
HILBERTIAN FIELDS AND FREE PROFINITE GROUPS*

by

Moshe Jarden, Tel Aviv University

and

Alexander Lubotzky, The Hebrew University in Jerusalem

Journal of the London Mathematical Society (2) 46 (1992), 205–227

* Partially supported by grants from the G.I.F., the German–Israeli Foundation for

Scientific Research and Development.



Introduction

Readers of Field Arithmetic [FJ], may observe interesting interrelations between two

major concepts of the book, the free profinite group F̂ω of rank ℵ0, on one hand, and

Hilbertian fields on the other hand. There is an analogy between various results on closed

subgroups of F̂ω and algebraic extensions of Hilbertian fields. Results of Melnikov [M1]

even extend this analogy to the free profinite group F̂m of arbitrary infinite rank m.

In this paper we try to make this analogy precise by formulating a “twinning scheme”

of pairs of results on closed subgroups of F̂m on one hand and algebraic extensions of

Hilbertian fields on the other hand. For special class of Hilbertian fields, namely the

“ω-free PAC fields of characteristic 0” on one hand and for F̂ω on the other hand the

twinning scheme becomes a theorem which we call the “weak twinning principle”. In

the general case, we prove new results on closed subgroups of free profinite groups which

are suggested by known results on Hilbertian fields and fall into the twinning scheme.

We also go in the other direction – from groups to fields. The reason for the general

phenomenon is still unclear.

Let us explain all these in details. We say that a subset X of a profinite group F

converges to 1 if each open subgroup of F contains all but finitely many elements of

X. In this case, F is the free profinite group with basis X, if each map f of X into

a profinite group G such that f(X) converges to 1 uniquely extends to a homomorphism

of F into G. The cardinality of X is called the rank of F . If X is infinite, then rank(F )

is also the cardinality of the family of all open subgroups of F [FJ, Supplement 15.12].

For free F , the rank uniquely determines F up to an isomorphism. In particular, if

rank(F ) = m, then we denote F by F̂m. It is the free profinite group of rank m.

In the special case where rank(F ) = ℵ0, we denote F by F̂ω.

A field K is said to be Hilbertian if for all irreducible polynomials f1, . . . , fs ∈

K[T1, . . . , Tr, X] and nonzero g ∈ K[T1, . . . , Tr] there exist a1, . . . , ar ∈ K such that

fj(a1, . . . , ar, X) is irreducible in K[X], j = 1, . . . , s, and g(a1, . . . , ar) 6= 0.

The field K is separably Hilbertian if the above condition holds only for ir-

reducible polynomials f1, . . . , fs which are separable in X. A field K is Hilbertian if

and only if K is separably Hilbertian and, in case char(K) > 0, K is nonperfect [FJ,
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Prop. 11.16]. As we deal mainly with separable extensions, we formulate our results for

Hilbertian fields. However, they also remain valid, possibly with little modifications, for

separable Hilbertian fields.

The classical Hilbertian fields are Q and fields of rational functions over any field

[FJ, Chap. 12]. Other basic Hilbertian fields are the fields of formal power series in

at least two variables over any field. More Hilbertian fields are obtained from basic

Hilbertian fields as suitable algebraic extensions, as stated below.

Denote the absolute Galois group of a field K by G(K). Suppose that PG is

a property of closed subgroups of profinite groups. We denote the Galois theoretic

counterpart of PG by PF. This means that if L is a algebraic extension of a field K,

then L/K has the property PF if the closed subgroup G(L) of G(K) has the property

PG. For example, L/K is a Galois extension, if G(L) is a normal subgroup of G(K).

Suppose that m is an infinite cardinal number. Various results on separable alge-

braic extensions of Hilbertian fields on one hand and on subgroups of F̂m on the other

hand can be assembled as twinning results in the following manner:

(G) If a closed subgroup H of F̂m has the property PG, then H ∼= F̂m.

(F) If a separable algebraic extension L of a Hilbertian field K has property PF, then

L is Hilbertian.

Thus, given a (G) statement, you get the corresponding (F) statement as follows: Re-

place “the subgroup has the property PG” by “the field has the property PF” and “the

subgroup is isomorphic to F̂m” by “the field is Hilbertian”, and vica versa from (F) to

(G).

We list several statements which fall into this twinning scheme and are known

to be true.

(G1) Every open subgroup of F̂m is isomorphic to F̂m [FJ, Prop. 15.27].

(F1) Every finite separable extension of a Hilbertian field is Hilbertian [FJ, Cor. 11.7].

(G2) Every normal subgroup N of F̂m such that F̂m/N is finitely generated is isomor-

phic to F̂m [M1, Prop. 2.1].

(F2) Every Galois extension N of a Hilbertian field K such that G(N/K) is finitely
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generated is Hilbertian [FJ, Prop. 15.5].

(G3) Every proper open (resp., and normal) subgroup of a closed normal subgroup of

F̂ω (resp., F̂m) is isomorphic to F̂ω (resp., F̂m) [FJ, Prop. 24.7] (resp., [M1, Thm.

3.4]).

(F3) Every proper finite separable extension of a Galois extension of a Hilbertian field

is Hilbertian [FJ, Cor. 12.15].

(G4) Every closed normal subgroup N of F̂m such that F̂m/N is abelian is isomorphic

to F̂m (a corollary of [M1, Lemma 2.7 and Thm. 3.1]. See also [LD, Cor. 3.9(i)]

for the case m = ℵ0.)

(F4) Every abelian extension of a Hilbertian field is Hilbertian [FJ, Thm. 15.6].

Note that Theorem G3 deviates somewhat from the twinning scheme in the un-

countable case in that it restricts the open subgroup of the normal closed subgroup of

F̂m to be normal. In Section 2 we bring G3 into a line with the other (Gn)’s. We prove:

(G3′) Every open proper subgroup of a closed normal subgroup of F̂m is isomorphic to

F̂m.

Here are another two interesting field theoretic results:

(F5) The compositum of two Galois extensions of a Hilbertian field K, neither of which

contains the other is Hilbertian [HJ].

(F6) If L is an algebraic extension of a Hilbertian field K whose degree is divisible by

at least two primes and L is contained in a pronilpotent extension N of K, then

L is Hilbertian [U, Thm. 3].

The twinning scheme suggests analogous results about F̂m which we indeed prove in

Section 1 and Section 4.

(G5) The intersection of any two closed normal subgroups of F̂m neither of which con-

tains the other is isomorphic to F̂m.

(G6) Let M be a closed subgroup of F̂m whose index is divisible by at least two distinct

primes. If M contains a closed normal subgroup N of F̂m such that F̂m/N is

pronilpotent, then M is isomorphic to F̂m.
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Actually, we prove (G5) and (G6) with the close “is isomorphic to F̂m” replaced

by “is a free profinite group” also for the case where 2 ≤ m < ℵ0. The main tool to

handle the case of finite rank is the Nielsen – Schreier formula for the rank of an open

subgroup E of F . In the infinite case, in particular in the uncountable case, we replace

this formula by an explicit knowledge of a special basis Y for E which is constructed

out of a basis X for F in [FJ, Section 15.7]. We also exploit methods and results of

Melnikov [M1 and M2].

In the other direction we mention the following group theoretic result:

(G7) Let H be a closed subgroup of F̂m with index (F̂m : H) =
∏
pα(p) where all α(p)

are finite. Then H is isomorphic to F̂m [LD, 3.15].

A standard argument (Section 5) proves the analogous result which is predicted

by the twinning scheme:

(F7) Let L be an algebraic separable extension of a Hilbertian field K of degree
∏
pα(p),

with all α(p) finite. Then L is Hilbertian.

In addition, we mention in Section 5 some results about subgroups of free profinite

groups whose analog for extensions of Hilbertian fields have never been considered. We

leave them as open problems.

Although some of the group theoretical ingredients of the proofs of theorems (Gn)

enter into the proofs of theorems (Fn), it is difficult to see a real analogy between the

proofs of the group theoretic theorems and those of field theory. So, we do not know if

the following “twinning principle” is true:

Twinning principle: Let m be an infinite cardinal. The following statements are

equivalent:

(G) If a closed subgroup H of F̂m has the property PG, then H ∼= F̂m.

(F) If a separable algebraic extension L of a Hilbertian field K has the property PF,

then L is Hilbertian.

A partial evidence to the correctness of the twinning principle emerges in the

countable case. If we restrict statement (G) to the case m = ℵ0 it becomes equivalent

to statement (F) on special Hilbertian fields, namely the ω-free PAC fields (Proposition
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B). Here a fieldK is said to be PAC if every absolutely irreducible variety V defined over

K has a K-rational point. The field K is ω-free if each finite embedding problem for

G(K) has a solution. That is, given a finite Galois extension L of K and an epimorphism

α: B → G(L/K) from a finite group G there exists an epimorphism γ: G(K)→ B such

that α ◦ γ = resL. In case K is countable, it is ω-free if and only if G(K) ∼= F̂ω [FJ,

Cor. 24.2].

Theorem (Weak twinning principle): The following statements are equivalent:

(G0) If a closed subgroup H of F̂ω has the property PG, then H ∼= F̂ω.

(F0) If a separable algebraic extension L of a countable ω-free PAC field K (which is

nonperfect if char(K) > 0) has the property PF, then L is Hilbertian.

The proof of the Theorem is based on three results:

Proposition A (Ax – Roquette [FJ, Cor. 10.7]): Every algebraic extension of a PAC

field is PAC.

Proposition B (Roquette [FJ, Cor. 24.38]): Every ω-free PAC field of characteristic

0 is Hilbertian.

Proposition C (Fried – Völklein [FV, Thm. A]): If K is a Hilbertian PAC field of

characteristic 0, then K is ω-free.

Proof of the Theorem: Suppose that G0 is true. Let L be as in (F0). In particular L

has the property PF and therefore G(L) has the property PG. By (G0), G(L) ∼= F̂ω.

Also, by Proposition A, L is PAC. Hence, by Proposition B, L is Hilbertian.

Now suppose that (F0) is true. Let H be a closed subgroup of F̂ω which has

property PG. By [FJ, Example 24.39], there exists a countable ω-free PAC field K of

characteristic 0. In particular G(K) = F̂ω. Let L be the fixed field of H in the algebraic

closure K̃ of K. Then L has property PF. By (F0), L is Hilbertian. As L is also PAC,

Proposition (C) implies that H ∼= F̂ω, as desired.

The weak twinning principle reduces the group theoretic theorems (G5) and (G6)

in the case where m = ℵ0 to the known field theoretic results (F5) and (G6). Note

however, that the proof of the twinning principle is based on the deep work of Fried
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and Völklein (Proposition C). This work uses complex analysis and in particular the

Riemann existence theorem. The proofs of (G5) and (G6), which we give below use

only group theoretic tools and work for general m.

Acknowledgement: We thank E. Rips for his help in understanding [M2].

1. Intersections of normal subgroups of free profinite groups.

The goal of this section is to prove Theorem G5 of the introduction for F̂m. We also

prove the corresponding theorem in the case where 2 ≤ m < ℵ0. In this case we achieve

our goal by using the Nielsen – Schreier formula and tools from [LD] and [FJ]. The case

with uncountable rank is more complicated. We have to use the notion of “free pro–∆–

group” developed by Melnikov in [M1] and in particular Theorem 4.1 of [M1]. So, we

prove the theorem in the framework of Melnikov’s notion of freeness which generalizes

the one defined in [FJ] for full families. In order to bring the two notions in line we

have changed Melnikov’s notation and speak about “free pro–D–group” instead of “free

pro–∆–group”:

Let D0 be a nonempty family of finite simple groups. Denote the family of all

finite groups whose composition factors belong to D0 by D. We call D a quasi full

family generated by D0. Each member of D is called a D–group. An inverse limit of

D–groups is a pro–D–group.

Consider the free discrete group F0 generated by a set X. Let N be the collection

of all normal subgroups N of F that contain almost all elements of X such that F/N ∈

D. The profinite completion F of F0 with respect to N is the free pro–D group with

basis X. In particular X converges to 1 and each map f of X into a pro–D–group G

for which f(X) also converges to 1 uniquely extends to a homomorphism of F into G

[M1, Lemma 2.1]. Thus F is uniquely determined up to isomorphism by the cardinality

of X, which is at the same time the rank of F . So, if this rank is m we denote F also

by F̂m(D).

Note that D is closed under taking normal subgroups, quotients, and extensions.

Conversely, if C is such a family, and C0 is the family of all compositions factors of

C–groups, then C is the family of all finite groups whose decomposition factors belong
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to C0. In particular this is the case if C is a full family, i.e., C is closed under taking

subgroups, quotients, and extensions [FJ, p. 189]. Thus, some of the results below will

be generalizations of results for full families which appear in [FJ] or in [LD].

Throughout this work we fix D0 and D as above, reserve the letter m to denote a

cardinal number, and let F = F̂m(D).

Let G be a profinite group and S a finite simple group. Denote the intersection

of all open normal subgroups N of G such that G/N ∼= S by MS(G). By [M1, Lemma

1.3], G/MS(G) ∼= SI for some set I. We denote the cardinality of I by rS(G).

Here are some results on F due to Melnikov which are needed in the proof.

Proposition 1.1: The following statements hold for a nontrivial closed normal sub-

group N of F :

(a) [M1, Prop. 2.1(a)] If m = e is a positive integer, and (F : N) = n, then N is a

free pro–D–group of rank 1 + n(e− 1).

(b) [M1, Thm. 3.4] If m ≥ 2 and K is a proper open normal subgroup of N , then K is

a free pro–D–group. If (F : K) =∞ or m is infinite, then rank(K) = max{ℵ0,m}.

(c) [M1, Prop. 3.2] If m ≥ 2, then F is not a nontrivial direct product of two profinite

groups.

(d) [M1, Prop. 3.3] If m ≥ 2, then the center of F is trivial.

(e) [M1, Thm. 2.1(b)] If m is infinite and N is open, then N ∼= F .

(f) [M1, Thm. 3.2 and statement at the bottom of page 9] Suppose that m is infinite.

For each S ∈ D0 we have rS(N) ≤ rS(F ) = m.

(g) [M1, Thm. 3.1] If m is infinite and N ′ is another closed normal subgroup of F such

that rS(N) = rS(N ′) for each S ∈ D, then N ∼= N ′. In particular, if rS(N) = m

for each S ∈ D0, then N ∼= F .

(h) [M1, Thm. 4.1] Suppose that m is infinite. Consider the family E0 = {S ∈

D0| rS(N) < m}, let E be the family of all finite groups whose decomposition

factors belong to E0, and let M be the intersection of all open normal subgroups

K of F which contain N such that F/K is an E–group. If E0 is nonempty, then

F/M ∼= F̂m(E).
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Recall that a profinite group G has the embedding property if for each finite

quotient B of G and for each pair of epimorphisms (ϕ: G→ A, α: B → A) there exists

an epimorphism γ: G→ B such that α ◦ γ = ϕ.

Lemma 1.2: Let N be a closed normal subgroup of F .

(a) N has the embedding property.

(b) If m ≤ ℵ0 and each D–group is a quotient of N , then N ∼= F̂ω(D).

Proof of (a): Suppose first that N = F . If m is finite, then the statement follows from

the Gaschütz lemma as in [FJ, Prop. 15.31]. If m is infinite, repeat the proof of [FJ,

Lemma 23.7].

If N is open, then, by Proposition 1(a,b), N is D–free and therefore has the

embedding property.

The general case is now a consequence of [FJ, Lemma 24.3].

Proof of (b): Both N and F̂ω(D) have the embedding property, are of rank at most ℵ0,

and have the same finite quotients. By [FJ, Lemma 24.1], N ∼= Fω(D).

Let G be a profinite group. We say that G satisfies the eth Nielsen – Schreier

formula if

rank(H) = 1 + (G : H)(e− 1)

for each open subgroup H of G. In particular this formula implies for H = G that

rank(G) = e.

The following Lemma generalizes Lemma 24.6 of [FJ].

Lemma 1.3: Suppose that m = e ≥ 2 is finite let N be a closed normal subgroup of

F of infinite index. If F/N does not satisfy the eth Nielsen – Schreier formula, then

N ∼= F .

Proof: By Lemma 1.2(b), it suffices to prove that each D–group G is a quotient of N .

By assumption, F has an open subgroup H that contains N such that

(1) rank(H/N) < 1 + (F : H)(e− 1)
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Also, H has an open normal subgroup E that contains N such that (H : E) ≥ rank(G).

By [FJ, Cor. 15.28], rank(E/N) ≤ 1+(H : E)(rank(H/N)−1). From (1), rank(H/N) ≤

(F : H)(e − 1). Hence rank(E/N) ≤ 1 + (F : E)(e − 1) − (H : E). By Proposition

1.1(a),

rank(E) = 1 + (F : E)(e− 1) ≥ rank(E/N) + rank(G) ≥ rank((E/N)×G).

Moreover, In particular, as E is D–free, (E/N)×G is a quotient of E.

Let π: E → E/N be the canonical map. Let α: (E/N) × G → E/N be the

projection on the first factor. By Lemma 1.2(a), there exists an epimorphism γ: E →

(E/N) × G such that α ◦ γ = π. In particular γ(N) = 1 × G and G is therefore a

quotient of N , as claimed.

The following Lemma generalizes Cor. 3.9(h) of [LD].

Lemma 1.4: Suppose that 2 ≤ m ≤ ℵ0. If N is a closed normal subgroup of F of

infinite index such that F/N is abelian, then N ∼= F̂ω(D).

