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Introduction

The goal of this note is to consider a certain natural family of closed normal subgroups
of G(Q) and to prove that each group in this family is free. More generally, consider
a countable separably Hilbertian field K. Denote the absolute Galois group of K by
G(K). Then, for almost all o € G(K)° the field K,(o) is PAC and e-free [FJ2, Thins.
16.13 and 16.18]. Here K is the separable closure of K and K,(o) is the fixed field of o
in K. Being PAC means that every nonvoid absolutely irreducible variety defined over
K,(o) has a K (o)-rational point. We say that K,(o) is e-free if G(K (o)) (i.e., the
closed subgroup (o1, ...,0.) of G(K) generated by o1,...,0.) is free on e generators.

Denote the largest Galois extension of K which is contained in K¢(o) by K[o].
It is the intersection of all K-conjugates of Ks(o) and also the fixed field of the smallest
closed normal subgroup of G(K) which contains o1, ...,0.. If char(K) = 0, then, for
almost all o € G(K)¢ the field K [o] is PAC [FJ2, Thm. 16.47]. Lemma 1.2 below
generalizes this result to arbitrary characteristic. If we knew that K[o| is separably
Hilbertian, then a theorem of Fried-Vélklein and Pop would imply that K|o] is w-
free. That is, G(K[o]) is isomorphic to the free profinite group F,, on countably many
generators. Unfortunately, it is not clear how to prove the Hilbertianity of almost
all K[o] directly. So, we use instead a forerunner to the above mentioned theorem
of Fried-Vélklein-Pop and a recent theorem of Neumann [Neu| to prove directly that
G(K,[o]) = F, for almost all o € G(K)®. A theorem of Roquette, then implies that
K[o] is also separably Hilbertian.

Let K be the algebraic closure of K. Denote the maximal purely inseparable
extension of K,[o] by K[o]. Then, for almost all o € G(K)®, the field K[o] is PAC
and w-free. If K is a given finitely generated field, this information leads, via Galois
stratification, to a primitive recursive decision procedure for the elementary theory of

the family of almost all fields K[o].
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1. The field K [oy,...,0.]

Let G be a profinite group, and let & = (01,...,0.) be an e-tuple of elements of G.
The closed subgroup generated by o is usually denoted by (o). We denote the closed
normal subgroup of G generated by o by [o]g or by [o] if G is clear from the
context. It is the closed subgroup (o7 | 7 € G, i =1,...,¢e). It is also the intersection
of all closed normal subgroups of G which contain o4, ..., ..

Let A be a normal subgroup of G. We say that A is normally generated in
G by e elements if there exist o1,...,0, € G such that A = [g]g. If G is normally
generated in itself by e elements, we just say that G is normally generated by e
elements.

If 7 = (71,...,7f) is an f-tuple of elements of G, then, by definition, [o,T]| =
o] - [7]. If h: H — G is an epimorphism of profinite groups, then h(o) = (h(o)) and
h(lo)g) = [h(o)]g. If G is abelian, then [o] = (7).

Let now N/K be a Galois extension, G = G(N/K) and o € G°. Then N(o) is
the fixed field of o in N, and No]x (or N[o], if K is clear from the context) is the
maximal Galois extension of K which is contained in N (o). It is also the fixed field of
[0] in N. For each 7 € G/ we have N[o] N N[1] = N[o, 7]. If N’ is a Galois extension
of K which contains N, ¢’ € G(N'/K)® and o = resyo’, then N N N'[o’] = Nlo].
In particular if N = K, then K,[o] is the maximal Galois extension of K which is
contained in Kg(o).

Recall [FJ2, p. 381] that a field M is w-free if every finite embedding problem for
G (M) is solvable. If in addition G(M) has rank < Xy and in particular if M is countable,
then the latter condition is equivalent to G(M) = F,, (Iwasawa [FJ2, Cor. 24.2]).

Our goal in this section and in the next one is to prove that if K is a countable
separably Hilbertian field, then for almost all o € G(K)¢ the field K[o] is w-free and
PAC.

One of the two major ingredients in the proof is Proposition 1.1 below. It has been
first proved for fields K of characteristic 0 in [FJ1, Thm. 3.4] and then has been gener-
alized to infinite perfect fields in [GeJ, Cor. I]. Finally Neumann [Neu] has completed
the proof for arbitrary K.



Recall that a field extension F//K is regular if F is linearly disjoint from K over
K. If F/K is finitely generated, then this condition is equivalent to ‘K is algebraically
closed in F' and F//K has a separating transcendence base’ [FJ2, §9.2].

