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Abstract

We prove that each perfect Frobenius field is algebraically bounded and hence has a

dimension function in the sense of v.d. Dries on the collection of all definable sets.

Given a definable set S over Q (resp. Fp) we can effectively determine for each k ∈

{−∞, 0, 1, . . .} whether there exists a perfect Frobenius field M of characteristic 0 (resp.,

of characteristic p) such that the dimension of S(M) is k. Our method of proof and

decision procedure is based on Galois Stratification.
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Introduction

Consider a field K and an algebraic subset A of An defined by polynomials f1, . . . , fm ∈

K[X], with X = (X1, . . . , Xn). For each extension M of K let A(M) denote the set

of M -rational points of A. Denote the algebraic closure of K by K̃. Each g ∈ K̃[X]

defines a polynomial function on A(K̃) whose value in a point a ∈ A(K̃) is g(a). In

particular, let xi be the function which the variable Xi defines. Let x = (x1, . . . , xn).

Then K̃[A] = K̃[x] is the coordinate ring of A. The map Xi 7→ xi, i = 1, . . . , n,

extends to a K̃-epimorphism K̃[X] → K̃[A] whose kernel is, by Hilbert’s Nullstellensatz,

the radical of the ideal generated by f1, . . . , fm. If A is irreducible over K̃, then K̃[A]

is an integral domain and the dimension of A (which is usually denoted by dim(A))

is the transcendence degree of K̃(A) over K̃. It is the maximal number of elements

of K̃[A] which are algebraically independent over K̃. If A decomposes into a union of

irreducible varieties A = V1 ∪ · · · ∪ Vr, then dim(A) = max{dim(V1), . . . ,dim(Vm)}. It

is also the maximal number of elements of K̃[A] which are algebraically independent.

Here we say that g1, . . . , gr ∈ K̃[A] are algebraically independent if for each nonzero

polynomial h ∈ K[Y1, . . . , Yr] we have h(g1, . . . , gr) 6= 0. In other words, there exists

a ∈ A(K̃) such that h(g1(a), . . . , gr(a)) 6= 0.

L. v.d. Dries [D] uses the latter definition for what he calls “algebraic dimension”

of an arbitrary subset S of Mn, where M is an arbitrary field extension of K. He

defines M [S] as the ring of all M -valued polynomial functions on S. Then he defines

algebraic independence of elements of M [S] and the algebraic dimension of S as above.

We denote the algebraic dimension of S by d(S).

Note that if A is as above and M is an extension of K which is not algebraically

closed, then d(A(M)) is bounded by dim(A), but may very well be smaller than it.

In particular let L be a first order language which expands the language of rings

L(ring,K) with constant symbol for each element of K. Each formula ϕ(X1, . . . , Xn)

of L defines a set

Sϕ(M) = {a ∈Mn| ϕ(a) is true in M}.

L. v.d. Dries [D] proves that if each definable subset S of Mn+1 is “algebraically
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bounded” then d behaves on the collection of all definable sets as a dimension func-

tion:

(1a) d(S) = −∞ if and only if S = ∅;

(1b) d({a}) = 0 for each a ∈M ;

(1c) d(M) = 1;

(1d) d(S1 ∪ S2) = max{d(S1), d(S2)};

(1e) d(Sσ) = d(S) for each permutation σ of {1, . . . , n}, where

Sσ = {(xσ(1), . . . , xσ(n)) ∈Mn| (x1, . . . , xn) ∈ S}.

(1f) Let S be a definable subset of Mn+1. For each a ∈Mn let Sa = {c ∈M | (a, c) ∈

S}. For i = 0, 1 let T (i) = {a ∈Mn| d(Sa) = i}. Then T (i) is a definable set and

d{(a, c) ∈ S| a ∈ T (i)} = d(T (i)) + i.

Here we say that S is algebraically bounded if there exist polynomials f1, . . . , fm ∈

M [X, Y ] such that for each a ∈ Mn for which the set Sa is finite and nonempty there

exists j between 1 and m such that fj(a, Y ) 6= 0 and Sa ⊆ {c ∈M | fj(a, c) = 0}.

Suppose further that M is a class of fields that contain K. We say that S is

uniformly bounded on M if there exist polynomials f1, . . . , fm ∈ K[X, Y ] such that

for each M ∈M and for each a ∈Mn for which the set S(M)a is finite and nonempty

there exists j between 1 and m such that fj(a, Y ) 6= 0 and S(M)a ⊆ {c ∈M | fj(a, c) =

0}.

In addition to algebraically closed fields, v.d. Dries proves that definable sets in

real closed fields and definable sets in Henselian fields are algebraically bounded. So, in

all those cases the algebraic dimension has property (1).

The goal of the present work is to prove the algebraic boundedness of definable

sets over each Frobenius field M . Moreover, we prove for a K-definable set S that the

dimension d(S(M)) is uniform in M (See (c) of the following theorem). Finally, if K is

finitely generated, we establish a primitive recursive procedure to compute d(S(M)).

Here we say that M is PAC if each nonvoid absolutely irreducible variety V

defined over M has an M -rational point. We denote the absolute Galois group of a field
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M by G(M). An embedding problem for G(M) is a pair

(2) (α: B → A, ϕ: G(M) → A),

of epimorphisms of profinite groups. A solution of (2) is an epimorphism γ: G(M) → B

such that α◦γ = ϕ. We denote the set of finite quotients of G(M) by Im(G(M)). If (2)

is solvable for each B ∈ Im(G(M)), then G(M) has the embedding property. We

say that M is a Frobenius field if M is PAC and G(M) has the embedding property.

Theorem: (a) Let K be a field, ϕ(X1, . . . , Xn, Y ) be a formula of L(ring,K), and

S = Sϕ. Then, S(M) is algebraically bounded, uniformly on all perfect Frobenius

fields M that contain K.

(b) For each perfect Frobenius fieldM , algebraic dimension gives a dimension function

d on the collection of definable sets over M .

(c) In the notation of (a), there exist a finite Galois extension L of K and a finite

family G of finite groups such that for each perfect Frobenius field M that contains

K the dimension d(S(M)) depends only on M ∩ L and on Im(G(M)) ∩ G.

(d) If K is a given finitely generated field (e.g., K is Q or Fp), then we may effectively

compute L and G. In particular we can determine for each k ∈ {−∞, 0, 1, . . . , n}

whether there exists a perfect Frobenius field M which contains K such that

d(Sϕ(M)) = k.

The case n = 0 is also allowed in the Theorem. In this case ϕ is a sentence. To

say that ϕ is true in M is equivalent in this case to say that d(Sϕ(M)) = 0. Thus (d)

of the Theorem allows us to effectively check whether ϕ is true in all perfect Frobenius

fields M which contains K. This is exactly the content of [FJ, Thm. 25.11].

It is therefore not surprising that the proof of (a) and (c) of the Theorem is based

on the Galois stratification procedure as presented in Chapter 25 of [FJ]. So, we assume

that the reader is familiar with that chapter and use its concepts without necessarily

redefining it.

Finally, to prove part (d) of the theorem we assume also familiarity with the

concepts and results of [FJ, Chap. 17].
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1. Algebraic dimension over PAC fields.

We fix a basic field K and let p = char(K). Each field we consider is an extension of

K. We denote the language of rings with constant symbols for each element of K by

L(ring,K).

Let M be a field extension of K. Consider a nonempty subset S of Mn. Every

polynomial f ∈M [X1, . . . , Xn] defines a function from S into M , which we call an M-

polynomial function. Denote the ring of all M -polynomial functions on S by M [S].