Proof: Consider first the case where m = e is finite. Then A = F/N is a finitely

generated infinite abelian group. Therefore there exists a prime p such that 1 < (A :

Ap) <∞. Also, rank(Ap) ≤ rank(A) ≤ e < 1+(A : Ap)(e−1). Hence, A is not e–freely

indexed. By Lemma 1.3, N ∼= F̂ω(D).

Now consider the case where m = ℵ0. By Lemma 1.2(b) it suffices to prove that

each D–group G is a quotient of N . Indeed, take an epimorphism ϕ: F → F = F̂e(D)

with e ≥ rank(G). Then F/ϕ(N) is abelian. If (F : ϕ(N)) is finite, then ϕ(N) is

D–free of rank at least e (Prop. 1(a)). If (F : ϕ(N)) =∞, then ϕ(N) ∼= F̂ω(D), by the

preceding paragraph. In both cases G is a quotient of ϕ(N) and therefore also of N .

Lemma 1.5 ([L, Lemma 2.2]): Let G be a direct product of nontrivial profinite groups

M and N . Then G satisfies the eth Nielsen – Schreier formula for no e > 1.

Lemma 1.6: Let G = K × L be a direct product of profinite groups K and L, and

let ϕ: G → G be an epimorphism. Then A = ϕ(K) ∩ ϕ(L) lies in the center of G. In

particular A is an abelian group.
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Proof: We have xy = yx for each x ∈ K and y ∈ L. Hence, each a ∈ A satisfies az = za

for each z ∈ ϕ(K) and for each z ∈ ϕ(L) and therefore also for each z ∈ ϕ(K)ϕ(L) = G.

The case m = ℵ0 is covered twice in the proof of the following lemma. We have

chosen to include the first proof because it uses lighter machinery than the second,

which covers the more general case m ≥ ℵ0.

Lemma 1.7: Suppose that m ≥ 2. Let K and L be closed normal subgroups of F

neither of which contains the other. Suppose that both K and L are isomorphic to F

and that KL = F . Then N = K ∩ L is D–free.

Proof: Suppose first that m = e is finite. By Lemma 1.5, F/N , which is the direct

product of K/N and L/N is not e–freely indexed. Hence, by Proposition 1.1(a) and

Lemma 1.3, N is D–free.

Secondly, let m = ℵ0. By Lemma 1.2(b) it suffices to prove that each D–group G

is a quotient of N . Indeed, choose an integer e ≥ max{2, rank(G)} and an epimorphism

ϕ: F → F = F̂e(D) such that none of the groups K = ϕ(K) and L = ϕ(L) contains the

other. As KL = F , we conclude from the first paragraph that E = K∩L is D–free with

rank at least e. Let N = ϕ(N). By Lemma 1.6, E/N is abelian. Hence, by Proposition

1.1(a) and Lemma 1.4, N is D–free of rank at least e. In particular G is a quotient of

N and therefore also a quotient of N , as desired.

Finally suppose that m ≥ ℵ0. Consider the family E0 = {S ∈ D0| rS(N) < m}. If

E0 is empty, then rS(N) = m = rS(F ) for each S ∈ D (Proposition 1.1(f)). Hence, by

Proposition 1.1(g), N ∼= F .

So, assume that E0 is nonempty and draw a contradiction. To that end, let E

be as in 1.1(h), and let M be the intersection of all open normal subgroups F0 of F

which contain N such that F/F0 ∈ E . By Proposition 1.1(h), F = F/M ∼= F̂m(E). Let

K = KM/M and L = LM/M . By Lemma 1.6, K ∩ L lies in the center of F . Hence,

by Proposition 1.1(d), K ∩ L = 1. As KL = F , this means that F = K × L. But

this contradicts Proposition 1.1(c) unless the factorization is trivial. So, say, K = 1

and therefore KM = M . Conclude that K ≤ M . In particular F/L has no nontrivial
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quotients which belong to E .

Now choose S ∈ E0. Since K ∼= F̂m(D), we have K/MS(K) ∼= Sm, by Proposition

1.1(g). Also, observe thatK/MS(K)N ∼= F/MS(K)L is an E–group. HenceMS(K)N =

K. It follows that N/(MS(K) ∩ N) ∼= K/MS(K)N ∼= Sm and therefore rS(N) ≥ m.

This contradicts the choice of S, as desired.

Lemma 1.8: Let N be a closed nontrivial normal subgroup of F . If m ≥ 2 and (F :

N) =∞, or m ≥ ℵ0, then rank(N) = max{ℵ0,m}.

Proof: By assumption N has a proper open normal subgroup K. By Proposition 1.1(b),

rank(N) = rank(K) = max{ℵ0,m}.

Theorem 1.9: Suppose that m ≥ 2. Let K and L be closed normal subgroups of

F = F̂m(D) neither of which contains the other. Then N = K ∩ L is D–free. If

(F : K) = ∞, or (F : L) = ∞, or m ≥ ℵ0, then rank(N) = max{ℵ0,m}, otherwise

rank(N) = 1 + (F : N)(m− 1).

Proof: Lemma 1.8 gives the assertion about the ranks. So, all we have to prove is that

N is D–free.

If (F : K) < ∞, then N is open in L, and therefore, by Proposition 1.1(b), N

is D-free. The same consequence holds if (F : L) < ∞. So, we may assume that

(F : K) =∞ and (F : L) =∞.

By assumption K has a proper open normal subgroup K1 that contains N and L

has a proper open normal subgroup L1 that contains N . By Proposition 1.1(b), both

K1 and L1 are D–free. As F1 = K1L1 is a proper open normal subgroup of KL it is

D–free. By Lemma 1.8, each of the groups F1, K1 and L1 is isomorphic to F̂ω(D) if

m ≤ ℵ0 and to F if m ≥ ℵ0.

If K1 = N or L1 = N , then, by Proposition 1.1(b), N is D–free. So, assume

that N is a proper subgroup of both K1 and L1. Thus, neither of the groups K1 and

L1 contains the other. Apply Lemma 1.7 to F1, K1 and L1 instead of F , K and L to

conclude that N is D–free.

Corollary 1.10: Suppose that N is a closed normal subgroup of F such that F/N is
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a pronilpotent group whose order is divisible by at least two distinct primes. Then N

is D–free.

Proof: : The group F/N is the direct product of its Sylow subgroups.

Theorem 4.1 generalizes Corollary 1.10 considerably.

2. Open subgroups of closed normal subgroups of free profinite groups.

Theorem G3 of the introduction contains two statements:

(1a) Every proper open subgroup M of a closed normal subgroup N of F̂ω is isomorphic

to F̂ω, and

(1b) ifm ≥ ℵ0, then every proper open normal subgroupM of a closed normal subgroup

N of F̂m is isomorphic to F̂m.

None of these statements covers the case where m > ℵ0 and M is not necessarily normal

in N . The goal of this section is to fill up this gap and to prove that also in this case M

is isomorphic to F̂m. We do this in the more general framework of pro-D-groups where

D is a full family or a quasi full family of finite groups. The main step in the proof is

the following result, which has also an independent application in the proof Theorem

4.1.

Proposition 2.1: Let D0 be a nonempty family of finite simple groups, D the quasi

full family generated by D0, m an infinite cardinal, F = F̂m(D), and N a closed normal

subgroup of F . If D is a full family, suppose that E is an open proper subgroup of F

such that NE = F . If D is only quasi full, assume, in addition, that E is normal. In

both cases let M = N ∩E. Then, for each S ∈ D0, E has a closed normal subgroup D

such that E/D ∼= Sm and MD = E.

The proof of this Proposition naturally splits into two cases. Lemma 2.3 handles

the case where S is nonabelian. Lemma 2.4 takes care of the abelian case. In both cases

we use Proposition 15.27 of [FJ] which states that E ∼= F̂m(D). Moreover, the proof of

this proposition construct a basis Y of E with special properties from a basis X of F :

Lemma 2.2: let X be a basis for F . Then there exists a function ρ: F → F such that

(2a) ρ(1) = 1,
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(2b) R = ρ(F ) is a set of representatives for the left cosets of F modulo E,

(2c) the set Γ = {(r, x) ∈ R×X| ρ(rx) = rx} is finite,

(2d) with yr,x = rxρ(rx)−1 for (r, x) ∈ R×X−Γ, the map (r, x) 7→ yr,x maps R×X−Γ

bijectively onto a basis Y of E, and

(2e) if an element x ∈ X belongs to a normal subgroup N of F which is contained in

E, then yr,x = rxr−1 for each r ∈ R.

Proof: Let F0 be the free discrete subgroup generated by X. Then F is the completion

of F0 with respect to the family of all normal subgroups N of F0 which contain almost

all elements of X. Moreover, the canonical map of F0 into F identifies F0 with a dense

subgroup of F [M1, Lemma 2.5]. Also, there exists subgroup E0 of index (F : E) such

that E is the closure of E0 in F [FJ, Lemma 15.14]. Each representative system of

F0/E0 is also a representative system of F/E. If D is only quasi full, then E0 is normal.