PROPOSITION 1.1: Let F' be a finitely generated regular extension of a field K. Then
there exist a positive integer n and a separating transcendence base ti,...,t, for F/K
such that the Galois closure ' of F/K (t) is regular over K and G(F /K (t)) is isomorphic

to the symmetric group S,,.

The transcendence base tq,...,t,. of Proposition 1.1 is called a stabilizing base

for F/K.

LEMMA 1.2: Let K be a countable separably Hilbertian field. Then, K;[o| is PAC for
almost all o € G(K)°.

Proof:  The special case of the lemma in which char(K) = 0 is stated as Theorem
16.47 of [FJ2]. The general case is proved in the same way, using Proposition 1.1. We
reproduce the proof here for the convenience of the reader.

By [FJ2, Thm. 10.4], it suffices to prove that each absolutely irreducible variety
V' defined over K has a K,[o]-rational point for almost all & € G(K)°¢. So, let x =
(z1,...,2y,) be a generic point of V over K and consider the function field F = K (x)
of V over K. It is a regular extension of K. Let t = (¢1,...,%,) be a stabilizing base for
F/K (Proposition 1.1) and let F' be the Galois closure of F/K (t). Choose a primitive
element y for F/K(t) which is integral over K[t]. Since F/K is a regular extension,
irr(y, K(t)) = f(t,Y) is an absolutely irreducible polynomial.

The discriminant of f(t,Y) is a nonzero polynomial d € K[t]. Write z; =
pi(t,y)/po(t) with p; € K[t,Y], j = 1,...,n, and 0 # py € K[t]. Let y™, ... ¢y
be the conjugates of y over K(t). Write y*) = qi(t,y)/qo(t) with gz € K[t,Y], k =
1,...,s,and 0 # gy € K|[t]. Since K is separably Hilbertian, we may use [FJ2, Cor. 11.7]
and inductively construct a sequence of points (t;, y;) such that t; € K", the polynomial
f(t;,Y) is irreducible over K (y1,...,vi—1), f(ti,y:) =0, and d(t;)po(t;)qo(t;) # 0.

Then L; = K(y;) is a Galois extension of degree s, with G(L;/K) = G(F /K (t))
[Lan, p. 248, Prop. 15]. Also, with z;; = p;(ti,yi)/po(ti), the point x; = (241, .., Zin)
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belongs to V(L;). Finally, the sequence Lj, Lo, L3, ... of Galois extensions is linearly
disjoint over K.

By [FJ2, Lemma 16.11], for almost all o € G(K)® there exists ¢ such that L; C
K,(o). Since L; is Galois, it is contained in K[o]. In particular, x; is K[o]-rational.

LEMMA 1.3: Let K be a separably Hilbertian field. For almost all (o,7) € G(K)*T!,

the field K[o, 7| is properly contained in K[o].

Proof:  For each finite abelian group A, [FJ2, Lemma 24.46] gives a purely transcen-
dental extension £ = K(t1,...,t,) of K and a Galois extension F' of E which is regular
over K such that G(F/E) = A. Since K is separably Hilbertian, [FJ2, Lemma 15.8]
allows us to specialize t infinitely many times onto an r-tuple with coordinates in K and
to get a linearly disjoint sequence Li, Lo, L3, ... of Galois extensions of K with Galois
group A.

Apply this construction to A = (Z/27)°T. For each i let o;1,...,0:,7; be a
system of generators for G(L;/K). For almost all (o, 7) € G(K)**! there exists i such
that resy, (o, 7) = (074, 7) [FJ2, Lemma 16.11]. Since A is not generated by e elements
and since A is abelian, K = L;(o;, ;) = L;[o;,7;] is properly contained in L;(o;) =
L;[o;]. Hence, if (o, 7) is as above, L;[o;, ;] = L; N Kq[o, 7] and L;[o;] = L; N K[o].
So, K|o, 7] C Ks[o]. This concludes the proof of the lemma. i

The following result is a special case of [FJ2, Cor. 12.15].

PROPOSITION 1.4 (Weissauer): Let N be a Galois extension of a separably Hilbertian

field K. Then every proper finite separable extension M of N is separably Hilbertian.

ProprosITION 1.5 ([FV2, Thm. A] for characteristic 0 and [Pop, Thm. 1] for arbitrary

characteristic): Every PAC separably Hilbertian field is w-free.

