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Introduction

Let Q̃ be the field of all algebraic numbers and Z̃ the ring of all algebraic integers.

Skolem [Sko] considers a polynomial f ∈ Z̃[X1, . . . , Xn] and asked when does there

exist x = (x1, . . . , xn) ∈ Z̃n such that f(x) is a unit of Z̃. Skolem’s answer was that

this happens exactly when f is primitive, i.e., its coefficients have no common divisor.

Cantor and Roquette [CaR] generalize Skolem’s criterion to several rational func-

tions and strengthen it with a density statement.

Pop [Pop] considers a finite set S of primes and the maximal extension N = Qtot,S

of Q in which each p ∈ S totally splits. He proves that N is PSC. That is, each

absolutely irreducible variety V which is defined over N and has a simple N̄ -rational

point for each p-adic closure N̄ of N , for each p ∈ S, has also an N -rational point.

In [JR1] we prove that for almost all σ ∈ G(Q)e, the field Q̃(σ) is PAC over

Z. That is, if ϕ: V → Ar is a dominating separable rational map of an absolutely

irreducible variety V of dimension r defined over Q̃(σ), then there exists x ∈ V (Q̃(σ))

such that ϕ(x) ∈ Zr.

In this note we take an axiomatic approach and consider an algebraic extension

M0 of Q which is PAC over Z. Let M = M0 ∩N and denote the ring of integers of M

by ZM . We prove that M is weakly PSC over ZM . This means that M satisfies the

following condition:

For every absolutely irreducible polynomial h ∈ M [T, Y ] which is monic in Y such

that all the roots of h(0, Y ) are distinct and in N , and for each g ∈ M [T ] such that

g(0) 6= 0 there exists (a, b) ∈ ZM ×M such that h(a, b) = 0 and g(a) 6= 0.

Then we raise the level of axiomatization and consider a subfeld M of N which is

weakly PSC over ZM . We generalize the notion of a “Skolem problem” of Cantor and

Roquette to M , and prove, as in [CaR, Thm. 5.1], that it is solvable in M if and only

if it is locally everywhere solvable. In particular we prove:

Theorem A: Let T be a finite set of rational primes. Let M be a subfield of N which

is weakly PSC over ZM . Let f1, . . . , fm ∈ Q̃[X1, . . . , Xn] be polynomials such that

v(fi) = 0 for each valuation v of Q̃ which does not lie over T and each 1 ≤ i ≤ m. Let

a ∈ Mn and let γ be a positive integer. Then there exists x ∈ Mn such that
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(a) v(x− a) > γ for each valuation v of Q̃ which lie over T , and

(b) f1(x), . . . , fm(x) are T -units.

Theorem A will be used in a subsequent paper to prove a Rumely local global

principle and a strong approximation theorem for M . As a result, we prove in that

paper, that M is PSC. Indeed, it is even “PSC over ZM” (which is stronger than

“weakly PSC over ZM”). The second author will use the strong approximation theorem

(with S = ∅) in his Ph.D thesis to prove that the theory of all elementary statements

which are true in the ring of integers of Q̃(σ), for almost all σ ∈ G(Q)e, is decidable.

Since Q̃ is PAC over Z, Theorem A applies in particular to M = Qtot,S .

The case where S is empty and M = M0 = Q̃ is a special case of [CaR, Thm. 5.1].

In particular, if we take in this case m = n+1, fi = 1/Xi, i = 1, . . . , n, and fn+1 = f ∈

Z̃[X1, . . . , Xn] is a primitive polynomial, we find that Skolem’s original problem has a

solution already over M . Thus, there exists a vector x of integral elements in M such

that f(x) is a unit of Z̃.

The case where M = Q̃(σ), where σ ∈ G(Q)e chosen at random, and S = ∅

appears in the unpublished manuscript [Ja1] from 1989.

It is perhaps worthwhile to make a list of the lemmas whose proofs make a direct

use of the assumption “M is weakly PSC over ZM”. They are 1.8, 1.9, and 3.2.

As is usually the case, our results are stated and proved for an arbitrary Dedekind

domain whose quotient field is global. The latter assumption is essential for the proofs

because we use the strong approximation theorem and the finiteness of the class number.
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1. Semi uniform density

Recall that field M is PAC if every nonvoid absolutely irreducible variety over M has

an M -rational point. Let v be a valuation of a PAC field M . A theorem of Frey and

Prestel [FJ2, Thm. 10.14] says that the Henselian closure Mv of M with respect to v

coincides with its separable closure Ms. Moreover, M is w-dense in its algebraic closure

for each extension w of v (Prestel [JR1, Lemma 9.1]). In this section we prove that if

M is, say, PAC over Z, then the density is even ‘semi uniform’.

To fix notation consider a field K, let K̃ (resp., Ks) be its algebraic (resp., sepa-

rable) closure, and let G(K) = G(Ks/K) be the absolute Galois group of K. We extend

the action of G(K) to K̃ in the unique possible way. For each valuation v of K let Ov

(resp., Γv) be the valuation ring (resp., value group) of v. Each Henselian closure of

K at v is the decomposition field Kw in Ks of some extension w of v to Ks (or to K̃).

Choose one of these fields, denote it by Kv and let, Ktv =
⋂

σ∈G(K) Kσ
v . Then Ktv is a

Galois extension of K. If the residue characteristic of v is 0 or K is a function field of

one variable over a field K0 and v is trivial on K0, then Ktv is the maximal algebraic

extension of K in which v totally splits. Since all fields Kw are conjugate to each other

over K, the field Ktv is independent of Kv.

Consider now a set S of valuations of K and let OS =
⋂

v∈S Ov be its holomorphy

ring. If L is an algebraic extension of K, we denote the set of all valuations of L which

extend those in S by SL. For L = K̃ we set S̃ = SK̃ .

If L is a normal extension of K, then Aut(L/K) acts on SL according to the

following formula:

vσ(xσ) = v(x), for v ∈ SL and x ∈ L.

We may choose a subset S0 of SL which contains exactly one extension of each valuation

in S. Then, for each w ∈ SL there exist v ∈ S0 and σ ∈ Aut(L/K) such that w = vσ.

We say that S0 represents SL over K.

We also consider the following Galois extension of K:

Ktot,S =
⋂
v∈S

Ktv.
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If v is as above for each v ∈ S, then Ktot,S is the maximal algebraic extension of K

in which each v ∈ S splits. If T is a set of valuations of K which contains S, then

Ktot,T ⊆ Ktot,S . If L is a separable algebraic extension of K, then Ktot,S ⊆ Ltot,SL
. In

particular, if L ⊆ Ktot,S , w ∈ SL and v = w|K , then Lw is conjugate over K to Kv.

Hence, Ktot,S = Ltot,SL
. If S is empty, define Ktot,S = Ks.

Data 1.1: We fix the following data for the rest of this section:

K is a field.

K ′ is a purely inseparable extension of K.

N = K ′
tot,S .

O is a Dedekind domain with quotient field K. For an algebraic extension M of K

we denote the integral closure of O in M by OM .

S ⊆ T are finite sets of valuations of K which are associated with maximal ideals

of O. In particular, O ⊆ OT ⊆ OS and both OT and OS are Dedekind domains.

We identify each v ∈ T with its unique extension to K ′.

From §2 on, we take K ′ to be Kins, which is the maximal purely inseparable

extension of K. Note that Kins,tv = Ktv,ins. Hence, Kins,tot,S = Ktot,S,ins.

Lemma 1.2: Suppose that T is nonempty. Let f ∈ K ′[X] be a polynomial of degree n

with n distinct roots x1, . . . , xn. Then, for each set {εv ∈ Γv‖v ∈ T } there exists a set

{δv ∈ Γv‖v ∈ T } with the following property: If

(1a) g ∈ N [X] is a polynomial of degree n with w(g − f) > δw for each w ∈ TN , and

where δw = δw|K ,

then

(1b) the roots of g are distinct, and for each v ∈ T and each w ∈ T̃ which lies over

v they can be enumerated as y1, . . . , yn such that w(yi − xi) > εv. Moreover, for

each v ∈ S and each w ∈ T̃ that lies over v we have K ′
w(xi) = K ′

w(yi).

In particular, if all roots of f belong to N , then so do the roots of g.

Proof: Choose a set T0 that represents T̃ over K. By a combination of the theorem

about the continuity of roots of polynomials and Krasner’s lemma there exists a set

{δv ∈ Γv‖v ∈ T } such that if g ∈ N [X] is a polynomial of degree n with w(g− f) > δw
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for each w ∈ T0, then (1b) holds with T̃ replaced by T0 (e.g., [Ja2, Prop. 12.3]). Note

that [Ja2, Prop. 12.3] is formulated for monic polynomials. However, if f and g are not

monic, then we may divide them by their highest coefficients and possibly increase δv.

Consider now a polynomial g as in (1a). For each w′ ∈ T̃ , there exist w ∈ T0 and

σ ∈ G(K) such that w′ = wσ. Since N/K ′ is Galois, gσ−1 ∈ N [X]. Also, w(gσ−1 −f) =

w′(g− f) > δw′ = δw. Moreover, σ permutes the roots of f and maps the roots of gσ−1

onto the roots of g. Since (1b) holds for w and gσ−1
, it also holds for w′ and for g.

If all roots of f belong to N , then they also belong to K ′
w for each v ∈ S and each

w ∈ T̃ which lies over v. Hence, by the first part of the lemma, the same holds for g. It

follows that all roots of g belong to N .

Definition 1.3: (a) Let R be a subset of a field M . We say that M is PAC over R if

it has the following property: For every absolutely irreducible variety V of dimension

r ≥ 0 and for each dominating separable rational map ϕ: V → Ar over M there exists

a ∈ V (M) such that ϕ(a) ∈ Rr.

Note that if R ⊆ R′ ⊆ M and M is PAC over R, then it is also PAC over R′.

(b) Let M be a subextesnion of N/K ′. We say that M is weakly PSC over

OM if it satisfies the following condition: For each absolutely irreducible polynomial

h ∈ M [T, Y ] which is monic in Y such that the roots of h(0, Y ) are distinct and in

N , and for each g ∈ M [T ] such that g(0) 6= 0 there exists (a, b) ∈ OM × M such that

h(a, b) = 0 and g(a) 6= 0.

(c) Let M be a perfect algebraic extension of K. We say that M is PSC over

OM if for every absolutely irreducible variety V of dimension r and every dominating

separable rational map ϕ: V → Ar over M there exists a ∈ V (M) such that ϕ(a) ∈ Or
M

provided that for each v ∈ SM there exists av ∈ Vsimp(Mv) such that ϕ(av) ∈ Or
M,v.

Here OM,v is the valuation ring of a Henselian closure Mv of M at v.

Note that if M is PSC over OM , than M is weakly PSC over OM . If S is empty,

and M is PSC over OM , then M is PAC over OM .

Lemma 1.4: Let M0 be an algebraic extension of K and let M = M0 ∩ N . Suppose

that M0 is PAC over OM . Then M is weakly PSC over OM .
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Proof: Let h ∈ M [T, Y ] be an absolutely irreducible polynomial which is monic in

Y such that all the roots of h(0, Y ) are distinct and in N (hence ∂h
∂Y 6= 0), and let

g ∈ M [T ] such that g(0) 6= 0. Let L be a finite subextension of M/K which contains

the coefficients of h. Lemma 1.2, applied to K ′L and SL instead of to K ′ and S (with

T = S), gives a set {δv ∈ Γv | v ∈ SL} with the following property: If k ∈ N [Y ] is

a polynomial of the same degree as h(0, Y ) such that w(k(Y ) − h(0, Y )) > δw|L for

each w ∈ SN , then all the roots of k are distinct and in N . Also, there exists a set

{γv ∈ Γv | v ∈ SL} such that for each w ∈ SN , if a ∈ N satisfies that w(a) > γw|L , then

w(h(a, Y ) − h(0, Y )) > δw|L . Take 0 6= m ∈ OL such that v(m) > γv for each v ∈ SL.

Since M0 is PAC over OM , the absolutely irreducible polynomial h(mX, Y ) has a zero

(c, b) in OM×M0 such that g(mc) 6= 0 [JR1, Lemma 1.3]. Hence, a = mc ∈ OM satisfies

h(a, b) = 0 and g(a) 6= 0. Check that w(h(a, Y ) − h(0, Y )) > δw|L for each w ∈ SN .

Hence, all roots of h(a, Y ) belong to N . In particular b ∈ M0 ∩N = M . Conclude that

M is weakly PSC over OM .

Remark 1.5: Our main concern in the works [JR1], the present work, and [JR2] are the

concepts of PAC and PSC over a subring. ‘Weakly PSC field over a subring’ is only a

technical concept. The main extra condition which goes into its definition and makes it

a ‘non-intrinsic’ property of the field is (in the notation of Definition 1.3) that the roots

of h(0, Y ) lie in N . However, it helps to transfer a ‘PAC field over a subring’ into a

‘PSC field over a subring’. Indeed, we prove in [JR1] that if O is a countable separably

Hilbertian integral domain (e.g., O is the ring of integers of a global field) and e is a

positive integer, then for almost all σ ∈ G(K)e, the fields Ks(σ) and K̃(σ) are PAC

over O and therefore also over OM . Here Ks(σ) is the fixed field of σ in Ks and K̃(σ)

is the maximal purely inseparable extension of Ks(σ) in Ks. The close ‘almost all’ is

used in the sense of the Haar measure of the compact group G(K)e.

It follows from Lemma 1.4 that for almost all σ ∈ G(K)e the field M = K̃(σ)∩N

is perfect and weakly PSC over OM .

One of the consequences of [JR2] is that if K is a global field and M is a perfect

subextension of N/K which is weakly PSC over OM , then M is PSC over OM . Thus,

for almost all σ ∈ G(K)e the field M = K̃(σ) ∩N is PSC over OM .
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Of course, we will reach this conclusion only at the end of [JR2].

We explore properties of subextensions M of N/K ′ which are weakly PSC over

OM . However, except in Lemma 1.7 we apply this assumption in this note only for

polynomials h(T, Y ) which are linear in T . Lemma 1.7 is an important ingredient in

the forthcoming paper [JR2].

Example 1.6: Let M be a subextension of N/K ′ which is weakly PSC over OM . Let

f, r, g be nonzero polynomials in M [X] such that f is monic, all its roots lie in N

and they are distinct. Suppose also that gcd(r(X), f(X)) = 1, deg(r) < deg(f), and

g(0) 6= 0. Then h(T,X) = r(X)T + f(X) is an absolutely irreducible polynomial which

is monic in X. Moreover, the roots of h(0, X) = f(X) are distinct and each of them

belong to N . Hence, there exists (a, b) ∈ OM × M such that r(b)a + f(b) = 0 and

g(a) 6= 0.

Our first result on weakly PSC fields generalizes [JR1, Lemma 1.7(b)].

Lemma 1.7: Let M be a subextension of N/K ′ which is weakly PSC over OM . Consider

a conservative regular extension F of transcendence degree 1 of M and let Γ be its unique

nonsingular smooth model. Let t be an element in F r M whose zeros are distinct and

each of them belongs to Γ(N). Finally, let A be a finite subset of M×. Then there

exists p ∈ Γ(M) such that t(p) ∈ OM r A.

Proof: We first note that F is a separable extension of M(t), since otherwise t would

have multiple zeros. Let y ∈ F be a primitive element for the extension F/M(t) which

is integral over M [t], let h(t, Y ) = irr(y, M(t)), and let g0(T ) =
∏

a∈A(T − a). Then

h ∈ M [T, Y ] is an absolutely irreducible polynomial which is monic in Y such that the

roots of h(0, Y ) are distinct and in N , and g0(0) 6= 0. Take polynomials g1, g2 ∈ M [T, Y ]

and 0 6= g3 ∈ M [T ] without a common multiple in M [T ] such that

(2) g1(T, Y )h(T, Y ) + g2(T, Y )
∂h

∂Y
(T, Y ) = g3(T ).

Note that g3(0) 6= 0, since otherwise h(0, Y ) would have multiple zeros. Let g = g0g3.

Since M is weakly PSC over OM , there exists (a, b) ∈ OM × M such that h(a, b) = 0
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and g(a) 6= 0. In particular, a /∈ A and, by (2), ∂h
∂Y (a, b) 6= 0. Hence, we can extend the

specialization (t, y) → (a, b) to an M -rational place π of F . This place corresponds to

a point p in Γ(M) which satisfies t(p) = a ∈ OM r A.

Lemma 1.8 (Quasi uniform approximation): Let M be a subextension of N/K ′ which

is weakly PSC over OM . Let x ∈ N and for each v ∈ T let εv ∈ Γv. Then M has a

finite subset B such that for each v ∈ T and each w ∈ T̃ that lies over v there exists

b ∈ B such that w(b− x) > εv.

Proof: Assume without loss that x 6= 0 and T 6= ∅. We say that a monic polynomial

h ∈ M [X] is admissible if it has only simple roots and each of them belongs to N .

Since N/K ′ is a Galois extension, irr(x,M) is an admissible polynomial which has x as

a root. Hence, it suffices to prove the following statement about admissible polynomials

h:

(3) There exists a finite set Bh ⊂ M such that for each root z of h and for each w ∈ T̃

there exists b ∈ Bh such that w(b− z) > εw. Here we set εw = εv if v = w|K .

The case deg(h) = 1 being trivial we assume that d = deg(h) ≥ 2 and proceed by

induction on d. Let L be a finite extension of K ′ which contains the coefficients of h

and is contained in M . For each v0 ∈ T and each v ∈ TL which lies over v0 let εv = εv0 .

Note that Ltot,SL
= K ′

tot,S = N . Hence, by Lemma 1.2 applied to L,SL, TL instead of

to K ′,S, T , there exists a set {δv ∈ Γv‖v ∈ TL} with the following property:

(4) Every monic polynomial h1 ∈ N [X] of degree d which satisfies v(h1 − h) > δv for

each v ∈ TN is admissible and for each w ∈ T̃ and each root z of h there exists a

root y of h1 such that w(y − z) > εw.

Choose 0 6= m ∈ L such that v(m) > δv for each v ∈ TL. Since M is weakly

PSC over OM , Example 1.6 (applied to mT + h(Y ) instead of to r(Y )T + f(Y )) gives

a ∈ OM and c ∈ M such that ma + h(c) = 0. It follows that the monic polynomial

h1(X) = ma + h(X) ∈ M [X] of degree d satisfies h1(c) = 0 and v(h1 − h) > δv for each

v ∈ TM . Hence, h1 satisfies the conclusion of (4).

In particular g(X) = h1(X)/(X−c) ∈ M [X] is an admissible polynomial of degree

d − 1. By the induction hypothesis, there exists a finite subset Bg ⊆ M such that for
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each root y of g and for each w ∈ T̃ there exists b ∈ Bg with w(b− y) > εw.

Let Bh = Bg ∪ {c} and consider w ∈ T̃ . Let z be a root of h. By (4) there exists

a root y of h1 such that w(y − z) > εw. So, y = c or y is a root of g. In the later case

there exists b ∈ Bg such that w(b− y) > εw and therefore w(b− z) > εw. In both cases

the induction is complete.

The next result sharpens the theorem of Frey and Prestel mentioned at the be-

ginning of this section for PAC fields over rings. Recall that a set T of valuations of K

are said to be independent if for all v, w ∈ T with v 6= w there is no valuation ring

of K which contains both Ov and Ow. In this case K satisfies the weak approximation

theorem with respect to T [Ja2, Prop. 17.4].

Proposition 1.9: Let M be a subextension of N/K ′ which is weakly PSC over OM .

Suppose that T = S ∪ {v} is an independent set of valuations of K and v /∈ S. Let v′

be an extension of v to M . Then,

(a) the Henselian closure of M at v′ is K ′
s and

(b) M is ṽ-dense in K̃ for each extension ṽ of v′ to K̃.

Proof: Consider 0 6= x ∈ K ′
s, let εv ∈ Γv, and let hv = irr(x,K ′). Let n = deg(hv),

choose n distinct elements a1, . . . , an ∈ K ′, and let hS =
∏n

i=1(X − ai). Let ṽ be an

extension of v′ to K̃. By Lemma 1.2, there exists a set {δw‖w ∈ T } such that

(5a) if h1 ∈ N [X] is a polynomial of degree n and w(h1 − hS) > δw for each w ∈ SN ,

then the roots of h1 are distinct and lie in N , and

(5b) if h1 ∈ N [X] is a polynomial of degree n and w(h1 − hv) > δv, for each w ∈ TN

which lies over v, then we can enumerate the roots of hv as x1, . . . , xn and the

roots of h1 as x′1, . . . , x
′
n such that ṽ(x′i − xi) > εv and K ′

ṽ(x′i) = K ′
ṽ(xi).

Apply the weak approximation theorem to find a polynomial h ∈ K ′[X] such that

w(h− hS) > δw for each w ∈ S and v(h− hv) > δv. Also, choose 0 6= m ∈ K such that

w(m) > δw for each w ∈ T . Since M is weakly PSC over OM , Example 1.6 supplies

c ∈ OM and a ∈ M such that mc + h(a) = 0. Thus, a is a root of the polynomial

h1(X) = mc + h(X). By (5), a ∈ N and K ′
ṽ(a) = K ′

ṽ(x′) for some root x′ of hv. It

follows that K ′
ṽ(x′) ⊆ Mṽ. In particular, if K ′(x) is a Galois extension of K ′, then
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K ′
v(x) = K ′

v(x′) ⊆ Mṽ. Conclude that Mṽ = K ′
s.

In the general case (5b) gives a root b of h1 such that ṽ(b− x) > εv. Since b lies

in N , we conclude that N is ṽ-dense in K ′
s. As K ′

s is ṽ-dense in K̃ [GeJ, Lemma 1.2],

N is ṽ-dense in K̃. Finally, by Lemma 1.8, M is ṽ-dense in N . So, M is ṽ-dense in K̃.

In the case where S is empty, Lemma 1.8 takes a simpler form:

Corollary 1.10: Let M be a separable algebraic extension of K ′ which is PAC over

OM . Let x ∈ Ms and for each v ∈ T let εv ∈ Γv. Then M has a finite subset B

such that for each v ∈ T and each w ∈ T̃ that lies over v there exists b ∈ B such that

w(b− x) > εv.
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2. Units

The main results of this note depend on the assumption that K is a global field. So, we

amend Data 1.1 to the following one:

Data 2.1: We fix the following data and assumption for the rest of this work:

O is a Dedekind domain with a global quotient field K;

V = VK is the set of all valuations of K which correspond to the nonzero prime

ideals of O;

S ⊆ T are finite subsets of V;

N = Ktot,S,ins is the maximal purely inseparable extension of Ktot,S ;

M is a perfect subextension of N/K. We assume that M is weakly PSC over OM .

Consider v ∈ VK and a polynomial f ∈ K[X], where X = (X1, . . . , Xn). Then

v(f) is defined as the minimal value of the coefficients of f . If f ∈ K(X), we write

f = g/h with g, h ∈ K[X] and let v(f) = v(g) − v(h). Gauß’ Lemma implies that v

is a valuation of K(X). If f = (f1, . . . , fm) is a vector of rational functions in K(X),

we put v(f) = min{v(f1), . . . , v(fm)}. Finally, for a subset S of VK we set VS(f) =

minv∈S v(f). If the coefficients of the fi’s belong to some algebraic extension L of K,

we set VS(f) = VSL
(f).

Let v ∈ VK and a ∈ K. We follow an old tradition in algebraic number theory

(although, it is somewhat inconsistent) and say that a is v-integral (resp., v-unit) if

v(a) ≥ 0 (resp., v(a) = 0). On the other hand for a subset S of VK we say that a is

S-integral (resp., S-unit) if v(a) ≥ 0 (resp., v(a) = 0) for each v ∈ VK rS. An element

a of an algebraic extension L of K is S-integral (resp., S-unit) if a is SL-integral

(resp., SL-unit).

We have extracted Lemma 2.2 below from the proof of [CaR, Thm. 5.1]. It pro-

duces T -units with special properties. Among others, its proof uses the finiteness of the

ideal class group of the ring of integers of global fields. Here we extend each σ ∈ G(K)

in the unique possible way to an element of Aut(K̃/K).

Lemma 2.2: Let ν and k0 be positive integers. Consider elements c1, . . . , cd of K̃×
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which are permuted under G(K). Then there exists an integer k ≥ k0 and elements

e1, . . . , ed ∈ K×
s such that

(a) w(ei − 1) ≥ ν for w ∈ T̃ and i = 1, . . . , d,

(b) ui = eic
k
i is a T -unit, i = 1, . . . , d, and

(c) cσ
i = cj implies eσ

i = ej for σ ∈ G(K) and 1 ≤ i, j ≤ d.

Proof: Replace c1, . . . , cd by cq
1, . . . , c

q
d for some power q of char(K) if necessary, to

assume that c1, . . . , cd ∈ Ks. Let L be a finite Galois extension of K which contains

c1, . . . , cd. For each v ∈ TL and 1 ≤ i ≤ d consider the following fractional ideal of OL:

Ai =
∏

v∈TL

P v(ci)
v ,

where Pv is the prime ideal of OL that corresponds to v. Each σ ∈ G(L/K) permutes

TL and satisfies Pσ
v = Pvσ for all v ∈ TL. Suppose that cσ

i = cj . Then v(ci) = vσ(cσ
i ) =

vσ(cj). Hence

(1) Aσ
i =

∏
v∈TL

(Pσ
v )v(ci) =

∏
v∈TL

(Pvσ )vσ(cj) =
∏

w∈TL

Pw(cj)
w = Aj .

Since L is a global field, the ideal class group of OL is finite. In particular there

exists a positive integer h such that Ah
i is a principal ideal. By (1) we can choose

z1, . . . , zd ∈ L such that Ah
i = OLzi and cσ

i = cj implies zσ
i = zj for each σ ∈ G(L/K).

In particular v(zi) = 0 for each v ∈ VL r TL, that is, zi is a T -unit. For v ∈ TL we have

v(zi) = v(ch
i ). So, bi = c−h

i zi satisfies v(bi) = 0, i = 1, . . . , d. Thus, bi belongs to the

group

UTL
= {x ∈ L‖v(x) = 0 for each v ∈ TL} =

⋂
v∈TL

Uv.

Consider also the following subgroup of UTL
:

UTL,ν = {u ∈ L‖v(u− 1) ≥ ν for each v ∈ TL} =
⋂

v∈TL

Uv,ν .

For each v ∈ TL, (OL/Pv)× is the multiplicative group of a finite field. It follows

that Uv/Uv,ν is a finite group [CaF, pp. 5,6]. Since UTL
/UTL,ν naturally embeds in∏

v∈TL
Uv/Uv,ν , it is also a finite group. Thus there exists a positive integer r ≥ k0/h

12



such that br
i ∈ UTL,ν for i = 1, . . . , d. This means that ei = br

i satisfies (a). Then note

that ui = zr
i is a T -unit. Conclude that also (b) holds with k = rh ≥ k0. Finally, check

that (c) holds.
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3. Main Lemma

Lemma 3.2 below is the major step in the proof of the solvability of Skolem problems over

M . Its proof, except Part D, has been extracted from the proof of [CaR, Thm. 5.1].

Its main ingredients is Lemma 2.2 and the strong approximation theorem. Data 2.1

remains in force throughout this section.

Lemma 3.1: The following statements on monic polynomials f, h ∈ K̃[X] with T -

integral coefficients are equivalent.

(a) f(x) is a T -unit for each zero x of h.

(b) h(t) is a T -unit for each zero t of f .

Proof: Let t1, . . . , td be the zeros of f (with multiplicities) and let x1, . . . , xn be the

zeros of h (with multiplicities). Then f(xj) =
∏d

i=1(xj − ti) and h(ti) =
∏n

j=1(ti − xj).

As all ti and xj are T -integral, both (a) and (b) are equivalent to “ti − xj is a T -unit

for all i and j.”

Lemma 3.2: Consider a monic polynomial f ∈ K[X] of degree d, an element a ∈ K,

and a positive integer ε. Suppose that

(1a) the coefficients of f are T -integral;

(1b) f has d distinct roots t1, . . . , td ∈ Ks; and

(1c) the discriminant of f , i.e. ∆ =
∏

i<j(ti − tj)2, is a T -unit.

Then there exist polynomials k0, l ∈ K[X] with T -integral coefficients and a positive

integer γ such that k0 is monic and if a monic polynomial k ∈ N [X] with T -integral

coefficients satisfies deg(k) = deg(k0) and VT (k− k0) > γ, then the polynomial h(X) =

k(X)f(X) + l(X) has T -integral coefficients and each root x of h satisfies:

(2a) f(x) is a T -unit.

(2b) VT (x− a) > ε, and

(2c) x belongs to N .

Moreover, there exists k ∈ OM [X] as above such that h has a root in M .

Proof: Use the strong approximation theorem to choose distinct T -integral elements

a1, . . . , ad ∈ K such that VT (ai− a) > ε for i = 1, . . . , d, and ai 6= tj for all 1 ≤ i, j ≤ d.

14



Part A: The polynomial g0(X) =
∏d

i=1(X − ai). By the choice of the ai’s, the

coefficients of g0 are T -integral. Since f is monic, (1a) implies that its roots ti are

also T -integral. Hence, by Lemma 3.1, ci = g0(ti) is a nonzero element of Ks which is

T -integral, i = 1, . . . , d.

By (1c), ti − tj is a T -unit for i 6= j. Hence, the coefficients of the polynomial

fi(X) =
d∏

j=1
j 6=i

X − tj
ti − tj

of degree d− 1 lie in Ks and are T -integral. Moreover,

(3a) fi(tj) = 0 if i 6= j and fi(ti) = 1, and

(3b) tσi = tj implies cσ
i = ci and fσ

i = fj , for all i, j and σ ∈ G(K)

It follows that the two sides of (4) below coincide at t1, . . . , td:

(4) g0(X) = f(X) +
d∑

i=1

cifi(X).

Since both of them are monic polynomials of degree d, (4) is an equality of polynomials.

By Lemma 1.2, there exists δ > 0 such that if v ∈ T and if g ∈ K[X] is a monic

polynomial of degree d which satisfies

(5) v(g − g0) > δ,

then the roots of g are distinct and belong to Ktv. Also, for each root x of g and for

each w ∈ Ṽ over v there exists i (which depends on w) such that w(x − ai) > ε. It

follows from the choice of the ai’s that w(x− a) > ε.

Part B: Construction of l. By Lemma 2.2, there exist e1, . . . , ed ∈ Ks and a positive

integer s ≥ 2 such that

(6a) VT (ei − 1) > δ −min1≤j≤d(v(cj) + v(fj)), i = 1, . . . , d,

(6b) ui = eic
s
i is a T -unit, i = 1, . . . , d, and

(6c) tσi = tj implies eσ
i = ej , hence uσ

i = uj , for σ ∈ G(K) and 1 ≤ i, j ≤ d.

Consider the polynomial

g1(X) = f(X) +
d∑

i=1

eicifi(X) ∈ Ks[X].

15



By (3b) and (6c), gσ
1 (X) = g1(X) for each σ ∈ G(K). Hence, g1 ∈ K[X]. By (4) and

(6a), g1 is a monic polynomial of degree d that satisfies (5) (with g = g1) for each v ∈ T .

It follows that

(7a) for each w ∈ T̃ , w(x− a) > ε for each root x of g1 and

(7b) the roots of g1 are distinct and belong to
⋂

v∈T Ktv = Ktot,T .

Also, by (3a),

(7c) g1(ti) = eici, i = 1, . . . , d.

Let l(X) =
∑d

i=1 uifi(X) ∈ K[X] (again, use (3b) and (6c)). By (6b), the coefficients

of l are T -integral. By (3a), l(ti) = ui, i = 1, . . . , d.

Part C: Construction of γ and of k0. By (3a),
∑d

i=1 cifi(tj) = cj . Hence

(8) f(X) and
∑d

i=1 cifi(X) have no common root.

It follows that for each v ∈ T we may choose distinct b2v, . . . , bsv ∈ K such that

(9a) v(bjv − 1) > δ −min1≤i≤d(v(ci) + v(fi)), j = 2, . . . , s,

(9b) b2v · · · bsv = 1, and

(9c) f(t) + bjv

∑d
i=1 cifi(t) 6= 0 for each root t of g1(X), j = 2, . . . , s.

For each j between 2 and s let

gjv(X) = f(X) + bjv

d∑
i=1

cifi(X).

Then gjv(X) is a monic polynomial of degree d in K[X] which satisfies (5) and therefore

has d distinct roots, each of them x belongs to Ktv and satisfies w(x− a) > ε for each

w ∈ Ṽ over v. Moreover, by (9c), gjv(X) and g1(X) have no root in common. Since, by

(8), this is also the case for gjv(X) and
∑d

i=1 cifi(X), and since b2v, . . . , bsv are distinct,

gjv(X) and gj′v(X) have no root in common if j′ 6= j. Finally, by (3a), gjv(ti) = bjvci,

i = 1, . . . , d.

It follows, by (7b), that the monic polynomial h0v(X) = g1(X)g2v(X) · · · gsv(X)

of degree ds has ds distinct roots in Ktv and each of them x satisfies w(x− a) > ε for

each w ∈ Ṽ over v. Moreover, by (7c), (9b), and (6b), h0v(ti) = eici · b2vci · · · bsvci =

eic
s
i = ui, i = 1, . . . , d. It follows that the following equality holds for each monic

polynomial k0v ∈ K[X] of degree ds− d and for i = 1, . . . , d:

(10) h0v(ti) = k0v(ti)f(ti) + l(ti).
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Choose distinct td+1, . . . , tds in K which do not belong to the set {t1, . . . , td} and solve

the corresponding nonsingular system of linear equations over K to find monic polyno-

mial k0v ∈ K[X] of degree ds − d such that (10) holds in addition to i = 1, . . . , d also

for i = d + 1, . . . , ds. It follows that

h0v(X) = k0v(X)f(X) + l(X).

By Lemma 1.2 applied to K ′ = Kins and S = T = {v}, there exists γv > 0 such

that if a polynomial h ∈ Ktv,ins[X] of degree ds satisfies w(h−h0v) > γv for each w ∈ Ṽ

over v, then the roots of h are distinct and belong to Ktv,ins. Moreover, for each root x

of h and each w ∈ Ṽ over v there exists a root x0 of h0v such that w(x − x0) > ε and

hence w(x− a) > ε.

Let γ ≥ maxv∈T γv − VT (f) be a positive integer and use the strong approxima-

tion theorem to find a monic polynomial k0 ∈ K[X] of degree sd − d with T -integral

coefficients such that v(k0 − k0v) > γ for each v ∈ T .

Part D: Conclusion of the proof. Consider now a monic polynomial k ∈ N [X] with

T -integral coefficients of degree ds − d such that VT (k − k0) > γ and let h(X) =

k(X)f(X)+ l(X). Then, by (6b) and Part B, h(ti) = l(ti) = ui is a T -unit, i = 1, . . . , d.

By Lemma 3.1, (2a) holds. Also, w(h− h0v) > γv for each v ∈ T and each w ∈ Ṽ over

v. Hence, each root x of h satisfies VT (x − a) > ε. This proves (2b). Moreover, the

roots of h are distinct and each of them bolongs to
⋂

v∈S Ktv,ins = N . This proves (2c).

The conclusion of the preceding paragraph holds in particular for k = k0 and

h0(X) = k0(X)f(X) + l(X). Thus, the roots of h0 are distinct and each of them

belongs to N . Note that deg(l) = d − 1 < sd = deg(k0f). Since both k0 and f are

monic, h is a monic polynomial of degree sd. Thus, deg(f) = d < deg(h). Finally,

since l(ti) = ui 6= 0, i = 1, . . . , d, the polynomials f(X) and h0(X) have no root in

common. Choose now 0 6= m ∈ O such that VT (m) > γ. Apply Example 1.6 to find

(b, x1) ∈ OM × M such that mbf(x1) + h0(x1) = 0. Let k(X) = mb + k0(X) and

h(X) = k(X)f(X) + l(X). Then, k ∈ OM [X], deg(k) = deg(k0), and VT (k − k0) > γ.

Finally note that h(x1) = 0, as desired.
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4. Skolem density problem for polynomials

We keep Data 2.1 in force. The polynomials f1, . . . , fm ∈ K̃[X1, . . . , Xn], the point

a ∈ Mn, and the positive integer γ involved in the assumptions of Theorem 4.3 can be

described as a Skolem density problem for M/K. We then regard the point x ∈ Mn

that the theorem supplies as a solution to this problem.

In the proof of Theorem 4.3, it becomes necessary to enlarge T . Lemma 4.2 takes

care of this enlargement.

Data and Assumption 4.1:

(a) f1, . . . , fm are polynomials in M [X] = M [X1, . . . , Xn] such that v(fi) = 0 for each

v ∈ Ṽ r T̃ , i = 1, . . . ,m.

(b) For each a ∈ Mn and every positive integer γ there exists x ∈ Mn such that

VT (x− a) > γ, x is T -integral, and fi(x) is a T -unit, i = 1, . . . ,m.

Lemma 4.2: Let f1, . . . , fm be as in Data 4.1(a). Consider a finite subset T ′ of VK

which contains T . Suppose that f1, . . . , fm satisfy Assumption 4.1(b) for T ′ instead of

T . Then f1, . . . , fm satisfy Assumption 4.1(b) for T .

Proof: Let R = T ′ r T , and consider a vector a = (a1, . . . , an) ∈ Mn and a positive

integer γ. We break the rest of the proof into three parts.

Part A: There exists a finite subextension L of M/K which contains the coefficients

of f1, . . . , fm and a1, . . . , an such that for each w ∈ RN there exists bw ∈ Ln such that

w(bw) ≥ 0 and w(fi(bw)) = 0, i = 1, . . . ,m.

Choose a finite set R0 that represents RN over K. Let v ∈ R0. The Henselian

closure Nv of v with respect to v is K̃ (e.g., Proposition 1.9(a)). Hence the corresponding

residue field N̄v is algebraically closed and in particular infinite. By assumption, the

reduced polynomials f̄i ∈ N̄v[X] are nonzero. Hence, we can choose xv ∈ Nn such that

v(xv) ≥ 0 and v(fi(xv)) = 0, i = 1, . . . ,m. Since N/K is normal, the finite subset

Cv = {xσ
v‖σ ∈ Aut(N/K)} is contained in N . By Lemma 1.8, applied to K ′ = Kins,

Mn has a finite subset Bv such that for each c ∈ Cv and for each w ∈ RN which lies

over v|K there exists b ∈ Bv such that w(b− c) > 0.
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Choose a finite extension L of K which is contained in M , contains the coefficients

of f1, . . . , fm and the elements a1, . . . , an and contains Bv for all v ∈ R0. For each w ∈

RN there exists v ∈ R0 and σ ∈ Aut(N/K) such that w = vσ. Choose bw ∈ Bv such

that w(bw−xσ
v ) > 0. Then w(xσ

v ) ≥ 0 and w(bw) ≥ 0. Hence, since the coefficients of fi

are w-integral, w(fi(bw)− fi(xσ
v )) > 0. Also, w(fi(xσ

v )) = vσ(fσ
i (xσ

v )) = v(fi(xv)) = 0.

Hence w(fi(bw)) = 0, as claimed.

Part B: There exists y ∈ Ln such that VT (y−a) > γ, VR(y) ≥ 0, and VR(fi(y)) = 0,

i = 1, . . . ,m. Indeed, choose a finite set R1 which represents RN over L and choose a

finite set T1 which represents TN over L. For each v ∈ R1 Part A gives bv ∈ Ln such

that v(bv) ≥ 0 and v(fi(bv)) = 0, i = 1, . . . ,m. By the weak approximation theorem,

there exists y ∈ Ln such that

v(y − a) > γ for each v ∈ T1 and

v(y − bv) > 0 for each v ∈ R1.

Now let w ∈ TN . Then there exists σ ∈ Aut(N/L) and v ∈ T1 such that w = vσ. Since

a,y ∈ Ln, we have w(y−a) = v(y−a) > γ. If w ∈ RN , then there exists σ ∈ Aut(N/L)

and v ∈ R1 such that w = vσ. As in Part A, w(y) ≥ 0 and w(fi(y)) = v(fi(y)) =

v(fi(bv)) = 0, i = 1, . . . ,m as claimed.

Part C: Conclusion of the proof. By assumption, there exists x ∈ Mn such that

VT ′(x − y) > γ, w(x) ≥ 0, and w(fi(x)) = 0 for each w ∈ VN r T ′
N , i = 1, . . . ,m. In

particular, if w ∈ TN , then, by Part B, w(x − a) > γ. If w ∈ RN , then w(x − y) > 0

and therefore, by Part B and since the coefficients of fi are w-integral, w(x) ≥ 0

and w(fi(x)) = w(fi(y)) = 0. Conclude that w(x) ≥ 0 and w(fi(x)) = 0 for each

w ∈ VN r TN , i = 1, . . . ,m, as desired.

Theorem 4.3: Let f1, . . . , fm ∈ K̃[X1, . . . , Xn] be polynomials such that v(fi) = 0 for

each v ∈ Ṽ r T̃ and each 1 ≤ i ≤ m. Let a = (a1, . . . , an) ∈ Mn and let γ be a positive

integer. Then there exists x ∈ Mn such that

(a) VT (x− a) > γ, and

(b) x is T -integral, and
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(c) f1(x), . . . , fm(x) are T -units.

Proof: Let E be a finite subextension of M/K which contains a1, . . . , an. Since

Etot,SE ,ins = N , we may replace E by K, if necessary, and assume that a ∈ Kn.

We break the rest of the proof into two parts.

Part A: We first prove the theorem by induction on n under the assumption that

the coefficients of fi belong to K. There are several cases to consider.

Case A1: m=n=1. Set a = a1, X = X1 and f = f1. Assume first that f has only

simple roots. Then its discriminant is nonzero. Let therefore T ′ be a finite subset of VK

which contains T such that the leading coefficient of f as well as its discriminant are

T ′-units. Lemma 3.2 gives x′ ∈ M such that (a), (b), and (c) hold for T ′, f . Lemma

4.2 then gives x ∈ M such that (a), (b), and (c) hold.

In the general case, use Lemma 4.2 to enlarge T , if necessary, such that the leading

coefficient of f is a T -unit. Then each of the roots of f is T -integral.

Let f(X) = g1(X)α1 · · · gk(X)αk , where g1(X), . . . , gk(X) are distinct irreducible

polynomials over K. Each gj(X) has the form hj(X)qj , where qj = 1 if char(K) = 0

and qj is a power of char(K) if char(K) > 0, and hj(X) ∈ Kins[X] has only simple

roots. Then h(X) = h1(X) · · ·hk(X) has only simple roots. Since M is perfect, M/K

has a finite subextension L which contains the coefficients of h.

By the first paragraph of Case A1, applied to L instead of to K, there exists

x ∈ M such that VT (x−a) > γ, x is T -integral, and h(x) is a T -unit. By construction,

h(X) = c
∏l

i=1(X − ti), and f(X) = b
∏l

i=1(X − ti)βi for some positive integers βi and

T -units c and b. Since all ti are T -integral, x− ti is a T -unit, i = 1, . . . , l. Hence f(x)

is a T -unit.

Case A2: n=1 and m is arbitrary. The polynomial f = f1 · · · fm satisfies v(f) = 0 for

each v ∈ Ṽ r T̃ . Let T ′ be a finite subset of VK which contains T such that the leading

coefficient of f is a T ′-unit. By Case A1, there exists x′ ∈ M such that VT ′(x′−a) > γ,

x′ is T ′-integral, and f(x′) is a T ′-unit. As f1(x′), . . . , fm(x′) are T ′-integral and their

product is a T ′-unit each of them is a T ′-unit. It follows from Lemma 4.2, that there

exists x ∈ M which satisfies (a), (b), and (c).

20



Case A3: n is arbitrary. Suppose now that the Proposition holds for n − 1. Let T ′

be a finite subset of VK which contains T such that all nonzero coefficients of fi are T ′-

units, i = 1, . . . ,m. Consider each fi as a polynomial in X1, . . . , Xn−1 with coefficients

in K[Xn]. Let hi(Xn) be a nonzero coefficient of fi. Then all coefficients of hi are T ′-

units. By Case A2, there exists x′n ∈ M such that VT ′(x′n − an) > γ, x′n is T ′-integral,

and hi(x′n) is a T ′-unit, i = 1, . . . ,m. Thus gi(X1, . . . , Xn−1) = fi(X1, . . . , Xn−1, x
′
n)

satisfies v(gi) = 0 for each v ∈ Ṽ r T̃ ′. Then K ′ = K(x′n) is a finite subextension of

M/K and K ′
tot,SK′ ,ins = N . So, we may apply the induction hypothesis to the field

K ′, to SK′ , to T ′
K′ , and to the polynomials gi, i = 1, . . . ,m, to get x′1, . . . , x

′
n−1 ∈ M

such that (a), (b), and (c) are satisfied for T ′ instead of T . By Lemma 4.2, there exists

x ∈ Mn which satisfies (a), (b), and (c). This competes the induction.

Part B: The general case. Let K ′′ be a finite extension of K which contains the

coefficients of f1, . . . , fm. The norm gi(X) = NK′′/Kfi(X) can be expressed as a product

gi(X) =
∏

fij(X) of polynomials fij which are conjugate to fi over K. In particular

v(fij) = 0 and therefore v(gi) = 0 for each v ∈ Ṽ r T̃ . Apply Part A to the polynomials

g1(X), . . . , gm(X) to get x ∈ Mn such that (a) and (b) hold, and g1(x), . . . , gm(x) are

T -units. Then for each i, the elements fij(x) are T -integral whose product is the T -unit

gi(x). It follows that each fij(x) is a T -unit and in particular each fi(x) is a T -unit.
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5. Skolem density problem for rational functions

We keep using Data 2.1. If we replace the polynomials in a Skolem density problem

by rational functions we must assume that their coefficients belong to M and that the

problem is locally solvable.

Theorem 5.1: Consider rational functions f1, . . . , fm ∈ M(X1, . . . , Xn) and the vector

f = (f1, . . . , fm). Let a ∈ Mn and let γ be a positive integer. We assume that for each

v ∈ Ṽ such that v(f) < 0 there exists xv ∈ K̃n such that v(f(xv)) ≥ 0. Then there

exists x ∈ Mn such that

(1a) VT (x− a) > γ, and

(1b) f(x) is T -integral.

Proof: Write each fi as a quotient of polynomials with coefficients in M : fi = gi/hi.

Choose a finite subset R of VK disjoint from T , such that the coefficients of gi and hi

are T ′-unit, where T ′ = R∪ T .

Let L be a finite subextension of M/K which contains the coordinates of a as well

as the coefficients of gi and hi, i = 1, . . . ,m. Choose a finite set R0 which represents R̃

over L. Let v ∈ R0. If v(f) < 0, then, by assumption, there exists bv ∈ K̃n such that

v(f(bv)) ≥ 0. If v(f) ≥ 0, such bv exists by [CaR, Thm. 2.2]. Since N is v-dense in K̃

(Proposition 1.9(b)) we may choose bv to be in Nn.

Consider the finite subset B = {bσ
v‖v ∈ R0, σ ∈ G(L)} of N . Let δ be an integer

such that for each x ∈ K̃n and for each v ∈ R0 the inequality v(x − bv) > δ implies

v(f(x)) ≥ 0. By Lemma 1.8, Mn has a finite subset B′ such that for each b ∈ B,

for each v ∈ R0, and for each w ∈ R̃ with w|L = v|L there exists b′ ∈ B′ such that

w(b′ − b) > δ.

Let L1 = L(B′). Choose a finite set R1 which represents R̃ over L1. For each

w ∈ R1 there exists v ∈ R0 and σ ∈ G(L) such that w = vσ. Choose bw ∈ B′

such that w(bw − bσ
v ) > δ. Then v(bσ−1

w − bv) > δ and therefore, by the choice of δ,

v(f(bσ−1

w )) ≥ 0. It follows that w(f(bw)) ≥ 0.

Let ε > γ be an integer such that for each x ∈ K̃n, and for each w ∈ R1 the

inequality w(x−bw) > ε implies w(f(x)) ≥ 0. Apply the weak approximation theorem
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to L1 and find b ∈ (L1)n such that VT (b−a) > γ and w(b−bw) > ε for each w ∈ RL1 .

By Theorem 4.3 there exists x ∈ Mn such that VT ′(x−b) > ε and f1(x), . . . , fm(x)

are T ′-units. Hence, VT (x− a) > γ. If v ∈ R̃, then there exists σ ∈ G(L1) and w ∈ R1

such that v = wσ. We have v(x − bw) > ε. Hence, w(xσ−1 − bw) > ε and therefore,

by the preceding paragraph, w(f(xσ−1
)) ≥ 0. It follows that v(f(x)) ≥ 0. Thus f(x) is

T -integral.

Here are some interesting special cases of Theorems 5.1. If M = K̃, and S is

empty, then Theorem 5.1 gives Theorem 5.1 of [CaR], except that we have not included

archimedean primes in T .

If only S is empty, then N = K̃. In this case Theorem 5.1 simplifies to the

following result:

Theorem 5.2: Let K be a global field and let T be a finite set of valuations of K.

Let M be an algebraic extension of K which is PAC over OM . Consider polynomials

f1, . . . , fm ∈ K̃[X1, . . . , