

number between 0 and ℵ0, which we denote by rN (S). If S = Z/pZ, then rN (S) is

either 0 or ℵ0 [Mel, Thm. 3.2]. Hence, if all finite groups in (a) and (b) are quotients

of N , then rN (S) = ℵ0 for all S. In addition rF̂ω
(S) = ℵ0 for all S. Since the function

rN (S) characterizes N among all closed normal subgroups of F̂ω up to an isomorphism

[Mel, Thm. 3.1], this implies that N ∼= F̂ω.

It is a consequence of the realizability of the symmetric groups over a Hilbertian

field K, that for each finite group G there exists a finite separable extension L of K

over which G is realizable. Harbater [Ha1, Prop. 1.4] (and possibly others) observed

that if K is a number field, then the Riemann existence theorem implies that L can be

chosen to be Galois over K. Since for each field K (even if char(K) > 0), each finite

group G occurs as a Galois group over Ks(t) [Ha2, Cor. 1.5] (See also a recent more

elementary proof of this result by Haran and Völklein [HV].), the same conclusion holds

now for each Hilbertian field K, irrespective of its characteristic. Proposition 2.3 below

uses Propositions 1.1 and 2.2 to strengthen the above result.

Given a finite group G and a positive integer r, Fried and Völklein [FV1] paramet-

rize all Galois covers of the projective line over C with Galois group G and with r branch
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points by a nonsingular algebraic set over Q. They show that for each G there is some

r such that this set has an absolutely irreducible component H defined over Q. In

particular H has the realization property with respect to G over each field K of

characteristic 0: Let u be a transcendental element over K. If H(K) is nonempty, then

K(u) has a Galois extension N which is regular over K such that G(N/K(u)) ∼= G.

The existence of such a variety for fields of arbitrary characteristic is a consequence

of a theorem of Harbater:

Proposition 2.2: Let K be a field and let G be a finite group. Then there exists

an absolutely irreducible variety H which is defined over K and with the realization

property with respect to G over every extension of K.

Proof: Consider the field of formal power series E = K((t)). By [Ha1, Thm. 2.3], [Liu],

or [HaV, Thm. 4.4], E(u) has a Galois extension F which is regular over E such that

G(F/E(u)) ∼= G. Choose a primitive element z for F/E(u) which is integral over E[u].

Since F/E is a regular extension, f(u, Z) = irr(z,E(u)) is an absolutely irreducible

polynomial with coefficients in E.

Let z1, . . . , zs be all conjugates of z over E(u). Then zi = pi(u, z)/p0(u) with

polynomials pi ∈ E[u, Z], i = 1, . . . , s, and 0 6= p0 ∈ E[u]. Also, the discriminant of

f(u, Z) is a nonzero polynomial d ∈ E[u].

Let x1, . . . , xn be all the elements of E which appear in the coefficients of f, p0,

p1, . . . , ps, d. Let g0, g1 ∈ K[X] be polynomials such that g0(x) is a nonzero coefficient

of p0(u) and g1(x) is a nonzero coefficient of d(u). Finally let h ∈ K[X, u, Z] be a

polynomial such that h(x, u, Z) = f(u, Z).

By Bertini-Noether theorem [FJ2, Prop. 8.8] there exists a nonzero polynomial

g2 ∈ K[X] such that for each extension L of K which is algebraically independent of

K(u) over K and for each specialization a ∈ Ln of x such that g2(a) 6= 0, the polynomial

h(a, u, Z) is absolutely irreducible. In particular, if z̄ satisfies h(a, u, z̄) = 0, then L(u, z̄)

is a regular extension of L. If in addition g0(a)g1(a) 6= 0, then L(u, z̄)/L(u) is a Galois

extension with Galois group isomorphic to G (use [Lan, p. 248, Prop. 15]).

Finally, note that E is a regular extension of K (e.g., K[[t]] is a valuation ring
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with residue field K; now use [Jar, Lemma 1.2]). Hence K(x) is also a regular extension

of K. Let g = g0g1g2 and y = g(x)−1. Then (x, y) generates an absolutely irreducible

variety H over K.

Let now L be an extension of K and let (a, b) ∈ H(L). Then a is an L-

specialization of x and g(a) 6= 0. Assume without loss that u is transcendental over

L. Hence, by the preceding paragraph, L(u) has a Galois extension with Galois group

isomorphic to G. Conclude that H has the realization property over L.