LEMMA 1.6: Let K be a countable separably Hilbertian field. Then, for almost all
o € G(K)®, the field K|o] is a Galois extension of an w-free PAC field.

Proof: By Lemmas 1.2 and 1.3, almost all (o, 7) € G(K)**! have these properties:
(la) Ko, 7| is PAC, and



(Ib) Kilo] is a proper extension of K|o, 7).

So, K[o, 7] has a proper finite extension M which is contained in K[o]. By Proposition
1.4, M is separably Hilbertian. Since by (1a), M is a separable algebraic extension of
a PAC field, it is itself PAC [FJ2, Cor. 10.7]. Conclude from Proposition 1.5 that M is

w-free. |



2. The absolute Galois group of K;[oq,...,0.]

By Lemma 1.6 and by [FJ2, Cor. 24.4], for almost all & € G(K)¢ the group [o] has the
embedding property. That is, every finite embedding problem (¢: [o] — A, az: B —
A) has a solution provided B is a quotient of [o]. Thus, in order to prove that K[o] is
w-free, it would suffice now to prove that each finite group is realizable over it. This, I
have not been able to do. Fortunately, the following result of Melnikov allows us to get

away with less:

LEMMA 2.1: A closed normal subgroup N of F,, is isomorphic to E,, if and only if the
following groups are quotients of N:
(a) S™, for each finite nonabelian simple group S and for each positive integer n; and

(b) Z/pZ, for each prime number p.

Proof:  For each finite simple group S let Mg(N) be the intersection of all open normal
subgroups M of N such that N/M = S. Then N/Mg(N) = S™, where m is a cardinal
number between 0 and Ny, which we denote by rn(S). If S = Z/pZ, then ry(S) is
either 0 or Xy [Mel, Thm. 3.2]. Hence, if all finite groups in (a) and (b) are quotients
of N, then ry(S) = R for all S. In addition rz (5) = Ng for all S. Since the function
rn(S) characterizes N among all closed normal subgroups of F, up to an isomorphism

[Mel, Thm. 3.1], this implies that N = F,. ]

It is a consequence of the realizability of the symmetric groups over a Hilbertian
field K, that for each finite group G there exists a finite separable extension L of K
over which G is realizable. Harbater [Hal, Prop. 1.4] (and possibly others) observed
that if K is a number field, then the Riemann existence theorem implies that L can be
chosen to be Galois over K. Since for each field K (even if char(K) > 0), each finite
group G occurs as a Galois group over K,(t) [Ha2, Cor. 1.5] (See also a recent more
elementary proof of this result by Haran and Vélklein [HV].), the same conclusion holds
now for each Hilbertian field K, irrespective of its characteristic. Proposition 2.3 below
uses Propositions 1.1 and 2.2 to strengthen the above result.

Given a finite group G and a positive integer r, Fried and Vélklein [FV1] paramet-

rize all Galois covers of the projective line over C with Galois group G and with r branch

6



points by a nonsingular algebraic set over QQ. They show that for each G there is some
r such that this set has an absolutely irreducible component H defined over Q. In
particular H has the realization property with respect to G over each field K of
characteristic 0: Let u be a transcendental element over K. If H(K) is nonempty, then
K (u) has a Galois extension N which is regular over K such that G(N/K(u)) = G.
The existence of such a variety for fields of arbitrary characteristic is a consequence

of a theorem of Harbater:

PROPOSITION 2.2: Let K be a field and let G be a finite group. Then there exists
an absolutely irreducible variety 'H which is defined over K and with the realization

property with respect to G over every extension of K.

Proof: Consider the field of formal power series £ = K((¢)). By [Hal, Thm. 2.3], [Liu],
or [HaV, Thm. 4.4], E(u) has a Galois extension F' which is regular over E such that
G(F/E(u)) = G. Choose a primitive element z for F'//E(u) which is integral over E[u].
Since F/E is a regular extension, f(u,Z) = irr(z, E(u)) is an absolutely irreducible
polynomial with coefficients in F.

Let z1,...,2s be all conjugates of z over E(u). Then z; = p;(u,z)/po(u) with
polynomials p; € E[u,Z], i = 1,...,s, and 0 # py € E[u]. Also, the discriminant of
f(u, Z) is a nonzero polynomial d € E|u].

Let z1,...,2, be all the elements of ¥ which appear in the coefficients of f,pg,
P1,---,Ds,d. Let go, g1 € K[X] be polynomials such that go(x) is a nonzero coefficient
of po(u) and g;1(x) is a nonzero coefficient of d(u). Finally let h € K[X,u,Z] be a
polynomial such that h(x,u, Z) = f(u, Z).