We say that f1, . . . , fm ∈ M [S] are algebraically independent if for each nonzero

polynomial g ∈ M [Y1, . . . , Ym] there exists x ∈ S such that g(f1(x), . . . , fm(x)) 6= 0.

Following v.d. Dries [D, Section 2], we define the algebraic dimension of S as the

maximal number of functions in M [S] which are algebraically independent. We denote

this number* (which is obviously bounded by n) by d(S).

As v.d. Dries remarks in [D, 2.12], the algebraic dimension of S is equal to the

algebraic dimension of its Zariski closure S. Thus there exist polynomials f1, . . . , fm ∈

M [X] which define an M -algebraic set A and S = A(M) = {x ∈ Mn| f1(x) = · · · =

fm(x) = 0}. If M is algebraically closed, then, by Hilbert Nullstellensatz, d(S) is equal

to the dimension of A as is usually defined in algebraic geometry:

(1) dim(A) = max{trans.degMM(x)| x ∈ A(Ω)},

where Ω is an algebraically closed field which contains M and has infinite transcendence

degree over M . If M is not algebraically closed, then d(S) ≤ dim(A). A typical example

where an inequality occurs is when A is the algebraic surface defined by the equation

X2 + Y 2 + Z2 = 0 over Q. Then dim(A) = 2 but A(Q) = {(0, 0, 0)} and hence

d(A(Q)) = 0.

There is a way to compute the algebraic dimension by transcendence degree of

points. Each formula ϕ(X1, . . . , Xn) of L(ring,K) defines a map S = Sϕ from the class

of field extensions of K to the class of sets:

S(M) = {x ∈Mn| ϕ(x) is true in M}.

* L. v.d. Dries [D] uses the notation alg.dim for the algebraic dimension and reserves

the letter d for an arbitrary dimension function.
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We say that S is a K-definable subset of An, and S(M) is a K-definable set over

M (more precisely, K-definable subset of Mn). Let M# be an elementary extension

of M which is |M |+-saturated [S, p. 81]. Then, [D, Lemma 2.3]:

(2) d(S(M)) = max{trans.degMM(x)| x ∈ S(M#)}.

In particular consider an algebraic set A defined over a fieldM . The decomposition

intersection procedure [FJ, Section 19.1] gives an algebraic subset A∗ of A which is the

union of all absolutely irreducible subvarieties of A defined over M . Moreover, each M -

irreducible component of A∗ is absolutely irreducible. This procedure is in particular

valuable if M is PAC [FJ, p. 129].

Proposition 1.1: We have, d(A) ≤ dim(A∗). If M is PAC, then d(A) = dim(A∗).

Proof: Let M# be an elementary extension of M which is |M |+-saturated. In partic-

ular M# is a regular extension of M . Hence each x ∈ A(M#) defines an absolutely

irreducible variety V over M . So V ⊆ A and therefore, V ⊆ A∗. It follows that

trans.degM (x) = dim(V ) ≤ dim(A∗). Conclude from (2) that d(A(M)) ≤ dim(A∗).

Now we suppose that M is PAC and prove the other direction of the latter in-

equality. Let A∗1, . . . , A
∗
s be the M -irreducible components of A∗. They are absolutely

irreducible varieties. For each i between 1 and s the set A∗i (M) is Zariski dense in A∗i

[FJ, Prop. 10.1]. Hence, by the saturation of M#, the set A∗i (M
#) contains a point x

which belongs to no proper M -algebraic subset of A∗i . Thus x is a generic point of A∗i .

Conclude that

dim(A∗) = max
1≤i≤s

(dim(A∗i )) ≤ d(A(M)),

as contended.

A subset S of Mn+1 is said to be algebraically bounded if there exist poly-

nomials f1, . . . , fr ∈ M [X1, . . . , Xn, Y ] such that for each x ∈ Mn for which the set

Sx = {y ∈M | (x, y) ∈ S} is finite there exists i between 1 and r such that fi(x, Y ) 6= 0

and Sx ⊆ {y ∈ M | fi(x, y) = 0}. In this case we say that the set {f1, . . . , fr} bounds

S.
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We say that a collection D of sets over M is algebraically bounded, if each

subset of Mn+1 which belongs to D is algebraically bounded. If this is the case, then

the restriction of the algebraic dimension to D is what v.d. Dries calls a “dimension

function” [D, 2.7]. If we add [D, 1.5] and [D, 2.5] to the definition of the dimension

function which appears in the introduction of [D] we conclude:

Proposition 1.2: Suppose that each K-definable set over M is algebraically bounded.

Then the following conditions hold for all K-definable sets S, S1, S2 over M :

(a) d(S) = −∞ if and only if S = ∅.

(b) d(S) = 0 if and only if S is finite and nonempty.

(c) d(Mn) = n for each positive integer n.

(d) d(S1

⋃
S2) = max{d(S1), d(S2)}.

(e) S1 ⊆ S2 implies d(S1) ≤ d(S2).

(f) Suppose that S ⊆ Mm+n. For each x ∈ Mm let Sx = {y ∈ Mn|(x,y) ∈ S}, and

for i = 0, 1, . . . , n let T (i) = {x ∈ Mm| d(Sx) = i}. Then T (i) is K-definable and

d
(
{(x,y) ∈ S| x ∈ T (i)}

)
= d(T (i)) + i.

(g) If S ⊆ Mm and f : S → Mn is a function whose graph is K-definable, then

d(f(S)) ≤ d(S). In particular d(f(S)) = d(S) if f is injective.

(h) Under the assumptions of (g) let 0 ≤ i ≤ m. Then B(i) = {y ∈ An| d(f−1(y)) = i}

is K-definable and d(f−1(B(i))) = d(B(i)) + i.

(i) d(S1 × S2) = d(S1) + d(S2).

Corollary 1.3: Under the assumptions of Proposition 1.2 let S be a K-definable

subset of M . If S is infinite, then d(S) = 1.

Proof: By Proposition 1.2(c),(e), d(S) ≤ d(M) = 1. Hence, by Proposition 1.2(a),(b),

d(S) = 1.
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2. Algebraic boundedness of Galois sets.

The goal of this section is to prove that for each perfect Frobenius field M , algebraic

dimension defines a dimension function on the definable sets over M . Our main tool

in the proof is Galois Stratification as developed in [FJ, Chap. 25]. It is interesting to

note that although the elementary theory of perfect PAC fields is undecidable [FJ, Cor.

22.24] some ingredients of Galois Stratification go through for perfect PAC fields. This

goes far enough to prove that if M is a perfect PAC field, then each subset of Mn+1

which is defined by a quantifier free Galois formula is algebraically bounded.*

Let A =
〈
A,Ci/Ai

〉
i∈I be a normal stratification of a K-constructible set A in

An+m over K [FJ, Sec. 25.3]. Consider a family H of finite groups and an expansion

A(H) =
〈
An+m, Ci/Ai,Con(Ai,H)

〉
i∈I

of A to a Galois stratification with respect to H. In particular each H ∈ Con(Ai,H)

belongs to H. If H′ is another family of finite groups which contains (an isomorphic

copy) of each H ∈ Con(Ai,H), then A(H′) = A(H). In the latter case we write

Con(A(H)) ⊆ H′. Each m-tuple of quantifiers Q1, . . . , Qm defines a Galois formula

θ(X) with respect to H:

(1) (Q1Y1) · · · (QmYm)[Ar(X,Y) ⊆ Con(A(H))],

where X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym).

As in Section 1, θ defines a map S = Sθ from the class of all extensions M of K

to the class of sets:

S(M) = {x ∈Mn| θ(x) is true in M}.