Proposition 2.3: Let K be a separably Hilbertian field and let G be a finite group.

Then there exists a positive integer n and there exists a linearly disjoint sequence

L1, L2, L3, . . . of Galois extensions of K with G(Li/K) ∼= Sn, i = 1, 2, 3, . . ., such that

for each i, Li has a linearly disjoint sequence Li1, Li2, Li3, . . . of Galois extensions with

G(Lij/Li) ∼= G, j = 1, 2, 3, . . . .

Proof: Let H be a variety defined over K with the realization property with respect

to G over each extension of K (Proposition 2.2). Let x be a generic point of H over K

and consider the function field F = K(x) of H over K. It is a regular extension of K

of, say, transcendence degree r. Take the integer n and the stabilizing base t1, . . . , tr for

F/K that Proposition 1.1 provides. Thus, the Galois closure F̂ of F/K(t) is a regular

extension of K and G(F̂ /K(t)) ∼= Sn.

Since K is separably Hilbertian, we may specialize t into K in infinitely many

ways and get a linearly disjoint sequence L1, L2, L3, . . . of Galois extensions of K with

G(Li/K) ∼= Sn and with a point xi ∈ H(Li) [FJ2, Lemma 15.8].

By the realization property of H, for each i, the field Li(u) has a Galois extension

Fi which is regular over Li such that G(Fi/Li(u)) ∼= G. Since Li is separably Hilbertian

[FJ2, Cor. 11.7], it has a linearly disjoint sequence Li1, Li2, Li3, . . . of Galois extensions

with Galois groups isomorphic to G, as claimed.

Lemma 2.4: Let K be a separably Hilbertian field and let G be a finite group which

is normally generated by e elements. Then, for almost all σ ∈ G(K)e, the group G is

realizable over Ks[σ].

Proof: Apply Proposition 2.3 to G and use its notation. For each pair (i, j) choose
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σij ∈ G(Lij/Li)e such that Lij [σij ]Li = Li. If σ ∈ G(Li)e is a lifting of σij , then

Ks[σ] = Ks[σ]K is a Galois extension of Li and Lij ∩Ks[σ] ⊆ Lij(σij). It follows that

Lij∩Ks[σ] is contained in Lij [σij ]Li
. So, by the choice of σij , we have Lij∩Ks[σ] = Li.

By Galois theory, G(LijKs[σ]/Ks[σ]) ∼= G(Lij/Li) ∼= G.

Finally let µ be the normalized Haar measure of G(K)e. Since the Li’s, are

linearly disjoint over K with a fixed degree, we have µ(
⋃∞

i=1 G(Li)e) = 1 [FJ2, Lemma

16.11]. Similarly, as the Lij are linearly disjoint over Li with a fixed degree, we have

µ(G(Li)) = µ
( ⋃∞

j=1{σ ∈ G(Li)e‖resLij σ = σij}
)
. It follows that almost each σ ∈

G(K)e is a lifting of some σij . Combined with the preceding paragraph, this concludes

the proof of the lemma.

Lemma 2.5: Let S be a finite simple nonabelian group. Then, for almost all σ ∈ G(K)e

and for all n, the group Sn occurs as a Galois group over Ks[σ].

Proof: By Lemma 2.4, it suffices to prove that Sn is normally generated by one element.

Indeed, rewrite Sn as
∏n

i=1 Si with Si
∼= S for i = 1, . . . , n. Choose σ ∈ Sn such that

none of its coordinates is 1. Then [σ] as a normal subgroup of Sn is equal to
∏

i∈I Si

where I is a subset of {1, . . . , n} [Hup, p. 51]. By the choice of σ, I must be the whole

set. Conclude that [σ] = G, as desired.

Lemma 2.6: Let K be a separably Hilbertian field. Let p be a prime and let e be a

positive integer. Then, for almost all σ ∈ G(K)e, the group Z/pZ occurs as a Galois

group over Ks[σ].

Proof: The first paragraph of the proof of Lemma 1.3 gives a linearly disjoint sequence

K1,K2,K3, . . ., of Galois extensions of K with Galois group Z/pZ. For each j let σ̄j be

a generator of G(Kj/K). By [FJ2, Lemma 16.11], for almost all σ ∈ G(K)e there exists

j such that resKj
σ1 = σ̄j . For this j we have, G(Kj ·Ks[σ]/Ks[σ]) ∼= Z/pZ, as desired.