By Bertini-Noether theorem [FJ2, Prop. 8.8] there exists a nonzero polynomial
g2 € K[X] such that for each extension L of K which is algebraically independent of
K (u) over K and for each specialization a € L™ of x such that gs(a) # 0, the polynomial
h(a,u, Z) is absolutely irreducible. In particular, if z satisfies h(a,u, z) = 0, then L(u, z)
is a regular extension of L. If in addition go(a)gi(a) # 0, then L(u, z)/L(u) is a Galois
extension with Galois group isomorphic to G (use [Lan, p. 248, Prop. 15]).

Finally, note that F is a regular extension of K (e.g., K[[t]] is a valuation ring
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with residue field K; now use [Jar, Lemma 1.2]). Hence K (x) is also a regular extension
of K. Let g = gog192 and y = g(x)~!. Then (x,y) generates an absolutely irreducible
variety 'H over K.

Let now L be an extension of K and let (a,b) € H(L). Then a is an L-
specialization of x and g(a) # 0. Assume without loss that w is transcendental over
L. Hence, by the preceding paragraph, L(u) has a Galois extension with Galois group
isomorphic to GG. Conclude that H has the realization property over L. |

PROPOSITION 2.3: Let K be a separably Hilbertian field and let G be a finite group.
Then there exists a positive integer n and there exists a linearly disjoint sequence
Ly, Ly, Ls, ... of Galois extensions of K with G(L;/K) = S,,, i =1,2,3,..., such that
for each i, L; has a linearly disjoint sequence L;1, L;s, L;3, ... of Galois extensions with

G(Lij/Li) =G, j=1,2,3,....

Proof: Let H be a variety defined over K with the realization property with respect
to G over each extension of K (Proposition 2.2). Let x be a generic point of H over K
and consider the function field F' = K(x) of H over K. It is a regular extension of K
of, say, transcendence degree r. Take the integer n and the stabilizing base t1,...,t, for
F/K that Proposition 1.1 provides. Thus, the Galois closure E' of F/K(t) is a regular
extension of K and G(F/K(t)) = S,,.

Since K is separably Hilbertian, we may specialize t into K in infinitely many
ways and get a linearly disjoint sequence Ly, Lo, L3, ... of Galois extensions of K with
G(L;/K) = S,, and with a point x; € H(L;) [FJ2, Lemma 15.8].

By the realization property of H, for each i, the field L;(u) has a Galois extension
F; which is regular over L; such that G(F;/L;(u)) = G. Since L; is separably Hilbertian
[FJ2, Cor. 11.7], it has a linearly disjoint sequence L;1, L;2, L;3, . . . of Galois extensions

with Galois groups isomorphic to G, as claimed. [ |

LEMMA 2.4: Let K be a separably Hilbertian field and let G be a finite group which
is normally generated by e elements. Then, for almost all o € G(K)®, the group G is

realizable over Kg[o]|.
Proof:  Apply Proposition 2.3 to G and use its notation. For each pair (7, j) choose
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oij € G(Lij/L;)¢ such that L;j[o], = L. If o € G(L;)¢ is a lifting of o;, then
K lo] = K [o]k is a Galois extension of L; and L;; N K [o] C L;;(0;;). It follows that
L;jNK[o] is contained in L;;[o;]1,. So, by the choice of o5, we have L;; N K;[o] = L;.
By Galois theory, G(L;; Ks[o|/Ks|o]) = G(L;j/Li) = G.

Finally let x4 be the normalized Haar measure of G(K)¢. Since the L;’s, are
linearly disjoint over K with a fixed degree, we have u(|J;~; G(L;)¢) = 1 [FJ2, Lemma
16.11]. Similarly, as the L;; are linearly disjoint over L; with a fixed degree, we have
w(G(L;)) = N(U;’;l{a € G(L;)%|resr, ;0 = o;}). It follows that almost each o €
G(K)° is a lifting of some o;;. Combined with the preceding paragraph, this concludes
the proof of the lemma. |

LEMMA 2.5: Let S be a finite simple nonabelian group. Then, for almost all & € G(K)®

and for all n, the group S™ occurs as a Galois group over K|o].