By [FJ, Lemmas 15.21] there exists a function ρ0: F0 → F0 such that ρ0(1) = 1,

ρ(f) ∈ Hf , and ρ0(ef) = ρ(f) for each e ∈ E0 and f ∈ F0, and finally ρ0 satisfies

condition (5) on page 192 of [FJ]. By [FJ, Lemmas 15.22 and 15.23] the map (r, x) 7→ yr,x

maps R×X−Γ bijectively onto a basis Y of E0. Moreover, if an element x ∈ X belongs

to a normal subgroup N of F0 which is contained in E0, then yr,x = rxr−1 for each

r ∈ R.

Proposition 15.25 of [FJ] handles only the case where X is finite. However, that

part of its proof which states that Γ is finite depends only on the finiteness of R and

not on that of X (Note that proof uses the letter N for what we call here Γ.)

The proof of Proposition 15.27 of [FJ] shows that Y is a basis of E in the profinite

sense. Note that although that proof is carried out for full families, its proof remains

valid also for quasi full families. In the latter case we have to use that E0 = F0 ∩ E is

normal in F0.

Finally, we may extend ρ0 to a function ρ: F → F as follows: For each f ∈ F

we define ρ(f) to be the unique element r ∈ R such that r ∈ Ef . Then Condition (2)

holds.

Lemma 2.3: Under the assumption of Proposition 2.1, suppose that S is nonabelian.
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Then E has a closed normal subgroup D such that E/D ∼= Sm and MD = E.

Proof: Let X be a basis for F , and let ρ, R, Γ, yr,x, and Y be as in Lemma 2.2. Choose

an open normal subgroup E1 of F which is contained in E. In particular yr,x = rxr−1 if

x ∈ E1. Let X0 be the set of all x ∈ X for which there exists r ∈ R such that (r, x) ∈ Γ

or x /∈ E1. Then X0 is finite. Let X1 = X −X0.

Choose a set of epimorphisms {ϕi: F → S| i ∈ I} with an index set I which

contains neither 0 nor 1 such that for each open normal subgroup L of F with F/L ∼= S

there exists a unique i ∈ I with L = Ker(ϕi). Then |I| = m. For each i ∈ I denote the

restriction of ϕi to E by ψi.

For each i ∈ I let Xi = X1 − Ker(ϕi). Since X0 is finite, I has a subset I1 of

cardinality m such that Xi ⊆ E1 for each i ∈ I1. Indeed, choose a system of generators

S0 for S none of which is 1. There are m subsets A of X1 with cardinality |S0|. For

each such A define an epimorphism of F onto S which maps X −A onto 1 and A onto

S0. The cardinality of the set of kernels of the epimorphisms defined in this way is m.

This gives the subset I1 of I.

Each ϕi is determined by its values on X0 ∪ Xi. There are only finitely many

possibilities for them. Thus if we define two elements i and j of I1 to be equivalent if

Xi = Xj , then each equivalent class is finite. Choose a system of representatives I2 for

the equivalence classes. Then |I2| = m.

For each i ∈ I2 and each x ∈ Xi choose an element si(x) ∈ S, si(x) 6= 1, such that

S = 〈si(x)| x ∈ Xi〉. Then define an epimorphism σi: E → S by:

σi(yr,x) =
{
si(x) if r = 1 and x ∈ Xi

1 otherwise

Note that Xi is finite, and therefore σi is well defined.

Claim: Ker(σi) 6= Ker(σj) for each j ∈ I. Otherwise Ker(σi) = Ker(ψj) for some

j ∈ I. Choose x ∈ Xi and r ∈ R, r 6= 1 (Here we use the assumption that E is a proper

subgroup of F .) Then σi(yr,x) = 1 and therefore 1 = ψj(yr,x) = ϕj(r)ϕj(x)ϕj(r)−1.

Hence ϕj(x) = 1. It follows that ψj(y1,x) = ϕj(x) = 1. Conclude that si(x) =

σi(y1,x) = 1. This contradiction to the choice of si(x) proves the claim.
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If i, j ∈ I2 and i 6= j, then Xi 6= Xj . Without loss, we may choose x ∈ Xi −Xj .

Then σi(y1,x) = si(x) 6= 1 and σj(y1,x) = 1. Conclude that Ker(σi) 6= Ker(σj).

Let D =
⋂

i∈I2
Ker(σi). Since S is nonabelian, E/D ∼=

∏
i∈I2

E/Ker(σi) ∼= Sm.

Moreover, if MD 6= E, then there exists i ∈ I2 such that Ker(σi) ≥ MD. The group

L = N · Ker(σi) is open and normal in F and F/L ∼= E/Ker(σi) ∼= S. Hence, there

exists j ∈ I such that L = Ker(ϕj). Therefore, Ker(σi) = Ker(ψj). This contradiction

to the claim proves that MD = E, as desired.

Before we handle the case where S is abelian, we survey on Pontryagin’s duality

for vector spaces over Fq and its application to free profinite groups.

Let q be a prime and let X be a set. Consider the group V = (Z/qZ)X which

consists of all functions (vx)x∈X with vx ∈ Z/qZ. Equip V with the product topology

and so, consider V as a profinite group. Of course, V is also a vector space over Fq.

Embed X into V by defining xx = 1 and xx′ = 0 if x 6= x′ are in X. In partic-

ular, each open neighborhood U of 0 in V contains almost all elements of X. Hence,

each continuous homomorphism ϕ: V → Z/qZ maps almost all elements of X onto

0. Conversely, each function ϕ0: X → Z/qZ which maps almost all elements of X

onto 0 uniquely extends to a continuous homomorphism ϕ: V → Z/qZ. Indeed, let

X1 = {x ∈ X| ϕ0(x) 6= 0} be the support of ϕ0. Define ϕ at an element v ∈ V by

ϕ(v) =
∑

x∈X1
vxϕ0(x). Then ϕ is a homomorphism and Ker(ϕ) ≥ {v ∈ V |

∧
x∈X1

vx =

0} is an open subgroup. We call X a topological basis of V . It follows that the dual

space to V

V ∗ = {ϕ: V → Z/qZ| ϕ is a continuous homomorphism}

can be identified with the discrete space

{ϕ: X → Z/qZ| the support of ϕ is finite}.

The latter has a natural basis {ϕx| x ∈ X}, where ϕx(x′) = 1 if x′ = x and ϕx(x′) = 0

if x′ 6= x.

Pontryagin’s duality associates to each subspace W of V ∗ the closed subspace

Ker(W ) = {v ∈ V | ψ(v) = 0 for each ψ ∈W}.
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If Ker(ψ1) = Ker(ψ2) for ψ1, ψ2 ∈W , then ψ1 and ψ2 differ only by an automorphism of

Z/qZ. Hence, if |W | is infinite, then the cardinality of the set {Ker(ψ)| ψ ∈W} equals

to |W |. So rank(V/Ker(W )), which is the cardinality of the set of all open subgroups

of V/Ker(W ) [FJ, p. 188] is equal to that of W .

The map W 7→ Ker(W ) is bijective and satisfies the relation Ker(W1 ∩W2) =

Ker(W1) + Ker(W2). If W1 ∩W2 = 0, then Ker(W1) + Ker(W2) = V .

Note that it is much easier to establish Pontryagin’s duality for abelian profinite

groups than to establish the duality for arbitrary locally compact abelian groups because

the former can be reduced to the duality for finite abelian groups:

Let G = lim←−Gi be an inverse limit of finite abelian groups. Denote the discrete

group of all continuous homomorphisms χ: G → C∗ by G∗. Then G∗ = lim−→G∗i and

G∗∗ = lim←−G
∗∗
i . The natural isomorphisms Gi → G∗∗i induce an isomorphism G →

G∗∗. Likewise, all properties of the duality for finite abelian groups are carried over to

profinite abelian groups by taking limits.

Consider now the free pro-D-group F = F̂m(D) of rank m and let X be a topo-

logical basis of F . Denote the intersection of all open normal subgroups L of F with

F/L ∼= Z/qZ by F (q,ab). For each z ∈ F let z̄ be the image of z in the quotient group

V = F/F (q,ab). Then the map x 7→ x̄ maps X bijectively onto a topological linear basis

of the Fq-vector space V . So we can identify V ∗ with the discrete space

{ϕ: X → Z/qZ| ϕ has a finite support}.

and also with the space of all continuous homomorphisms ϕ: F → Z/qZ. Thus, if for

i = 1, 2, Wi is a subspace of V ∗, then Ker(Wi) =
⋂

ϕ∈Wi
Ker(ϕ) is a closed subgroup

of F which contains F (q,ab). If, in addition, W1 ∩W2 = 0, then Ker(W1)Ker(W2) = F .