We may now sum up and prove our main result:

Theorem 2.7: Let K be a countable separably Hilbertian field. Then, for almost

all σ ∈ G(K)e, the field Ks[σ] is PAC and ω-free. In particular Ks[σ] is separably
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Hilbertian.

Proof: By Lemma 1.2, Lemma 1.6, Lemma 2.5, and Lemma 2.6, almost all σ ∈ G(K)e

have these properties:

(1a) Ks[σ] is PAC.

(1b) Ks[σ] is a Galois extension of an ω-free field M .

(1c) For each finite nonabelian simple group S and each positive integer n, the group

Sn occurs as a Galois group over Ks[σ].

(1d) For each prime p, the group Z/pZ occurs as a Galois group over Ks[σ].

Since M is countable, G(M) ∼= F̂ω. Hence, by Lemma 2.1, [σ] = G(Ks[σ]) ∼= F̂ω.

Finally recall that the Hilbertianity of Ks[σ] is a consequence of being PAC and ω-free

[FJ2, Cor. 24.38].
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3. Applications

A special case of Theorem 2.7 yields a group theoretic result∗:

Corollary 3.1: Consider the free profinite group F̂ω on countably many generators.

Then, for almost all σ ∈ F̂ e
ω we have [σ] ∼= F̂ω.

Proof: Choose a PAC field K of characteristic 0 such that G(K) ∼= F̂ω. E.g., K = Q̃[τ ],

where τ ∈ G(Q) is chosen at random (Theorem 2.7), or use [FJ2, Cor. 20.14 and Cor.

23.38]. By [FJ2, Cor. 24.38], K is Hilbertian. Now apply Theorem 2.7 to K.

Note however, that one may also start from Lemma 2.1 and replace the construc-

tion of special Galois extensions of K in the proof of Theorem 2.7 by a construction of

special open normal subgroups of F̂ω. This will give a group theoretical proof of the

corollary.

The following corollary to Theorem 2.7 seems peculiar. I wonder if it could be

proved directly. Here we say that a group Ĝ covers a group G if there exists an

epimorphism of Ĝ onto G.

Corollary 3.2: Let K be a countable separably Hilbertian field. Then every finite

group G has a finite cover Ĝ which can be embedded into a finite group H such that

(a) Ĝ is normally generated in H by one element,

(b) H occurs as a Galois group over K.

Proof: Take σ ∈ G(K) such that Ks[σ] is ω-free (Theorem 2.7). In particular Ks[σ] has

a Galois extension M such that G(M/Ks[σ]) ∼= G. Let N be a finite Galois extension

of K such that M̂ = N · Ks[σ] ⊇ M . Then Ĝ = G(M̂/Ks[σ]) is a finite cover of

G. Moreover, Ĝ ∼= G(N/N ∩ Ks[σ]) is a subgroup of H = G(N/K) which is normally

generated in H by resNσ.

Remark 3.3: A group theoretic construction of H (Dan Haran). The existence of H

as in Corollary 3.2, possibly without Condition (b), can be proved by a simple group

theoretic argument:

* The author is indebted to Helmut Völklein for this observation.
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Choose a positive integer e such that G is generated by e elements. Let N be the

intersection of the kernels of all epimorphisms F̂e → G. Since there are only finitely

many of them, N is open. Hence Ĝ = F̂e/N is a finite cover of G. Let g1, . . . , ge be

the images of generators of F̂e in Ĝ. Then, for each i between 1 and e, there exists an

automorphism α of Ĝ such that gα
1 = gi. Thus Ĝ is normally generated by one element

in the semidirect product H = Ĝ o Aut(Ĝ).

Of course, as the inverse Galois problem has not yet been settled, we do not know

whether H occurs as a Galois group over K.
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4. Decidability

We have already mentioned in Remark 2.10 that the absolute Galois groups of Ks[σ]

and K̃[σ] are isomorphic. Hence, if Ks[σ] is a PAC ω-free field, then so is K̃[σ] [FJ2,

Cor. 10.7]. This leads to decidability results of several families of ω-free PAC fields

associated with these fields.

Fix a base field K. If K is finitely generated over its prime field (e.g., K = Q

or K = Fp) and is presented in the sense of [FJ2, Def. 17.1] we will speak about the

explicit case. In a discussion of a sentence θ, this will also include the assumption that

θ is explicitly given. Denote the first order language of rings with a constant symbol

for each element of K by L(ring,K). A richer language is the language of Galois

sentences over K [FJ2, Sect. 25.4].