Proof: By Lemma 2.4, it suffices to prove that S™ is normally generated by one element.
Indeed, rewrite S™ as [[;_, S; with S; = S for i = 1,...,n. Choose o € S™ such that
none of its coordinates is 1. Then [o] as a normal subgroup of S™ is equal to [],.; S;
where [ is a subset of {1,...,n} [Hup, p. 51]. By the choice of o, I must be the whole
set. Conclude that [o] = G, as desired. 1

LEMMA 2.6: Let K be a separably Hilbertian field. Let p be a prime and let e be a
positive integer. Then, for almost all o € G(K)¢, the group Z/pZ occurs as a Galois
group over K|o].

Proof: The first paragraph of the proof of Lemma 1.3 gives a linearly disjoint sequence
K1, Ky, K3, ..., of Galois extensions of K with Galois group Z/pZ. For each j let ; be
a generator of G(K;/K). By [FJ2, Lemma 16.11], for almost all o € G(K)® there exists
J such that resx ;01 = ;. For this j we have, G(K - K[o|/K,[o]|) = Z/pZ, as desired.
|

We may now sum up and prove our main result:

THEOREM 2.7: Let K be a countable separably Hilbertian field. Then, for almost
all o € G(K)°, the field K,[o] is PAC and w-free. In particular K |o| is separably
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Hilbertian.

Proof: By Lemma 1.2, Lemma 1.6, Lemma 2.5, and Lemma 2.6, almost all o € G(K)*®
have these properties:
(la) K,[o] is PAC.
(1b) K,|o] is a Galois extension of an w-free field M.
(1c) For each finite nonabelian simple group S and each positive integer n, the group
S™ occurs as a Galois group over Kg[o].
(1d) For each prime p, the group Z/pZ occurs as a Galois group over K|o].
Since M is countable, G(M) = F,. Hence, by Lemma 2.1, o] = G(K[o]) = E,.
Finally recall that the Hilbertianity of K [o] is a consequence of being PAC and w-free
[FJ2, Cor. 24.38]. i
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3. Applications

A special case of Theorem 2.7 yields a group theoretic result™:

COROLLARY 3.1: Consider the free profinite group F,, on countably many generators.

Then, for almost all ¢ € F¢ we have [o] = F,.

Proof: Choose a PAC field K of characteristic 0 such that G(K) = F,,. E.g., K = Q[r],
where 7 € G(Q) is chosen at random (Theorem 2.7), or use [FJ2, Cor. 20.14 and Cor.
23.38]. By [FJ2, Cor. 24.38], K is Hilbertian. Now apply Theorem 2.7 to K.

Note however, that one may also start from Lemma 2.1 and replace the construc-
tion of special Galois extensions of K in the proof of Theorem 2.7 by a construction of
special open normal subgroups of F,,. This will give a group theoretical proof of the
corollary. |

The following corollary to Theorem 2.7 seems peculiar. I wonder if it could be
proved directly. Here we say that a group G covers a group G if there exists an

epimorphism of G onto G.

COROLLARY 3.2: Let K be a countable separably Hilbertian field. Then every finite
group G has a finite cover G which can be embedded into a finite group H such that
(a) G is normally generated in H by one element,

(b) H occurs as a Galois group over K.

Proof: Take o € G(K) such that K[o] is w-free (Theorem 2.7). In particular K,[o] has
a Galois extension M such that G(M/K,[o]) = G. Let N be a finite Galois extension
of K such that M = N - K,[o] O M. Then G = G(M/K,[o]) is a finite cover of
G. Moreover, G = G(N/N N K,|o]) is a subgroup of H = G(N/K) which is normally

generated in H by resyo. |

Remark 3.3: A group theoretic construction of H (Dan Haran). The existence of H
as in Corollary 3.2, possibly without Condition (b), can be proved by a simple group

theoretic argument:

* The author is indebted to Helmut Volklein for this observation.
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Choose a positive integer e such that GG is generated by e elements. Let N be the
intersection of the kernels of all epimorphisms F, — G. Since there are only finitely
many of them, N is open. Hence G = Fe/N is a finite cover of G. Let g1,...,g. be
the images of generators of E, in G. Then, for each i between 1 and e, there exists an
automorphism a of G such that g7 = g;. Thus G is normally generated by one element
in the semidirect product H = G x Aut(G).

Of course, as the inverse Galois problem has not yet been settled, we do not know

whether H occurs as a Galois group over K. |
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4. Decidability

We have already mentioned in Remark 2.10 that the absolute Galois groups of K[o]
and K|o] are isomorphic. Hence, if K,[o] is a PAC w-free field, then so is K[o] [FJ2,
Cor. 10.7]. This leads to decidability results of several families of w-free PAC fields
associated with these fields.

Fix a base field K. If K is finitely generated over its prime field (e.g., K = Q
or K = TF,) and is presented in the sense of [FJ2, Def. 17.1] we will speak about the
explicit case. In a discussion of a sentence 6, this will also include the assumption that
0 is explicitly given. Denote the first order language of rings with a constant symbol
for each element of K by L(ring, K). A richer language is the language of Galois
sentences over K [FJ2, Sect. 25.4].

Let NV (K) be the class of all perfect w-free PAC fields M which contain K such
that K; N M is a Galois extension of K. In particular, each M in N(K) is a Frobenius
field [FJ2, Def. 23.1]. For each e let N.(K) be the subclass of all M € N(K) such that
G(KsNM) is normally generated in G(K) by e elements. We denote the set of all Galois
sentences over K which are true in all M € N(K) (resp., M € N.(K)) by Th(N(K))
(resp., Th(N.(K))). This set contains the elementary theory of N (K) (resp., N.(K))
in the language L(ring, K).

The stratification procedure developed in [FJ2, Chap. 25] gives us a tool to estab-

lish various primitive recursive decidability results:

LEMMA 4.1: Let 6 be a Galois sentence. Then we can find (effectively, in the explicit

case) a finite Galois extension L of K and a conjugacy domain Con of subgroups of
G(L/K) such that if M is a perfect w-free PAC field containing K, then M |= 6 if and
only if G(L/L N M) € Con.

Proof: This is a special case of [FHJ, Thm. 3.8] in which the field M of that theorem
is w-free. See also the discussion on the bottom of [FJ2, p. 415]. |

THEOREM 4.2 (Decidability): Let K be a countable separably Hilbertian field and let
0 be a Galois sentence over K.

(a) Let e be a positive integer. Then the set S.(0) of all ¢ € G(K)¢ such that 6 is
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true in K|o] has a rational measure, which in the explicit case can be effectively
computed.

(b) The sentence 6 belongs to Th(N.(K)) if and only if it is true in K [o] for almost all
o€ GK)-.

(¢) In the explicit case, Th(N.(K)) is a primitive recursive theory.

(d) The sentence 6 belongs to Th(N(K)) if and only if 6 is true in all perfect w-free
PAC fields which are normal over K.

(e) @ belongs to Th(N(K)) if and only if there exists a positive integer ey such that
0 € Th(N.(K)) for all e > ey. In the explicit case, it is possible to compute eg
effectively.

(f) In the explicit case, Th(N(K)) is a primitive recursive theory.

Proof: Let P, be the set of all o € G(K)® such that K[o] is an w-free PAC field. By
Theorem 2.7, u(P.) = 1. Let L and Con be as in Lemma 4.1.

Proof of (a): Consider the set S.(#) of all 09 € G(L/K)¢ such that [o] € Con. Let
o € P.. By Lemma 4.1, o belongs to S.(f) if and only if respo € S.(0). Hence,
pu(Se(0)) = ISe(O)I/[L : K]°.

In the explicit case one can effectively compute | S, (6)| and therefore also 1(S.(8)).

Proof of (b): Suppose that 6 is true in all M € N (K). By Theorem 2.7, 6 is true in
K|[o] for almost all o € G(K)e.
Conversely, suppose that 6 is true in K [o] for almost all o € G(K)¢. By the proof

of (a), Se(0) =G(L/K)¢. If M € N.(K), then LN M = L[o] for some og € G(L/K)*.
Hence G(L/L N M) € Con and therefore, by Lemma 4.1, 6 is true in M.

Proof of (c¢): Combine (a) and (b).

Proof of (d): Suppose that 6 is true in each perfect w-free PAC field which is normal
over K. Let M € N(K). Choose generators og1,...,00e for the normal subgroup
G(L/L N M) of G(L/K). By Theorem 2.7, we can lift oy to o € G(K)® such that
Klo] is w-free PAC field. In particular L N K[o] = L[og] = LN M. By Lemma 4.1,
G(L/LN M) € Con. Hence, again by Lemma 4.1, § is true in M.
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Proof of (e): A possible value for ej is the maximum of the minimal number of normal
generators of A, where A ranges over all normal subgroups of G(L/K). In the explicit

case, this number can be effectively calculated.

Proof of (f): 6 € Th(N(K)) if and only if each normal subgroup of G(L/K) belongs
to Con. |
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