(See [FJ, Sec. 25.4] for the interpretation of “θ(x) is true in M”). We say that S is a

K-Galois set in An and that S(M) is a K-Galois subset of Mn. If θ is quantifier free

(i.e., m = 0), then we also say that A(H) defines S = SA(H) and S(M) = SA(H)(M).

* The author is indebted to Dan Haran for calling his attention to the possibility of

partially extending the results to PAC fields.
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Remark 2.1: Identification of definable sets and Galois sets. Remark 25.8 of [FJ]

associates a Galois formula θ(X) to each formula ϕ(X) of L(ring,K) such that if M is

an extension of K and a ∈ Mn, then M |= ϕ(a) if and only if M |= θ(a). Moreover,

θ(X) has the same prefix of quantifiers as ϕ(X) and is defined by a stratification A(H)

where H = {1}.

Conversely, let θ(X) be a Galois formula over K with respect to the stratification

A(H) given by (1). We construct a formula ϕ(X) which is equivalent to θ(X) over each

field M that contains K.

It suffices to carry out the construction only for quantifier free formula. That is

θ(X) is the formula Ar(X) ⊆ Con(A(H)), where A(H) =
〈
A,Ci/Ai,Con(Ai,H)

〉
i∈I is

a Galois stratification over K with respect to H, and A is a K-constructible subset of

An.

For each extensionM ofK and each a ∈Mn the statementM |= θ(a) is equivalent

to the disjoint disjunction of the statements

(2) a ∈ Ai ∧ Ar(Ai,M,a) ⊆ Con(Ai,H).

So, we may assume that A = Ai and let C = Ci.

Also, Con(Ai,H) = Conj(A,H) is the disjoint union of finitely many conjugacy

classes Conj(A,H) of subgroups of G(C/A). The statement Ar(A,M,a) ⊆ Con(A,H)

is equivalent to the disjoint disjunction of the statements Ar(A,M,a) ⊆ Conj(A,H).

So, assume without loss that Con(A,H) consists of all conjugates of a certain subgroup

H of G(C/A).

Let E (resp., F ) be the quotient field of K[A] (resp., C). Let y0, y1, . . . , ys be

elements of C such that E(y0) is the fixed field of H in F and K(y1), . . . ,K(ys) is a

list of all proper extensions of E(y0) in F . Replacing A(H) by a finer stratification, if

necessary, we may assume that K[A, y0]/K[A] is a ring cover and that y1, . . . , ys are

integral over K[A]. Let K[A] = K[x, g(x)−1], where x is a generic point of A and

g ∈ K[X] a polynomial that vanishes at no point of A. Choose monic polynomials

fj(x, Y ) ∈ K[A][Y ] which are irreducible over E and such that fj(x, yj) = 0. Then, for

each extension M of K and each a ∈ Mn, statement (2) is equivalent over M to the
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following statement of L(ring,K):

a ∈ A ∧ (∃Y )[f0(a, Y ) = 0] ∧
s∧
j=1

¬(∃Y )[fj(a, Y ) 6= 0].

Chapter 25 of [FJ] shows how to eliminate quantifiers from Galois formulas over

Frobenius fields. Thus, if M is a perfect Frobenius field which contains K, and S is a K-

Galois formula with θ given by (1), then there exists a quantifier free K-Galois formula

θ′, such that S(M) = Sθ′(M). Proposition 23.2 of [FJ] expresses the main property of

Frobenius fields which makes the elimination of quantifiers procedure of [FJ, Chap. 25]

(also called the stratification procedure) work. It turns out that a stronger form of

the latter Proposition holds even for a PAC field, once a certain embedding problem is

solvable.

Lemma 2.2: Let M be a PAC field. Let S/R be a Galois cover of rings which is

finitely generated and regular over M . Let F/E be the corresponding Galois cover of

the quotient fields, and suppose that E is transcendental over M . Denote the algebraic

closure of M in F by N . Let H be a subgroup of G(F/E) which belongs to Im(G(M))

such that resNH = G(N/M).

(a) If the embedding problem

(3) (resN : H → G(N/M), resN : G(M) → G(N/M))

is solvable (i.e., there exists an epimorphism γ: G(M) → H such that γ(σ)x = σx

for all σ ∈ G(M) and x ∈ N), then there exist infinitely many M -homomorphisms

ϕ: S →Ms such that

(4a) ϕ(R) = M and D(ϕ) = H, and

(4b) if p = char(M) > 0, m ≤ [M : Mp] and y1, . . . , ym ∈ R are p-independent

over Ep, then ϕ(y1), . . . , ϕ(ym) are p-independent over Mp.

(b) If embedding problem (3) is unsolvable, then there exists no M -homomorphism

ϕ: S → Ks such that (4a) holds.

(c) If M is a Frobenius field, then (3) is solvable, and hence there exist infinitely many

ϕ such that (4) holds.
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Proof: Suppose first that embedding problem (3) is solvable. Then the proof of [FJ,

Prop. 23.2] gives an M -homomorphism ϕ: S → Ks such that (4) holds. We repeat this

proof for the convenience of the reader.

Let E′ be the fixed field of H in F . Since E is a regular extension of M and N is

the algebraic closure of M in F , the extension F/N is regular. Since resNH = G(N/M),

we have N ∩ E′ = M . By assumption M has a Galois extension P which contains N

for which there exists an isomorphism h: G(P/M) → G(F/E′) such that h(σ)x = σx

for each σ ∈ G(P/M) and x ∈ N . Restriction maps G(PE′/E′) isomorphically onto

G(P/M). Let F ′ = PF . It is a Galois extension of E′ and G(F ′/E′) is isomorphic to

the group

{(σ1, σ2) ∈ G(P/M)× G(F/E′)| resNσ1 = resNσ2}.

Consider the subgroup

∆ = {σ ∈ G(F ′/E′)| resFσ = h(resPσ)}

and letD be the fixed field of ∆ in F ′. It satisfies ∆∩G(F ′/F ) = 1 and ∆∩G(F ′/PE′) =

1. Also, ∆ · G(F ′/F ) = G(F ′/E′). Indeed, let σ be an element of G(F ′/E′). Let τ1

be the unique element of G(P/M) such that h(τ1) = resFσ. Since resNh(τ1) = resNτ1,

there exists τ ∈ G(F ′/E′) such that resP τ = τ1 and resF τ = h(τ1). So, σ = τ · τ−1σ

with τ ∈ ∆ and τ−1σ ∈ G(F ′/F ), as desired. Similarly, ∆ · G(F ′/PE′) = G(F ′/E′).

By Galois correspondence, DF = F ′, DP = F ′, D ∩ F = E′ and D ∩ P = M . The

latter relation implies that D is a regular extension of M . Moreover, D/M is finitely

generated because F ′/M is.

The integral closure U of R in D is finitely generated over R [L, p. 120], and

therefore over M . Since M is PAC there exists an M -epimorphism ψ: U → M . By

[FJ, Exer. 2 of Chap. 5], the integral closure V of U in F ′ is PU = P ⊗M U . By

the same reason, V = PS. Thus ψ extends to an P -epimorphism ψ′: V → P . Since

[F ′ : D] = [P : M ] the decomposition group D(ψ′) is ∆ [FJ, Lemma 5.5]. Let ϕ be

the restriction of ψ′ to S. Then G(F/E′) = resFD(ψ′) ≤ D(ϕ) ≤ G(F/E′). Hence

D(ϕ) = H. This proves (4a).
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If p > 0 and y1, . . . , ym are as in (4b), then, since D/E is separable, they are

p-independent over Dp. Use [FJ, Prop. 10.11] to choose ψ so that ψ(y1), . . . , ψ(ym) are

p-independent over Mp.

Now choose x ∈ R which is transcendental over M . Suppose that ϕ1, . . . , ϕn are

M -homomorphisms from S into Ms which satisfy (4). Let ai = ϕi(x), i = 1, . . . , n, and

consider the ring of fractions R′ = R[(x − a1)−1, . . . , (x − an)−1] and S′ = SR′ of R

and S, respectively. Then S′/R′ is a Galois cover of rings which is finitely generated

and regular over M with F/E as the corresponding field cover. The argument above

supplies an M -homomorphism ϕ′: S′ → Ms which satisfies (4) with R′ replacing R.

In particular ϕ(x) /∈ {a1, . . . , an}. Denote the restriction of ϕ′ to S by ϕn+1. Then

D(ϕn+1) = D(ϕ′). Also, ϕn+1 is different from ϕ1, . . . , ϕn and satisfies (4).

Conversely, suppose that there exists an M -homomorphism ϕ: S →Ms such that

ϕ(R) = M and D(ϕ) = H. Suppose without loss that the restriction of ϕ to N is the

identity map. Then F = ϕ(S) is a Galois extension of M that contains N and ϕ induces

an isomorphism ϕ∗: G(F/M) → H such that ϕ∗ ◦ α = resF/N , where α: H → G(N/M)

is the restriction map. The map resMs/F
◦ ϕ∗ solves embedding problem (3).

The core of the stratification procedure is [FJ, Lemmas 25.2 and 25.4]. We mix

these results with a certain strengthening into Lemma 2.3. Here, as in those lemmas,

we use π for the projection of an (n+1)-tuple in An+1 on the first n coordinates. From

now on, we assume familiarity with the technique of Galois stratification as presented

in [FJ, Chap. 25]. However, there are two concepts that we redefine:

Let (C/A, D/B) be a pair of Galois ring/set covers over K such that A ⊆ An+1,

B ⊆ An and π(A) = B. Let x be a generic point of B over K. Let z be a primitive

element for the ring cover C/K[A]. Let (x, y) be a generic point of A over K. We say

that (C/A, D/B) is specialization compatible if the following conditions holds:

(5a) If dim(A) = dim(B), then K[A] is an integral extension of K[B] and the maximal

separable extension of K(B) in K(C) is contained in K(D).

(5b) If dim(A) = dim(B) + 1, then K(D) contains the algebraic closure L of K(B) in

K(C) and D∩L/B is a ring cover. Also, for each field extension M of K, for each

transcendental element y′ over M and each K-homomorphism ϕ: D → M̃(y′) such

11



that ϕ(x) ∈ B′(M) and ϕ(y) = y′ we have [K(C) : L(y)] = [F : N(y′)] and N is

the algebraic closure of M in F . Here N = M(ϕ(D ∩ L)) and F = M(y′, ϕ(z)).

K(C)

K(D)

L(y)

�
��

L

K(A)

�
��

K(B)

F = E(ϕ(z))

N(y′)

�
��

N

E = M(y′)

�
��

M

Note that (5a) does not appear in the definition of “specialization compatible” on

page 406 of [FJ]. However, this is the condition which is required in [FJ, Lemma 25.4].

That part of (5b) which requires that N is the algebraic closure of M in F follows from

the proof of [FJ, Lemma 25.1] but does not appear in that lemma itself.

Our second remark concerns decomposition groups. Let S/R be a Galois ring

cover over K. Let M be a field that contains K and let S1/R1 be a Galois ring cover

over M . Suppose that ϕ: S → S1 is a K-homomorphism such that R1 = Mϕ(R),

and S1 = Mϕ(S). Then ϕ induces an isomorphism ϕ∗ of G(S1/R1) onto the following

subgroup of G(S/R):

DM (ϕ) = {σ ∈ G(S/R)| (∀u ∈ S)[ϕ(u) ∈ R1 implies ϕ(σu) = ϕ(u)]}.

For each τ ∈ G(S1/R1), ϕ∗(τ) is the unique element of DM (ϕ) which satisfies

(6) ϕ(ϕ∗(τ)u) = τ(ϕ(u))

for all u ∈ S. Let S2/R2 be another Galois ring cover over M and let ψ: S1 → S2

be an epimorphism such that ψ(R1) = R2. The defining relation (6) implies that

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Lemma 2.3: Let (C/A,D/B) be a specialization compatible pair of Galois ring/set

covers over K such that A ⊆ An+1, B ⊆ An and π(A) = B. Let Con(A,H) be a

12



conjugacy domain of subgroups of G(C/A) belonging to a family H of finite groups. Let

F = Sub(G(D/B)) ∪ Sub(G(C/A)).

(a) Suppose that dim(A) = dim(B). Define a conjugacy domain Con(B,H) of sub-

groups of G(C/A) as in [FJ, before Lemma 25.4]. Let M be a perfect field that

contains K such that Im(G(M)) ∩ F ⊆ H. Then, for each b ∈ B(M) such

that Ar(B,M,b) ⊆ Con(B,H) the set of all a ∈ A(M) such that π(a) = b and

Ar(A,M,a) ⊆ Con(A,H) is finite and nonempty.

(b) Suppose that dim(A) = dim(B) + 1. Define a conjugacy domain Con(B,H) of

subgroups of G(C/A) as in [FJ, Lemma 25.2]. Let M be a perfect PAC field

that contains K such that Im(G(M)) ∩ F = H ∩ F . Then, for each b ∈ B(M)

there are either infinitely many a ∈ A(M) such that π(a) = b and Ar(A,M,a) ⊆

Con(A,H) or none. If M is Frobenius and Ar(B,M,b) ⊆ Con(B,H), then the

former possibility holds.

(c) In both cases, if b ∈ B(M) and a ∈ A(M), then π(a) = b and Ar(A,M,a) ⊆

Con(A,H) implies Ar(B,M,b) ⊆ Con(B,H).

Proof of (a): Let b and M be as in (a). [FJ, Lemma 25.4] provides a ∈ A(M) such

that Ar(A,M,a) ⊆ Con(A,H). The point b determines a homomorphism ϕ0 of K[B]

into M . Each a ∈ A(M) for which π(a) = b gives rise to an extension of ϕ0 to a

homomorphism ϕ of K[A] into M . Since K[A] is integral over K[B], there are only

finitely many extensions ϕ. Hence there are only finitely many points a.

Proof of (b): We have to prove that if there exists an a ∈ A(M) such that π(a) = b

and Ar(A,M,a) ⊆ Con(A, ,H), then there are infinitely many such points.

Assume without loss that L = K(D) is the algebraic closure of K(B) in K(C).

Let y′ be a transcendental element over M . The specialization x → b induces a ho-

momorphism ϕ0 of K[A] = K[x, y, g(x, y)−1] into R = M [y′, g(b, y′)−1], where g is a

polynomial in K[X, Y ] which vanishes at no point of A. Extend ϕ0 to a homomorphism

ϕ of C = K[A][z] into R[z′] where z′ = ϕ(z) is an element of M(y′)s. Let E = M(y′)

and F = E(z′). Then R[z′]/R is a regular Galois ring cover over M and F/E is the

corresponding cover of fields. The specialization assumption implies that N = M ·ϕ(D)

13



is the algebraic closure of M in F .

Let a = (b, c) and extend the specialization y′ → c to a homomorphism ψ of R[z′]

onto a finite Galois extension P of M which contains N such that ψ is the identity on

N . Let λ = ψ ◦ ϕ. By the discussion that precedes the Lemma we get a commutative

diagram
H = DM (λ) -res ϕ∗(G(N/M))

6ϕ∗ 6ϕ∗

H ′ = DM (ψ) -res G(N/M)
6ψ∗

wwww
G(P/M) -res G(N/M)

In particular H ∈ Ar(A,M,a) and hence

(7) H ⊆ Con(A,H).

Moreover the embedding problem (resN : H ′ → G(N/M), resN : G(M) → G(N/M)) is

solvable (by ψ∗ ◦ resK̃/P ). Since M is PAC, Lemma 2.2(a) gives infinitely many M -

homomorphisms ψi of R[z′] onto a Galois extension Pi of M which contains N such

that ψi is the identity on N , ψi(R) = M , and DM (ψi) = H ′. For each i let ci = ψi(y′)

and λi = ϕ ◦ ψi. Then ai = (b, ci) = λi(x, y) ∈ A(M) and π(ai) = b. Moreover,

D(λ∗i ) = ϕ∗(ψ∗i (G(Pi/M))) = ϕ∗(DM (ψi)) = ϕ∗(H ′) = H. Hence H ∈ Ar(A,M,ai).

Conclude from (7) that Ar(A,M,ai) ⊆ Con(A,H), as desired.

Finally if M is a Frobenius field and Ar(B,M,b) ⊆ Con(B,H), then [FJ, Lemma

25.2] gives a point a ∈ A(M) such that π(a) = b and Ar(A,M,a) ⊆ Con(A,H).

Conclude from the preceding paragraphs that there are infinitely many such points.

Proof of (c): See the first part of the proof of [FJ, Lemma 25.2] and [FJ, Lemma 25.4].

Lemma 2.4: Let n be a nonnegative integer, C a family of finite groups, A a K-

constructible subset of An+1, B ⊆ An and π(A) = B. Let A(C) =
〈
A,Ci/Ai,

Con(Ai, C)
〉
i∈I be a Galois stratification of A over K.

Then there exist K-normal basic stratifications A =
⋃
· j∈J

⋃
· k∈K(j)Ajk and B =⋃

· j∈J Bj with the following properties:
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(8a) Each Ajk is contained in a unique Ai and has a Galois ring cover Cjk which

is induced by Ci/Ai; in particular G(Cjk/Ajk) is isomorphic to a subgroup of

G(Ci/Ai).

(8b) π(Ajk) = Bj for each j ∈ J and each k ∈ K(j) and π−1(Bj) =
⋃
· k∈K(j)Ajk.

(8c) Each Bj is equipped with a Galois ring cover Dj .

(8d) The pair (Cjk/Ajk, Dj/Bj) of Galois ring/set covers is specialization compatible.

Moreover, for each family H of finite groups which contains Con(A(C)), each j ∈ J and

each k ∈ K(j) consider the unique i ∈ I such that Ajk ⊆ Ai and let Con(Ajk,H) be the

conjugacy domain of subgroups of G(Cjk/Ajk) induced by Con(Ai, C). Then use [FJ,

Lemma 25.4] if dim(Ajk) = dim(Bj) (resp., [FJ, Lemma 25.2] if dim(Ajk) = dim(Bj)+1)

to define conjugacy a domain Conk(Bj ,H) of subgroups of G(Dj/Bj) from Con(Ajk,H).

Define Con(Bj ,H) to be
⋃
k∈K(j) Conk(Bj ,H). Finally, let F = Sub(A) ∪ Sub(B).

Then, the Galois stratification A′(H) =
〈
A,Cjk/Ajk,Con(Ajk,H)

〉
j∈J,k∈K(j)

re-

fines A(C), and B =
〈
B,Dj/Bj ,Con(Bj ,H)

〉
j∈J is a Galois stratification of B over

K.

Also, for every perfect field M that contains K and satisfies Im(G(M)) ∩ F =

H ∩ F , we have:

(9a) If a ∈ Ajk(M) satisfies Ar(Ajk,M,a) ≤ Con(Ajk,H), then b = π(a) ∈ Bj(M)

and Ar(Bj ,M,b) ⊆ Con(Bj ,H).

(9b) Let b ∈ B(M) such that Ar(B,M,b) ⊆ Con(Bj ,H) and let k ∈ K(j). If

dim(Ajk) = dim(Bj), then the set of all a ∈ Ajk(M) such that π(a) = b and

Ar(Ajk,M,a) ⊆ Con(Ajk,H) is finite and nonempty. If dim(Ajk) = dim(Bj) + 1

and M is PAC, then the latter set is either infinite or empty. If M is Frobenius,

then the former possibility holds.

Proof: The existence of the K-normal stratifications A′ and B with the property (8)

follows from the stratification lemma [FJ, 17.26] as in the beginning of the proof of [FJ,

Lemma 25.6]. Condition (9) follows from Lemma 2.3.

Proposition 2.5: Let n be a nonnegative integer, C a family of finite groups, and

A(C) =
〈
A,Ci/Ai,Con(Ai, C)

〉
i∈I a Galois stratification of An+1 over K. Let S =
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SA(C) be the corresponding Galois subset of An+1. Then there exists a finite set P of

polynomials with coefficients in K which bounds S(M) for each perfect PAC field M

which contains K and satisfies Con(A(C)) ⊆ Im(G(M)). If K has elimination theory in

the sense of [FJ, Sec. 17.2], then P can be effectively computed.*

Proof: Denote the class of all perfect PAC fields M which contain K and satisfy

Con(A(C)) ⊆ Im(G(M)) by M. For each M ∈M

S(M) = {a ∈Mn+1| Ar(A,M,a) ⊆ Con(A(C))}.

Construct a normal refinement A′ of A and a normal stratification B of An over K, as

in Lemma 2.4. The rest of the proof breaks into two parts.

Part A: The set J0. Let J0 be the set of all j ∈ J for which dim(Ajk) = dim(Bj) for

each k ∈ K(j). For each j ∈ J0 and k ∈ K(j), the ring K[Ajk] is integral over K[Bj ].

The latter ring can be written as K[Bj ] = K[x, gj,0(x)−1] where x = (x1, . . . , xn) is

a generic point of Bj over K and gj,0 ∈ K[X] vanishes at no point of Bj . Also there

exists y ∈ K[Ajk] such that (x, y) is a generic point of Ajk. In particular y satisfies an

equation

(10) gj,0(x)rym + gj,1(x)ym−1 + · · ·+ gj,m(x) = 0

where gj,1, . . . , gj,m ∈ K[X], and r and m depend on j and on k. Let

fjk(X, Y ) = gj,0(X)rY m + gj,1(X)Y m−1 + · · ·+ gj,m(X),

and let fj(X, Y ) =
∏
k∈K(j) fjk(X, Y ).

If K has elimination theory, then J0 can be effectively computed and for each

j ∈ J0 the polynomial fj(X, Y ) can be effectively computed.

Part B: The set P = {fj(X, Y )| j ∈ J0} bounds S uniformly for all M ∈ M.

Indeed, let M be a field in M and set H = Im(G(M)). Expand A′ and B to Galois

stratifications A′(H) and B(H) as in Lemma 2.4. In particular,

S(M) = {a ∈Mn+1| Ar(A′,M,a) ⊆ Con(A′(H))} =
⋃
·
j∈J

⋃
·

k∈M(j)

Sjk(M).

* The observation that P does not depend on M is due to Dan Haran.
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where

Sjk(M) = {a ∈ Ajk(M)| Ar(Ajk,M,a) ⊆ Con(Ajk,H)}.

Let π: An+1 → An is the projection on the first n coordinates. For each j ∈ J let

Tj(M) = {b ∈ Bj(M)| Ar(Bj ,M,b) ⊆ Con(Bj ,H)}.

Now let b be a point in Mn such that S(M)b is finite but nonempty. In particular,

there exists a ∈ Mn+1 such that π(a) = b and a ∈ S(M). Let j ∈ J and k ∈ K(j) be

the unique indices such that a ∈ Sjk(M). Then b ∈ Tj(M).

Claim B1: j ∈ J0. Otherwise there exists k′ ∈ K(j) such that dim(Ajk′) =

dim(Bj) + 1. In this case, by (9b), S(M)b is either an infinite set or empty, a contra-

diction.

Claim B2: fj(b, Y ) 6= 0 and S(M)b ⊆ {c ∈ K| fj(b, c) = 0}. Indeed, since b ∈ Bj ,

we have gj,0(b) 6= 0. Hence fjk(b, Y ) 6= 0 for each k ∈ K(j) and therefore fj(b, Y ) 6= 0.

Secondly, if c ∈ S(M)b, then (b, c) ∈ S(M) and therefore there exists k ∈ K(j)

such that (b, c) ∈ Ajk. Let (x, y) be a generic point of Ajk. Then (10) implies that

fjk(b, c) = 0. Hence, fj(b, c) = 0 as asserted.

Conclude from both claims that the set {fj(X, Y )| j ∈ J0} bounds S, as needed.

Let M be a class of fields which contains the field K. We say that the theory

of M is algebraically bounded if for each K definable set S in An+1, there exists

a finite set P of polynomials in K[X, Y ] such that for each M ∈ M and each b ∈ Mn

for which S(M)b is finite and nonempty there exists f ∈ P such that f(b, Y ) 6= 0 and

S(M)b ⊆ {c ∈ M | f(b, c) = 0}. If P can be effectively computed from S, then we say

that the theory of M is effectively algebraically bounded.

Denote the class of all perfect Frobenius fields that contain K by Frob(K). For a

family C of finite groups denote the class of all perfect Frobenius fields that contain K

and satisfy Im(G(M)) ⊆ C by Frob(K, C).
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Theorem 2.6: The theory of Frob(K) is algebraically bounded. If K has elimination

theory, then Frob(K) is effectively algebraically bounded.

Proof: Let S be a K-definable subset of An+1. By Remark 2.1 there exists a Galois

formula θ(X1, . . . , Xn, Y ) over K with respect to the family C = {1} which defines S.

The elimination procedure which is summarized in [FJ, Prop. 25.9] proves that θ is

equivalent over each M ∈ Frob(K) to a quantifier free formula θ′(X1, . . . , Xn, Y )*. The

formula θ′ depends on the intersection of Im(G(M)) with a certain finite family S of

finite groups. However, the normal stratification which underlies θ′ depends only on the

normal stratification which underlies θ and hence only on S. By Proposition 2.5, there

exists a finite set P of polynomials with coefficients in K which bounds S(M) = Sθ′(M)

for each M ∈ Frob(K). Conclude that the theory of Frob(K) is algebraically bounded.

Finally, if K has elimination theory, then both θ′ and P can be effectively com-

puted. Hence, the theory of Frob(K) is effectively algebraically bounded.

Examples 2.7: Free groups. Let F̂m be the free profinite group on m generators,

where 1 ≤ m ≤ ℵ0. Then F̂m is projective and has the embedding property [FJ,

Example 20.13 and Lemma 23.7]. A field M with G(M) ∼= F̂m is said to be m-free.

Thus each m-free PAC field is Frobenius. By Theorem 2.6 the theory of m-free perfect

PAC fields of fixed characteristic is effectively algebraically bounded.

A perfect 1-free PAC field is also called pseudo finite. These fields are the

models of the theory of all elementary statements which are true in almost all fields

Fp [FJ, Lemma 18.25]. Thus the elementary theory of pseudo finite fields is effectively

algebraically bounded.

Chatzidakis, v.d. Dries and Macintyre [CDM, Cor. 5.7] use ultraproducts to prove

a stronger result: “The elementary theory of finite fields is algebraically bounded”. Of

course, this result could have also been achieved by Galois Stratification over Z as in

[FJ, Section 26.2]. This method would have also make the result effective.

Combine Theorem 2.6 and Proposition 1.2:

* This is the only point in the proof where it fails for perfect PAC fields
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Theorem 2.8: Let M be a perfect Frobenius field which contains K. Then algebraic

dimension defines a dimension function on the collection of all K-definable sets over M .

Thus, all K-definable sets over M , S, S1, S2 satisfy conditions (a)–(i) of Proposition

1.2.

Problem 2.9: Is each definable subset over a perfect PAC field algebraically bounded?

3. Calculation of dimension of definable sets.

The stratification procedure allows us not only to establish the algebraic dimension of

definable sets over a Frobenius field M as a dimension function d = dM but also to prove

that dM is uniform in M in some sense. More precisely, let K be our fixed base field.

Then, for each definable set S over K there exists a finite family of finite groups G and

a finite Galois extension L of K such that d(S(M)) is determined by Im(G(M))∩G and

by M ∩L. If K has elimination theory in the sense of [FJ, Chap. 17] (e.g., K is a given

finitely generated field over its prime field), then G and L are effectively computable.

Lemma 3.1: Let n be a nonnegative integer, C a family of finite groups, A a K-

constructible subset of An+1, and A(C) a Galois stratification of A over K. Denote

the K-Galois subset of An+1 which A(C) defines by S. As in Section 2, let π be the

projection of An+1 on the first n coordinates and let B = π(A).

Then there exist a partition B = B(0) ∪· B(1) into K-constructible sets and K-

normal basic stratification B(0) and B(1) of B(0) and B(1), respectively, which do not

depend on C, (set F = Sub(A) ∪ Sub(B(0)) ∪ Sub(B(1))), with the following property:

For each family H of finite groups which contains Con(A(C)), the normal strati-

fication B(0) and B(1) can be expanded to Galois stratifications B(0)(H) and B(1)(H),

respectively, such that for each perfect Frobenius field M which contains K and satisfies

Im(G(M)) ∩ F = H ∩ F we have

d(S(M)) = max{d(T (0)(M)), d(T (1)(M)) + 1},

where T (ε) is the K-Galois subset of B defined by B(ε)(H), ε = 1, 2.

Proof: For each M ∈ Frob(K) we have

S(M) = {a ∈ A(M)| Ar(A,M,a) ⊆ Con(A(C))}.
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Refine A to a K-normal stratification A′ and construct a K-normal basic stratification

B of A which satisfies condition (8) of Lemma 2.4. Let H be a family of finite groups

which contains Con(A(C)). Expand A′ and B to Galois stratifications A′(H) and B(H),

respectively, which satisfy condition (9) of Lemma 2.4. Then

S(M) = {a ∈ A(M)| Ar(A′,M,a) ⊆ Con(A′,H)} =
⋃
·
j∈J

⋃
·

k∈K(j)

Sjk(M),

where

Sjk(M) = {a ∈ Ajk(M)| Ar(Ajk,M,a) ⊆ Con(Ajk,H)}.

Also, let T =
⋃
· j∈J Tj , with

Tj(M) = {b ∈ Bj(M)| Ar(Bj ,M,b) ⊆ Con(Bj ,H)}.

Denote the set of all j ∈ J such that dim(Ajk) = dim(Bj) for all k ∈ K(j) by J0.

Let J1 = J − J0. For each ε ∈ {0, 1} let B(ε) =
⋃
j∈Jε

Bj ,

B(ε)(H) =
〈
B(ε), Dj/Bj ,Con(Bj ,H)

〉
j∈Jε

,

and T (ε) =
⋃
j∈Jε

Tj .

Consider now M ∈ Frob(K) which satisfies the relation Im(G(M)) ∩ F = H∩F .

Let b ∈ B(M) be a point for which there exists a ∈ S(M) such that π(a) = b. In

particular, by (9a) of Section 2, there exists a unique j ∈ J such that b ∈ Tj(M).

Hence, by (8b) of Section 2, π−1(b) ∩ S(M) =
⋃
· k∈K(j){a ∈ Sjk(M)| π(a) = b}. By

Theorem 2.8, the algebraic dimension defines a dimension function d on the collection

of all definable sets over M , which satisfies conditions (a)–(i) of Proposition 1.2. By

Remark 2.1, the sets S and T (ε), ε = 0, 1 are definable. By (9b) of Lemma 2.4 we have:

(1a) If j ∈ J0, then π−1(b) ∩ S(M) is finite and nonempty. Hence

S(M)b = {c ∈M | (b, c) ∈ S(M)}

is finite and nonempty. By (b) of Proposition 1.2, d(S(M)b) = 0.

(1b) If j ∈ J1, then π−1(b) ∩ S(M) is infinite. Hence, S(M)b is infinite and therefore,

by Corollary 1.3, d(S(M)b) = 1.
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Conclude that

T (ε)(M) = {b ∈ B(M)| d(S(M)b) = ε}, ε = 0, 1.

Note that S(M) = [π−1(T (0)(M))∩S(M)]∪ [π−1(T (1)(M))∩S(M)]. Hence, by Propo-

sition 1.2(d) and (f),

d(S(M)) = max{d(T (0)(M)), d(T (1)(M)) + 1}.

A repeated application of Lemma 3.1 gives an explicit formula for d(S(M)):

Proposition 3.2: Let n be a nonnegative integer, C a family of finite groups, A a

constructible subset of An, and A(C) a Galois stratification of A over K. Denote the

K-Galois subset of An+1 which A(C) defines by S.

Then there exists a finite Galois extension L of K and a finite family G of finite

groups which depend on A but not on C such that Sub(A) ∪ Sub(G(L/K)) ⊆ G with

the following property:

For each family H of finite groups which contains Con(A(C)) and each ε =

(ε1, . . . , εn) ∈ {0, 1}n there exists a conjugacy domain Conε(L/K,H ∩ G) of subgroups

of G(L/K) such that for each perfect Frobenius field M which contains K and satisfies

Im(G(M)) ∩ G = H ∩ G we have

(2) d(S(M)) = max
ε∈{0,1}n

{ ∑n
i=1 εi if G(L/M ∩ L) ∈ Conε(L/K,H ∩ G)

−∞ otherwise

Remark: Interpret the right hand side of (2) in the following way: for each ε ∈ {0, 1}n

for which G(L/M ∩L) ∈ Conε(L/K,H∩G) compute
∑n
i=1 εi. Then take the maximum

over the computed sums, or let the right hand side be −∞ if no sum was computed.

Proof: Consider first the case n = 0. In this case An consists of the origin O only and

A is either empty or A = {O}. In the first case take L = K, G = {1}, and interpret the

right hand side of (2) as −∞. Since S(M) is empty for eachM ∈ Frob(K), −∞ is indeed

the right value for d(S(M)). If A = {O}, then A(C) = {A,C/A,Con}, K[A] = K, C is a

finite Galois extension L of K, and Con is a conjugacy domain of subgroups of G(L/K).

The Artin symbol Ar(A,M,O) is the conjugacy class of G(L/M ∩L) in G(L/K). Hence,
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S(M) 6= ∅ if and only if G(L/M ∩ L) ∈ Con. So, if we interpret
∑0
i=1 εi as 0, then (2)

is true in this case.

Suppose therefore that n ≥ 1. Let π: An → An−1 be the projection on the first

n − 1 coordinates. Apply Lemma 3.1 to obtain a partition B = π(A) = B(0) ∪· B(1),

and K-normal basic stratifications B(0) and B(1) such that the conclusion of Lemma 3.1

holds.

In particular, for each family D of finite groups which contains Con(A(C)) the

basic stratifications B(0) and B(1) can be expanded to Galois stratifications B(0)(D) and

B(1)(D), respectively, such that for each M ∈ Frob(K) which satisfies Im(G(M))∩F =

D ∩ F we have

(3) d(S(M)) = max{d(T (0)(M)), d(T (1)(M)) + 1}

where

(4) T (εn)(M) =
{
b ∈ B(εn)(M)| Ar(B(εn),M,b) ⊆ Con(B(εn)(D))

}
, εn = 0, 1.

Apply the induction hypothesis to B(εn)(D) to obtain a finite Galois extension

L(εn) of K and a finite family G(εn) of finite groups which depend on B(εn) but not on

D such that Sub(B(εn)) ∪ Sub(G(L/K)) ⊆ G(εn) with the following property:

For each family H of finite groups which contains Con(B(εn)(D)) and for each ε′ =

(ε1, . . . , εn−1) ∈ {0, 1}n−1 there exists a conjugacy domain Conε′(L(εn)/K,H ∩ G(εn))

such that for each M ∈ Frob(K) which satisfies Im(G(M)) ∩ G(εn) = H ∩ G(εn)

(5)
d(T (εn)(M))

= max
ε′∈{0,1}n−1

{ ∑n−1
i=1 ε

′
i if G(L(εn)/M ∩ L(εn)) ⊆ Conε′(L(εn)/K,H ∩ G(εn))

−∞ otherwise.

Let L = L(0)L(1), G = F ∪G(0) ∪G(1) ∪Sub(G(L/K)). For each family H of finite

groups which contains Con(A(C))) and each ε = (ε′, εn) ∈ {0, 1}n let

Conε(L/K,H ∩ G) = {H ≤ G(L/K)| H ∈ H

and resL(εn)(H) ∈ Conε′(L(εn)/K,H ∩ G(εn))}.
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To conclude the proof consider M ∈ Frob(K) for which Im(G(M)) ∩ G = H ∩ G.

Let ε = (ε′, εn) ∈ {0, 1}n. Then Im(G(M)) ∩ G(εn) = H ∩ G(εn). Since G(L/M ∩ L) ∈

Im(G(M)) ∩ Sub(G(L/K)), we have G(L/M ∩ L) ∈ Conε(L/K,H ∩ G) if and only if

G(L(εn)/M ∩ L(εn)) ∈ Conε′(L(εn)/K,H ∩ G(εn)). Hence, by (5)

(6) d(T (εn)(M)) = max
ε′∈{0,1}n−1

{ ∑n−1
i=1 εi if G(L/M ∩ L) ∈ Conε(L/K,H ∩ G)

−∞ otherwise.

The combination of (3) and (6) gives (2).

Theorem 3.3: Let S be a K-definable subset of An. Then there exists a finite Galois

extension L of K and a finite family G of finite groups which contains Sub(G(L/K))

with the following property:

For each subfamily H of G which contains the trivial group and each ε = (ε1, . . . ,

εn) ∈ {0, 1}n there exists a conjugacy domain Conε(L/K,H) of subgroups of G(L/K)

such that for each perfect Frobenius field M which contains K and satisfies Im(G(M))∩

G = H we have

(7) d(S(M)) = max
ε∈{0,1}n

{ ∑n
i=1 εi if G(L/M ∩ L) ∈ Conε(L/K,H)

−∞ otherwise

Proof: Let C be the family of all finite groups. By Remark 2.1 there exists a K-Galois

formula θ(X1, . . . , Xn) with respect to the family {1} which defines S. Thus, for each

field M which contains K,

S(M) = {a ∈ S(M)|M |= θ(a)}.

By [FJ, Prop. 25.9], there exists a finite family F of finite groups and a K-normal

stratification A of An such that Sub(A) ⊆ F and for every family D of finite group which

contains {1}, the normal stratificationA can be expanded to a Galois stratificationA(D)

such that

(8) for every M ∈ Frob(K) which satisfies Im(G(M)) ∩ F = D ∩ F we have

(8a) S(M) = SA(D)(M) = {a ∈ An(M)| Ar(A(D),M,b) ⊆ Con(A(D)}.

Proposition 3.2 gives a Galois extension L of K and a finite family G of finite

groups which depends on A but not on D such that Sub(A) ∪ Sub(G(L/K)) ⊆ G with
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the following property: For each family H of finite groups which contains Con(A(D))

and each ε = (ε1, . . . , εn) ∈ {0, 1}n there exists a conjugacy domain Conε(L/K,H ∩ G)

of subgroups of G(L/K) such that

(9) for each M ∈ Frob(K) and satisfies Im(G(M)) ∩ G = H ∩ G we have

(9a) d(SA(D)(M)) = max
ε∈{0,1}n

{ ∑n
i=1 εi if G(L/M ∩ L) ∈ Conε(L/K,H ∩ G)

−∞ otherwise
Add F to G, if necessary, to assume that F ⊆ G. Let H be a subfamily of G

which contains {1}. Let D = F ∩ H. Expand A to a K-Galois stratification A(D)

such that (8) holds. In particular Con(A(D)) ⊆ H. Hence, for each ε ∈ {0, 1}n there

exists a conjugacy domain Conε(L/K,H) of subgroups of G(L/K) such that (9) holds.

If M ∈ Frob(K) satisfies Im(G(M))∩ G = H, then (9a) holds and Im(G(M))∩F = D.

Hence (8a) holds. Conclude that (7) is true.

If the field K has elimination theory and the K-definable set S is given, then all

objects whose existence were proved so far in this section can be effectively computed.

This allows us to use (7) for certain decision problems:

Theorem 3.4: Suppose that K has elimination theory. Suppose we are given a K-

definable subset S of An, a primitive recursive full family of finite groups C, and an

element k of {−∞, 0, 1, . . . , n}. Then we can effectively decide if there exists M ∈

Frob(K, C) such that d(S(M)) = k.

Proof: Chapter 17 of [FJ] gives an effective algorithm to compute L and G of Theorem

3.3. Corollary 23.19 of [FJ] allows us to effectively determine for each subfamily H of

C ∩ G whether there exists a superprojective pro-C group Γ such that Im(Γ) ∩ G = H.

List these subfamilies as H1, . . . ,Hm and let Γj be a superprojective pro-C group such

that Im(Γj) ∩ G = Hj , j = 1, . . . ,m.

For each j between 1 and m and each group H ∈ Hj ∩ Sub(G(L/K)) use [FJ,

Chap. 17] to compute

δ(Hj ,H) = max
ε∈{0,1}n

{ ∑n
i=1 εi if H ∈ Conε(L/K,Hj)

−∞ otherwise
By Theorem 3.3, d(S(M)) = δ(Hj ,H) for each M ∈ Frob(K) which satisfies

Im(G(M)) ∩ G = Hj and G(L/M ∩ L) = H.
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Recall that if M ∈ Frob(K), then G(M) is superprojective [FJ, p. 355]. Hence, if

δ(Hj ,H) 6= k for all j and H, then there exists no M ∈ Frob(K, C) such that d(S(M)) =

k.

Suppose therefore that δ(Hj ,H) = k for some j and H. Then H ∈ Im(Γj).

Hence, by [FJ, Lemma 23.4], there exists M ∈ Frob(K) such that G(M) ∼= Γj and

G(L/M ∩ L) = H. This field satisfies d(S(M)) = k.

Remark 3.5: Primitive recursive decidability of Frob(K, C). Let in particular θ be

a sentence of L(ring,K). Denote the subset of A0 which θ defines by S. For each M

which contains K, S(M) is nonempty if and only if θ is true in M . This is the case

exactly if d(S(M)) = 0. An application of Theorem 3.4 in the case n = 0 allows us

to effectively decide if there exists M ∈ Frob(K, C) such that d(S(M)) = 0. In other

words, the elementary theory of the class Frob(K, C) is primitive recursive. So, Theorem

3.4 is a generalization of [FJ, Thm. 25.11].

Our second application of formula (7) is concerned with the Haar measure µ of

G(K)e [FJ, Chap. 17]. Extend each σ ∈ G(K) in the unique possible way from Ks to

K̃. The fixed field in K̃ of σ1, . . . , σe ∈ G(K) is denoted by K̃(σ1, . . . , σe).

Proposition 3.6: Let K be a countable Hilbertian field (or a finite field) and e a posi-

tive integer (or e = 1). Then, for almost all (σ1, . . . , σe) ∈ G(K)e the field K̃(σ1, . . . , σe)

is Frobenius and G(K̃(σ1, . . . , σe)) ∼= F̂e.

Proof: By [FJ, Thm. 18.4], for almost all (σ1, . . . , σe) ∈ G(K)e the field K̃(σ1, . . . , σe) is

PAC and G(K̃(σ1, . . . , σe)) ∼= F̂e. By [FJ, Prop. 15.31], F̂e has the embedding property.

Hence, K̃(σ1, . . . , σe) is Frobenius [FJ, Def. 23.1].

Theorem 3.7: Suppose that K is a countable Hilbertian field (or a finite field) and e

is a positive integer (or e = 1). Let S be a K-definable subset of An, C a full family of

finite groups, and k an element of {−∞, 0, 1, . . . , n}. Then, the set

Σ(K,S, e, k) = {(σ1, . . . , σe) ∈ G(K)e| d(S(K̃(σ1, . . . , σe))) = k}

is measurable and µ(Σ(K,S, e, k)) is a rational number. If K has elimination theory

and C is primitive recursive, then we can effectively compute µ(Σ(K,S, e, k)).
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Proof: Let L and G be as in Theorem 3.3. Consider the family H of all subgroups

of G which are generated by e elements. Let Conε(L/K,H) be as in Theorem 3.3.

Since Im(F̂e) is the family of all finite groups which are generated by e elements, H =

Im(F̂e) ∩ G.

For each (σ̄1, . . . , σ̄e) ∈ G(L/K)e define

(10) δ(σ̄1, . . . , σ̄e) = max
ε∈{0,1}e

{ ∑n
i=1 εi if 〈σ̄1, . . . , σ̄e〉 ∈ Conε(L/K,H)

−∞ otherwise

By Proposition 3.6, for almost all (σ1, . . . , σe) ∈ G(K)e, K̃(σ1, . . . , σe) is a Frobe-

nius field with G(K̃(σ1, . . . , σe)) = 〈σ1, . . . , σe〉 ∼= F̂e. For σ̄i = resLσi we have

G(L/K̃(σ1, . . . , σe) ∩ L) = 〈σ̄1, . . . , σ̄e〉. By (7), d(K̃(σ1, . . . , σe)(S)) = δ(σ̄1, . . . , σ̄e).

Hence,

(11) µ(Σ(K,S, e, k)) =
#{(σ̄1, . . . , σ̄e) ∈ G(L/K)e| δ(σ̄1, . . . , σ̄e) = k}

[L : K]e

If K has elimination theory, C is primitive recursive and A(C) is given, then L

and G and Conε(L/K,H) can be effectively computed. Also, for each (σ̄1, . . . , σ̄e) ∈

G(L/K)e we can effectively check whether 〈σ̄1, . . . , σ̄e〉 ∈ Con(L/K,H). Hence (10)

gives an effective formula for δ(σ̄1, . . . , σ̄e). So, we can effectively compute the right

hand side of (11).
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