Let N (K) be the class of all perfect ω-free PAC fields M which contain K such

that Ks ∩M is a Galois extension of K. In particular, each M in N (K) is a Frobenius

field [FJ2, Def. 23.1]. For each e let Ne(K) be the subclass of all M ∈ N (K) such that

G(Ks∩M) is normally generated in G(K) by e elements. We denote the set of all Galois

sentences over K which are true in all M ∈ N (K) (resp., M ∈ Ne(K)) by Th(N (K))

(resp., Th(Ne(K))). This set contains the elementary theory of N (K) (resp., Ne(K))

in the language L(ring,K).

The stratification procedure developed in [FJ2, Chap. 25] gives us a tool to estab-

lish various primitive recursive decidability results:

Lemma 4.1: Let θ be a Galois sentence. Then we can find (effectively, in the explicit

case) a finite Galois extension L of K and a conjugacy domain Con of subgroups of

G(L/K) such that if M is a perfect ω-free PAC field containing K, then M |= θ if and

only if G(L/L ∩M) ∈ Con.

Proof: This is a special case of [FHJ, Thm. 3.8] in which the field M of that theorem

is ω-free. See also the discussion on the bottom of [FJ2, p. 415].

Theorem 4.2 (Decidability): Let K be a countable separably Hilbertian field and let

θ be a Galois sentence over K.

(a) Let e be a positive integer. Then the set Se(θ) of all σ ∈ G(K)e such that θ is
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true in K̃[σ] has a rational measure, which in the explicit case can be effectively

computed.

(b) The sentence θ belongs to Th(Ne(K)) if and only if it is true in K̃[σ] for almost all

σ ∈ G(K)e.

(c) In the explicit case, Th(Ne(K)) is a primitive recursive theory.

(d) The sentence θ belongs to Th(N (K)) if and only if θ is true in all perfect ω-free

PAC fields which are normal over K.

(e) θ belongs to Th(N (K)) if and only if there exists a positive integer e0 such that

θ ∈ Th(Ne(K)) for all e ≥ e0. In the explicit case, it is possible to compute e0

effectively.

(f) In the explicit case, Th(N (K)) is a primitive recursive theory.

Proof: Let Pe be the set of all σ ∈ G(K)e such that K̃[σ] is an ω-free PAC field. By

Theorem 2.7, µ(Pe) = 1. Let L and Con be as in Lemma 4.1.

Proof of (a): Consider the set S̄e(θ) of all σ0 ∈ G(L/K)e such that [σ0] ∈ Con. Let

σ ∈ Pe. By Lemma 4.1, σ belongs to Se(θ) if and only if resLσ ∈ S̄e(θ). Hence,

µ(Se(θ)) = |S̄e(θ)|/[L : K]e.

In the explicit case one can effectively compute |S̄e(θ)| and therefore also µ(Se(θ)).

Proof of (b): Suppose that θ is true in all M ∈ Ne(K). By Theorem 2.7, θ is true in

K̃[σ] for almost all σ ∈ G(K)e.

Conversely, suppose that θ is true in K̃[σ] for almost all σ ∈ G(K)e. By the proof

of (a), S̄e(θ) = G(L/K)e. If M ∈ Ne(K), then L∩M = L[σ0] for some σ0 ∈ G(L/K)e.

Hence G(L/L ∩M) ∈ Con and therefore, by Lemma 4.1, θ is true in M .

Proof of (c): Combine (a) and (b).

Proof of (d): Suppose that θ is true in each perfect ω-free PAC field which is normal

over K. Let M ∈ N (K). Choose generators σ01, . . . , σ0e for the normal subgroup

G(L/L ∩ M) of G(L/K). By Theorem 2.7, we can lift σ0 to σ ∈ G(K)e such that

K̃[σ] is ω-free PAC field. In particular L ∩ K̃[σ] = L[σ0] = L ∩ M . By Lemma 4.1,

G(L/L ∩M) ∈ Con. Hence, again by Lemma 4.1, θ is true in M .

14



Proof of (e): A possible value for e0 is the maximum of the minimal number of normal

generators of A, where A ranges over all normal subgroups of G(L/K). In the explicit

case, this number can be effectively calculated.

Proof of (f): θ ∈ Th(N (K)) if and only if each normal subgroup of G(L/K) belongs

to Con.
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