Lemma 2.4: Under the assumption of Proposition 2.1, suppose that S = Z/qZ for some

prime q. Then E has a closed normal subgroup D such that E/D ∼= Sm and MD = E.

Proof: For each x ∈ X let ϕx: F → Z/qZ be the homomorphism which is defined by

ϕx(x) = 1 and ϕx(x′) = 0 if x′ 6= x. Then F (q,ab) =
⋂

x∈X Ker(ϕx). Denote the

restriction of ϕx to E by ψx. Then E0 = F (q,ab) ∩ E =
⋂

x∈X Ker(ψx).
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Choose an open normal subgroup E1 of F which is contained in E. Let X0 =

X −E1 and X1 = X ∩E1. For each x ∈ X1 define a homomorphism σx: E → Z/qZ by

σx(yr,x′) =
{

1 if x′ = x and r = 1
0 otherwise.

Then D =
⋂

x∈X1
Ker(σx) satisfies E/D ∼= (Z/qZ)m.

Claim: E0D = E. By the discussion that precedes the lemma it suffices to prove

that the intersection of the vector space generated by the ψx’s with the vector space

generated by the σx’s is 0. We have to prove that if

(3)
∑
x∈X

axψx =
∑

x∈X1

bxσx

with ax, bx ∈ Z/qZ and almost all of them are 0, then the right hand side of (3) is 0.

To this end choose r ∈ R, r 6= 1, let x′ ∈ X1 and apply (3) on yr,x′ . Then

σx(yr,x′) = 0 and

(4) ψx(yr,x′) = ϕx(rx′r−1) = ϕx(r) + ϕx(x′)− ϕx(r) =
{

1 x′ = x
0 x′ 6= x.

Hence ax′ = 0. So, (3) reduces to

(5)
∑

x∈X0

axψx =
∑

x∈X1

bxσx.

Now let x′ ∈ X1 and apply (5) to y1,x′ . By definition σx(y1,x′) = 1 if x′ = x and

σx(y1,x′) = 0 if x′ 6= x. Also, if x ∈ X0, then x 6= x′ and therefore, as in (4), ψx(y1,x′) =

ϕx(x′) = 0. It follows that bx′ = 0. This completes the proof of the claim.

Finally, if MD 6= E, then E has an open normal subgroup K which contains MD

such that E/K ∼= Z/qZ. Then L = NK is an open normal subgroup of F such that

F/L ∼= Z/qZ. Hence, K = L ∩ E contains E0. Hence, by the claim, K = KD = E, a

contradiction. Conclude that MD = E, as desired.

This concludes the proof of Proposition 2.1.
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Theorem 2.5: Let D0 be a family of simple groups, D the quasi full family generated

by D0, m an infinite cardinal, F = F̂m(D), and N a closed normal subgroup of F . If

D is a full family, let M be an open proper subgroup of N . If D is only quasi full, we

assume, in addition, that M is normal in N . Then M ∼= F̂m(D).

Proof: If D is a full family, choose an open subgroup H of F such that N ∩H = M . If

D is only quasi full, then M is normal in N and therefore we may choose H such that

in addition, H is normal in G = NH. In both cases H is a proper subgroup of G, N

is normal in G and G ∼= F̂m(D).

By Proposition 2.1, H has for each S ∈ D0 a closed normal subgroup D such that

H/D ∼= Sm and MD = H. Hence M/M ∩D ∼= H/D ∼= Sm. So, rS(M) ≥ m.

Finally, note that M is normal in H and H ∼= F̂m(D). By Proposition 1.1(f),

rS(M) ≤ m. Hence rS(M) = m. Conclude from Proposition 1.1(g) that M ∼= F̂m(D),

as desired.

Note that the case where D is quasi full is due to Melnikov (see (G3) of the

Introduction).

3. Accessible subgroups.

“Accessible subgroups” are the counterpart of “subnormal groups” for profinite groups.

The goal of this section is to prove a criterion for an accessible subgroup of a free pro-

D-group to be free. Many of the ideas involved in this section are due to Melnikov [M1

and M2].

Recall that a closed subgroup H of a profinite group G is subnormal if there

exists a finite sequence

H = Hn / · · · / H1 / H0 = G

with Hi closed, i = 0, . . . , n. We say that H is accessible if there exists a transfinite

sequence {Hα| α ≤ γ} of closed subgroups of G such thatH0 = G, Hγ = H, Hα+1/Hα,

for each α < γ, and Hβ =
⋂

α<β Hα for each limit ordinal β ≤ γ.

If G is finite, then H is accessible in G if and only if H is subnormal in G. If H

is accessible in G and G0 is a closed normal subgroup of G which contains H, then H
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is accessible in G0. If ϕ is an epimorphism of G onto a profinite group G, then ϕ(H) is

accessible in G.

As Melnikov [M2, Remark 1.5] mentions (without proof), it suffices to consider

only countable sequences. To this end we inductively define an ascending sequence of

closed subgroups, Nn(H,G), of G which contain H: N0(H,G) = G and Nn+1(H,G) =

〈Hx| x ∈ Nn(H,G)〉 is the smallest closed normal subgroup of Nn(H,G) which contains

H.

Lemma 3.1: If H is an accessible closed subgroup of a profinite group G, then H =⋂∞
n=1Nn(H,G). In particular, if N1(H,G) = G, then H = G.

Proof: Let Nn = Nn(H,G) and N =
⋂∞

n=1Nn. We prove that N = H by proving that

NU = HU for each open normal subgroup U of G.

Indeed, HU =
⋂

α≤γ HαU . As there are only finitely many subgroups between G

and HU , there is a finite sequence of ordinals, 0 = α0 < α1 < · · · < αr = γ such that

HβU = Hαi+1U for each αi < β ≤ αi+1. Then Hαi+1U = Hαi+1U /HαiU , i = 0, . . . , r.

Thus, HU = Hαr
U is a subnormal open subgroup of G.

Inductively observe that Ni ≤ Hαi
U , i = 0, . . . , r. In particular N ≤ Nr ≤ HU .

Hence, NU = HU , as claimed.

Corollary 3.2: The intersection of closed accessible subgroups of a profinite group

G is accessible.

Proof: Let H =
⋂

j∈J Hj be an intersection of closed accessible subgroups Hj of G. For

each nonnegative integer n let Nn =
⋂

j∈J Nn(Hj , G). Then N0 = G, Nn+1 / Nn and⋂∞
n=1Nn =

⋂
j∈J

⋂∞
n=1Nn(Hj , G) =

⋂
j∈J Hj = H. Hence H is accessible.

Example 3.3: Each closed subgroup H of a pronilpotent subgroup G is accessible. If

U is an open normal subgroup of G, then G/U is a finite nilpotent group and therefore

HU/U is a subnormal subgroup of G/U [H, p. 308]. Hence, HU is an open subnormal

subgroup of G. Conclude from Corollary 3.2 that H =
⋂

U HU is accessible.

Lemma 3.4: Let C is a nontrivial minimal closed normal subgroup of a profinite group

B. Let H be a closed accessible subgroup of B such that HC = B. If H ∩C 6= 1, then

19



H = B. If H ∩ C = 1, then H / B and B = H × C.

Proof: Let N = N1(H,B) be the smallest closed normal subgroup of B which contains

H. If H ∩ C 6= 1, then N ∩ C 6= 1. Since N ∩ C is normal in B, the minimality of C

implies that N ∩C = C and therefore N ≥ C. As N ≥ H we have N = B. By Lemma

3.1, H = B.

If on the other hand H ∩ C = 1, then N ∩ C = 1. Otherwise, by the preceding

argument, H = B, and therefore C = 1, a contradiction. It follows that B = N × C.

In particular, the canonical map α: B → B/C maps N bijectively onto B/C. Since

α(H) = B/C, conclude that B = N and therefore H is normal in B.

We continue to consider the families D0 and D of finite groups and the free pro-

D-group F = F̂m(D) of rank m as in Section 1.

Let G be a pro-D-group. An embedding problem for G is a pair

(1) (ϕ: G→ A, α: B → A)

of epimorphisms where B is a pro-D-group. A solution to (1) is an epimorphism

γ: G→ B such that α ◦ γ = ϕ.

Lemma 3.5: Suppose that m is infinite and let G be a pro-D-group with rank(G) = m.

Each of the following two conditions is necessary and sufficient for G to be isomorphic

to F̂m(D):

(2a) Each embedding problem (1) in which rank(A) < m and Ker(α) is a minimal

nontrivial finite normal subgroup of B is solvable.

(2b) Each embedding problem (1) in which B ∈ D and A nontrivial has m solutions.

Proof: Suppose first that condition (2a) is satisfied. Use induction on |Ker(α)| to prove

that each embedding problem (1) in which B is a pro-D-group, rank(A) < m and

Ker(α) 6= 1 is solvable. On the other hand the group F also satisfies this condition

(with F replacing G) [M1, Lemma 2.2]. Hence G ∼= F (The proof of [FJ, Prop. 24.18]

which is carried out for the case where D is the family of all finite groups works also for

an arbitrary quasi full D.)
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Again, the proof of [FJ, Lemma 24.17] applied for pro-D-groups shows that condi-

tion (2b) implies condition (2a). Hence, the former also suffices for G to be isomorphic

to F . Finally, note that the proof of [FJ, Lemma 24.14] works also for pro-D-groups.

So, F̂m(D) also satisfies condition (2b).

Let H be a closed subgroup of a profinite group G. The weight of the quotient

space G/H is the cardinality of the set of open subgroups of G which contain H. In

particular, if (G : H) < ∞, then weight(G/H) < ∞. If H is normal and G/H is not

finitely generated, then weight(G/H) = rank(G/H) [FJ, p. 188]. If (F : H) = ∞ and

H =
⋂

i∈I Hi where each Hi is open, then each open subgroup of G which contains H

contains an intersection of finitely many Hi. Hence, weight(G/H) = |I|.

Lemma 3.6: Let G be a profinite group of infinite rankm and letH is a closed subgroup

of G such that weight(G/H) < m. Consider a collection {Gi| i ∈ I} of open subgroups

of G with |I| = m. Then for each i ∈ I, #{j ∈ I| H ∩ Gj = H ∩ Gi} < m and

#{H ∩Gi| i ∈ I} = m. In particular, rank(H) = m.

Proof: For each closed subgroup U of G and each i ∈ I let Ji(U) = {j ∈ I| U ∩ Gj =

U ∩Gi}. If U is open, then U ∩Gi is also open and therefore Ji(U) is finite.

Denote the set of all open subgroup of G which contain H by U . If for some

i, j ∈ I we have H ∩Gj = H ∩Gi, then there exists a U ∈ U such that U ∩Gj = U ∩Gi.

Indeed, otherwise for each U ∈ U the symmetric difference D(U) of U ∩Gj and U ∩Gi

will be a nonempty closed subset of G. Intersection of finitely many D(U)’s contains a

set of this form and therefore it is nonempty. Since G is compact, the intersection of all

D(U), which is D(H), is nonempty, a contradiction.

In the above notation this means that Ji(H) =
⋃

U∈U Ji(U). Hence |Ji(H)| ≤

|U| · ℵ0 < m.

Let I0 be a system of representatives for the sets Ji(H). Thus, I =
⋃
· i∈I0

Ji(H).

By the preceding paragraph #{H ∩Gi| i ∈ I} = |I0| = m.

Finally, as each open subgroup of H is the intersection of an open subgroup of G

with H, weight(H) ≤ m. Hence, by the first statement of the lemma, rank(H) = m.
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Lemma 3.7: Let H be a closed accessible subgroup of a profinite group G. Let H0 be an

open normal subgroup of H. Then G has an open subgroup M0 such that H∩M0 = H0,

M0 is normal in M = HM0, and M is subnormal in G. If (G : H) =∞, then me may

choose M0 such that in addition (G : M) is greater than a given positive integer n.

Proof: Choose an open subgroup K0 of G such that H ∩ K0 = H0. If (G : H) = ∞

and n is given, choose K0 such that, in addition, (G : K0) > n(H : H0). Let L0 be the

intersection of all Kh
0 where h ranges over a system of representatives of H/H0. Then

L0 is normal in L = HL0. Finally, choose an open normal subgroup N of G which is

contained in L. Then M = HN is subnormal and open in G, M0 = M ∩ L0 is open

and normal in M and H ∩M0 = H0, as desired.

Lemma 3.8: Each open subnormal subgroup H of F is pro-D-free.

Proof: Choose a normal series H = Hn / · · ·/H1 /H0 = F and apply Proposition 1.1(b)

inductively on n.

Proposition 3.9: Suppose that m is infinite. Let H be an accessible closed subgroup

of F with weight(F/H) < m. then H ∼= F .

Proof: Let

(3) (ϕ: H → A, α: B → A)

be an embedding problem such that B ∈ D and C = Ker(α) is a minimal nontrivial

subgroup of B. Then H0 = Ker(ϕ) is an open normal subgroup of H. Choose an open

subgroup G0 of F such that H ∩G0 = H0, G = HG0 is subnormal and G0 /G (Lemma

3.7). Then extend ϕ to an epimorphism ϕ̂: G → A by ϕ̂(hg0) = ϕ(h) for h ∈ H and

g0 ∈ G0. By Lemma 3.8, G ∼= F . It follows (Lemma 3.5) that the embedding problem

(ϕ̂: G→ A, α: B → A) has m solutions γ̂i, i ∈ I. Let Gi = Ker(γ̂i).

For each i ∈ I, H0 ∩ Gi = H ∩ Gi. By Lemma 3.6, the cardinality of the set

{i ∈ I| H0 ∩Gi = H0} = {i ∈ I| H ∩Gi = H ∩G0} is less than m. So assume without

loss that H0 is contained in no Gi.

Let γi be the restriction of γ̂i to H. Choose h ∈ H0 − Gi. Then γi(h) 6= 1 and

α(γi(h)) = ϕ(h) = 1. Hence, γi(h) ∈ γi(H) ∩ C and therefore γi(H) ∩ C 6= 1. Also,
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α(γi(H)) = ϕ(H) = A, which implies that γi(H)C = B. Since γ̂i(G) = B and H is

accessible in G, the group γi(H) is subnormal in B. By Lemma 3.4, γi(H) = B. So, γi

is a solution to the embedding problem (3).

Finally note that H ∩ Gi = Ker(γi). By Lemma 3.6, #{H ∩ Gi| i ∈ I} = m.

Hence, (3) has m solutions. By Lemma 3.5(2b), H ∼= F .

Proposition 3.10: Suppose that m ≥ 2. Let H be an accessible closed subgroup of F

of infinite index such that rS(H) = max{ℵ0,m} for each S ∈ D0. Then H ∼= F̂max{ω,m}.

Proof: By Lemma 3.5, it suffices to prove that each embedding problem

(4) (ϕ: H → A, α: B → A)

for which B is a pro-D-group, rank(A) < max{ℵ0,m}, and C = Ker(α) is a minimal

nontrivial finite normal subgroup of B is solvable.

Let H0 = Ker(ϕ). If m is finite, then rank(B) <∞. By Lemma 3.7, there exists

an open normal subgroup G0 of F such that H ∩G0 = H0, G0 is normal in G = HG0,

G is subnormal in F , and G ∼= F̂e(D) with e ≥ rank(B).

If m is infinite, H0 is the intersection of a collection of open normal subgroups

Ki of H where i ranges over a set I of cardinality less than m. For each i ∈ I Lemma

3.7 gives an open subgroup Li of F such that H ∩ Li = Ki, Li / HLi, and HLi is

subnormal in F . Let G0 =
⋂

i∈I Li and G = HG0 =
⋂

i∈I HLi. Then G is an accessible

closed subgroup of F (Lemma 3.2), rank(F/G) < m, G0 / G, and H ∩ G0 = H0. By

Proposition 3.9, G ∼= F̂m(D).

In each case extend ϕ to an epimorphism ϕ̂: G→ A by ϕ̂(hg0) = ϕ(h) for h ∈ H

and g0 ∈ G0. By [FJ, Prop. 15.3] for finite m and Lemma 3.5 for infinite m there

exists an epimorphism γ̂: G → B such that α ◦ γ̂ = ϕ̂. Let G1 = Ker(γ̂) and let γ

be the restriction of γ̂ to H. Then γ(H) is a closed accessible subgroup of B. Also,

α(γ(H)) = ϕ(H) = A. Hence γ(H)C = B. There are two cases to consider:

Case A: γ(H) ∩ C 6= 1. By Lemma 3.4, γ(H) = B. So, γ is a solution to the

embedding problem (4).
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Case B: γ(H) ∩ C = 1. By Lemma 3.4, B = γ(H)× C. It follows that B = A× C

and α is the projection from on the first factor.

Since C is a minimal nontrivial normal subgroup of B it must be simple. So

C ∈ D0. By assumption, rC(H) = max{ℵ0,m}. On the other hand rank(H/H0) =

rank(A) < max{ℵ0,m}. Hence, H has an open normal subgroup H ′
1 such that H/H ′

1
∼=

C and H ′
1 6≥ H0. Since C is simple, H ′

1H0 = H. Let H1 = H ′
1 ∩ H0. Then H/H1

∼=

H ′
1/H1×H0/H1

∼= A×C ∼= B. The canonical map H → H/H1 defines an epimorphism

γ: H → B such that α ◦ γ = ϕ, as desired.

Example 3.11: The condition on H in Proposition 3.10 to be accessible is indispens-

able. Let H0 be the direct product of all simple finite groups, each taken ℵ0 times.

This is a profinite group of rank ℵ0. Since H0 contains elements of finite order, it is not

projective [FJ, Cor. 20.14]. Denote the universal Frattini extension of H0 by H. It is a

projective profinite group of rank ℵ0 [FJ, Prop. 20.33 and Cor. 20.26]. The kernel of the

map ϕ: H → H0 is a nontrivial closed normal subgroup of the Frattini subgroup of H.

Since the latter subgroup is pronilpotent [FJ, Lemma 20.2], so is the former. It follows

that H is not free [FJ, Cor. 24.8(c)]. On the other hand, H as a projective group of

rank ℵ0 is isomorphic to a closed subgroup H ′ of F̂ω [FJ, Cor. 20.14]. By Proposition

3.10, H ′ is not accessible.
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4. Closed subgroups of F which contain F (nil).

The goal of this section is to prove Theorem G6 of the Introduction. The families of

finite groups D0, D and the free pro-D-group F = F̂m(D) of rank m retain the meaning

we gave them in Section 1.

We use F (p) to denote the intersection of all open normal subgroups of F such

that F/N is a p-group. If Z/pZ ∈ D0, then F/F (p) is the free pro-p-group of rank m.

We also denote the intersection of all open normal subgroups N of F such that F/N is

nilpotent by F (nil). Then F/F (nil) is pronilpotent and therefore it is isomorphic to the

direct product of its unique p-Sylow groups [FJ, p. 311, Exer. 11].

Theorem 4.1: Suppose that m ≥ 2, and Z/pZ ∈ D0. Let H be a closed subgroup of F

of infinite index which contains F (nil). Then H is isomorphic to F̂max{ω,m}(D) unless H

contains F (p) and rank(H/F (p)) < max{ω,m}. In the latter case H is not pro-D-free

unless D0 = {Z/pZ}.

There are three cases to consider:

(1a) H contains F (p),

(1b) 2 ≤ m <∞ and at least two primes divide (F : H), and

(1c) m is infinite and at least two primes divide (F : H).

We handle these cases in Propositions 4.3, 4.5, and 4.6, respectively. By example 3.3,

H is a closed accessible subgroup of F . So, we can apply Proposition 3.10 to H.

Lemma 4.2: Let H be a closed subgroup of F of infinite index which contains F (nil).

Let S ∈ D0 be a simple group which is either nonabelian or S = Z/qZ where q is a

prime which does not divide (F : H). Then rS(H) = max{ℵ0,m}.

Proof: There exists a closed normal subgroup N such that F/N ∼= Sm. The group HN

is accessible in F (Example 3.3) and the decomposition factors of F/HN must be equal

to S (as factors of F/N) as well as different from S (as factors of F/H). Hence there are

none and therefore HN = F . It follows that H/H ∩N ∼= F/N ∼= Sm. So, rS(H) ≥ m.

If m is finite, then, by assumption, H is contained in an open subgroup E of

F of arbitrary large index. By Proposition 1.1(a), E is pro-D-free of arbitrary large
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rank. Apply the preceding paragraph to E instead of F to conclude in this case that

rS(H) ≥ ℵ0.

In each case rank(H) is infinite. Hence rank(H) is equal to the cardinality of the

set of open subgroups ofH [FJ, p. 188]. By [FJ, p. 200, Exer. 9], rank(H) ≤ max{ℵ0,m}.

Hence rS(H) ≤ rank(H) ≤ max{ℵ0,m}. Conclude that rS(H) = max{ℵ0,m}.

Abbreviate rZ/qZ(H) by rq(H).

Proposition 4.3: Suppose that m ≥ 2, and Z/pZ ∈ D0. Let H be a closed sub-

group of F which contains F (p). If rank(H/F (p)) = max{ℵ0,m}, then H ∼= F̂max{ω,m}.

Otherwise, H is not a free pro-D-group, unless D0 = {Z/pZ}.

Proof: Suppose that rank(H/F (p)) = max{ℵ0,m}. The group H/F (p) as a closed sub-

group of the free pro-p-group F/F (p) is free [FJ, Cor. 20.38]. Hence (Z/pZ)max{ℵ0,m}

is a quotient of H and therefore rp(H) = max{ℵ0,m}. So, by Lemma 4.2, rS(H) =

max{ℵ0,m} for each S ∈ D0. Conclude from Proposition 3.10 that H ∼= F̂max{ω,m}.

Conversely, suppose that rank(H/F (p)) < max{ℵ0,m}. If D0 contains a simple

group S 6= Z/pZ, then, by Lemma 4.2, rS = max{ℵ0,m}. Observe that H(p) = F (p).

Hence, if H were a pro-D-group, then, by Proposition 1.1(b),

max{ℵ0,m} > rank(H/F (p)) = rp(H) = rank(H) = rS(H) = max{ℵ0,m},

a contradiction. So, H is not a free pro-D-group.

Finally, if D0 = {Z/pZ}, then, by a theorem of Tate [FJ, Cor. 20.38], H is a free

pro-p-group.

Lemma 4.4: Let G be a pronilpotent group and let H be a closed subgroup of infinite

index of G. Let p be a prime divisor of (G : H) and let n be a positive integer. Then

there exist open subgroups D and E of G which contain H such that D is an open

normal subgroup of E of index p and (G : E) ≥ n.

Proof: The group H as a subgroup of G is also pronilpotent. Let Hp (resp., Gp) be

the unique p-Sylow group of H (resp. G). Denote the group generated by all l-Sylow

groups of H (resp., G) where l ranges over all primes different from p by Hp′ (resp.,
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Gp′). Then Hp = Gp ∩H, Hp′ = Gp′ ∩H, H = Hp ×Hp′ and G = Gp ×Gp′ . Hence

(G : H) = (Gp : Hp)(Gp′ : Hp′). So, (Gp : Hp) = ∞ or (Gp′ : Hp′) = ∞. We consider

each of these cases separately.

Case A: (Gp : Hp) =∞. Since Gp is a pro-p-group, it has open subgroupsDp and Ep

which contain Hp such that Dp is a normal subgroup of Ep of index p and (Gp : Ep) ≥ n.

Let D = DpGp′ and E = EpGp′ . Then H ≤ D / E, (E : D) = (Ep : Dp) = p, and

(G : E) = (Gp : Ep) ≥ n. In particular both D and E are open in G.

Case B: (Gp′ : Hp′) = ∞. Choose an open subgroup C of Gp′ which contains Hp′

such that (Gp′ : C) ≥ n. Since p divides (G : H), the group H does not contain Gp.

Hence Hp is a proper subgroup of Gp, and is therefore contained in a maximal open

subgroup M of Gp, which must be of index p. The groups D = MC and E = GpC have

the desired properties.

Proposition 4.5: Suppose that m = e ≥ 2 is finite. Let H be a closed subgroup of F

of infinite index which contains F (nil). Suppose further that (F : H) is divisible by at

least two distinct primes. Then H ∼= F̂ω(D).

Proof: By Lemma 4.2 and Proposition 3.10 we have only to prove that rq(H) =∞ for

each prime q. Indeed, by assumption, there exists a prime p 6= q which divides (F : H).

Apply Lemma 4.4 to F/F (nil), H/F (nil) and a positive integer n to find open subgroups

D and E and of F which contain H such that D is an open subgroup of E of index p

and (F : E) ≥ n. As D contains F (nil) it is subnormal. Hence, D is a free pro-D-group

of rank 1 + (F : D)(e− 1) [FJ, Prop. 15.27]. Hence

(2) rq(D) = 1 + p(F : E)(e− 1).

Decompose now the pronilpotent groups E/F (nil) and D/F (nil) as a direct product of

their p-Sylow subgroups:

E/F (nil) = (E/F (nil))p × (E/F (nil))q ×
∏

l 6=p,q

(E/F (nil))l,

D/F (nil) = (D/F (nil))p × (D/F (nil))q ×
∏

l 6=p,q

(D/F (nil))l.
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Since D is normal in E of index p, (D/F (nil))p ≤ (E/F (nil))p and (D/F (nil))l =

(E/F (nil))l for each prime l 6= p. Hence,

(3) rq(D/F (nil)) = rq(E/F (nil)) = 1 + (F : E)(e− 1).

Hence, by (2) and (3),

(4) rq(D)− rq(D/F (nil)) = (p− 1)(F : E)(e− 1) ≥ (p− 1)n(e− 1) ≥ n.

This gives an open normal subgroup D0 of D such that D/D0 is an elementary abelian

p-group of rank at least n such that F (nil)D0 = D. Hence HD0 = D, and therefore

H/H ∩D0
∼= D/D0. Conclude that rq(H) ≥ n. Since n was arbitrary, this implies that

rq(H) =∞.

We may reduce the case where m = ℵ0 to the finite case. The essential point is to

prove that rq(H) = ℵ0 for each prime q. We may achieve this goal by mapping F onto

F̂e(D) with e large such that H is mapped onto a subgroup whose index is divisible by

at least two primes.

The uncountable case is more complicated. If E is an open subgroup of F , then

E is a free pro-D-group of the same rank as F . So, we can not use the Nielsen-Schreier

formulas as we do in Lemma 4.5. Instead, we use Lemma 2.4.

Proposition 4.6: Suppose that m is infinite. Let H be a closed subgroup of F which

contains F (nil). Suppose further that (F : H) is divisible by two distinct primes. Then

H ∼= F̂m(D).

Proof: Again we have only to prove that rq(H) = m for each prime q. By assumption

there exists a prime p 6= q which divides (F : H). Since H ≥ F (nil) there exist open

subgroups D /E of F which contain H such that (E : D) = p. As E is subnormal in F

it is isomorphic to F (Lemma 3.8). As E(nil) ⊆ F (nil) we may assume without loss that

E = F . Thus D / F and F/D ∼= Z/pZ.

The group D0 = F (q,ab) ∩ D contains F (nil). The group D contains the unique

closed normal subgroup Fq which contains F (nil) such that Fq/F
(nil) is the q-Sylow

subgroup of F/F (nil) (since (DFq : D) divides both p and q). Also, F (q,ab)Fq = F .
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Hence F/F (q,ab) ∼= D/D0 and D0 is the intersection of all open normal subgroup of D

of index q which contain F (nil).

By Lemma 2.4, D has a closed normal subgroup C such that D/C ∼= (Z/qZ)m

and D0C = D. Then F (nil)C is the intersection of a set of normal subgroups of D with

coquotients isomorphic to Z/qZ. Hence D0 ≤ F (nil)C and therefore F (nil)C = D. It

follows that HC = D. Hence H/H ∩ C ∼= D/C ∼= (Z/qZ)m. So, by Proposition 1.1(f),

rq(H) = m, as desired.

5. Concluding remarks

In this section we demonstrate the possibility to raise questions about extensions of

Hilbertian fields from theorems about free profinite groups. One of these questions is

easily answered. Two others remain open.

Here is a generalization of [LD, Prop. 3.15] from free groups of at most countable

rank to arbitrary free groups.

Proposition 5.1: Suppose that D is a full family and m ≥ 2. Let H be a closed

subgroup of infinite index of F = F̂m(D). Suppose that (F : H) =
∏
pα(p) with all α(p)

finite. Then H ∼= Fmax{ω,m}.

Proof: Consider an embedding problem

(1) (ϕ: H → A, α: B → A)

in which B ∈ D and A is nontrivial.

To solve (1), let H0 = Ker(ϕ). Find an open subgroup G0 of F such that H∩G0 =

H0, G0 is normal in G = 〈H,G0〉 and pα(p) divides (F : G) for each p which divides the

order of B. In particular G = HG0 and the order of B is relatively prime to (G : H).

Extend ϕ to a homomorphism ϕ̂: G→ A by ϕ̂(hg0) = ϕ(h).

Since G is isomorphic to F there are epimorphisms γ̂i: G → B where i ranges

over a set I of cardinality m such that α ◦ γ̂i = ϕ̂ and Ker(γ̂i) 6= Ker(γ̂j) if i, j are

distinct elements of I. Denote the restriction of γ̂i to H by γi. As the index (B : γi(H))

divides both (G : H) and the order of B it must be 1. Hence γi(H) = B. So, (1) is
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solvable. If 2 ≤ m ≤ ℵ0, then H ∼= F̂ω(D) [FJ, Cor. 4.2]. If m > ℵ0, then by Lemma

3.6, #{Ker(γi)| i ∈ I} = m. Conclude that embedding problem (1) has m solutions, as

desired. Conclude from Lemma 3.5(b) that H ∼= F̂m(D).

We prove the field theoretic analog of this theorem.

Proposition 5.2: Let L be an algebraic separable extension of a Hilbertian field K of

degree
∏
pα(p), with all α(p) finite. Then L is Hilbertian.

Proof: Let t be a transcendental element over L. It suffices to prove that if f ∈ L[t,X]

is a polynomial which is irreducible and Galois over L(t), then there are infinitely many

a ∈ L such that f(a,X) is irreducible and Galois over L with the same degree n as

f(t,X).

By assumption, K has a finite extension E which is contained in L such that

pα(p)|[E : K] for each prime divisor p of n, all the coefficients of f lie in E, and f(t,X)

is Galois over E(t). In particular, [L : E] is relatively prime to n. As E is Hilbertian,

there are infinitely many elements a ∈ E such that f(a,X) is irreducible and Galois

over E of degree n. Let F be the splitting field of f(a,X) over E. Then [F : E] = n is

relatively prime to [L : E]. Hence [LF : L] = n and therefore f(a,X) is irreducible and

Galois over L of degree n, as desired.

One could attempt to generalize Theorem (G2) of the introduction to nonnormal

subgroups: If m ≥ 2 and H is a closed subgroup of F = F̂m(D) such that F =

〈H,x1, . . . , xn〉, then H is a free pro-D-group.

This attempt fails due to a remarkable result of Aschbacher and Guralnik [AG,

Thm. A] which uses the classification of simple groups:

Proposition 5.3: Every finite group is generated by a pair of conjugate solvable sub-

groups.

Proposition 5.3 is preserved under taking inverse limits:

Corollary 5.4: (a) Every profinite group is generated by a pair of conjugate prosolv-

able closed subgroups.
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(b) Every profinite group is generated by a closed prosolvable subgroup and one more

element.

By Corollary 5.4, F has a closed prosolvable subgroup H and an element x such

that F = 〈H,x〉. If D0 contains nonabelian simple groups and m ≥ 3, then rank(H) ≥ 2

and hence H is not a free pro-D-group. If m = 2 then H could be generated by one

element and therefore would be prosolvable. Nevertheless, take an open subgroup E and

choose a closed prosolvable subgroup H and an element x1 in E such that E = 〈H,x1〉.

Then choose representatives x2, . . . , xn for F/E. We have F = 〈H,x1, x2, . . . , xn〉, but

H is not free. So, the above conjecture is false.

Likewise, the straight forward generalization of Theorem (F2) of the introduction

to the case of a non-Galois extension is false: Each Hilbertian field K has a separable

algebraic extension L with G(L) prosolvable and there exists an element σ ∈ G(K) such

that G(K) = 〈G(L), σ〉. Since Hilbertian fields admit nonsolvable Galois extensions, L

is not Hilbertian.

Proposition 1.1(g) gives rise to the following problem:

Problem 5.5: Let L be a Galois extension of a Hilbertian field K. Suppose that each

finite group is realizable over L as a Galois group. Is L necessarily Hilbertian?

Melnikov [M1, Lemma 2.7 and Thm. 3.1] (see also [FJ, Prop. 24.10]) proves the

following result:

Proposition 5.6: Suppose that 2 ≤ m. Let X be a basis of F and let N be a closed

normal subgroup of F of infinite index. If N contains an element w 6= 1 of the discrete

group generated by X, then N ∼= F̂max{ω,m}.

In particular, if N contains the commutator group [F, F ] of F , then N is free.

The analog of the latter result for Hilbertian fields is true: Every abelian extension of a

Hilbertian field is Hilbertian [FJ, Thm. 15.6]. Following the twinning principle, we ask:

Problem 5.7: Let K be a Hilbertian field. Consider a nonempty set W of words in

the variables X1, X2, X3, . . . . Let Ks be the separable closure of K. Denote the fixed
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field in Ks of all automorphisms w(σ1, . . . , σn) where w = w(X1, . . . , Xn) ∈ W and

σ1, . . . , σn ∈ G(K) by N . Is N Hilbertian?

Finally, we ask for a generalization of Proposition 3.9:

Problem 5.8: Suppose that m is uncountable. Let H be a closed subgroup of F such

that weight(F/H) < m. Is H ∼= F?

We conclude this section with a negative answer to Question 1 on page 34 of [LD].

It is related to Proposition 5.1.

Theorem 5.9: Let G be a profinite group of order
∏
pα(p), where α(p) ≤ d is bounded.

Then G satisfies the eth Nielsen – Schreier formula for no e ≥ 1.

Proof: Let G2 be a 2-Sylow subgroup of G. It is finite of order 2α(2). Take an open

normal subgroup N of G whose intersection with G2 is trivial. In particular 2α(2)|(G :

N) and thereforeN has an odd order. By the Feit–Thompson theorem, N is prosolvable.

The order of each closed subgroup of N is
∏
pβ(p) where β(p) ≤ α(p) ≤ d. In

particular, the number of generators of each p-Sylow subgroup of an open subgroup H

of N is bounded by d. By a theorem of Kovács [Ko], the rank of H is at most d + 1

(Using the classification of simple groups, Lucchini [L] has proved the same result for

each finite, and hence profinite group.) It follows that N and therefore G satisfy no

Nielsen – Schreier formula.
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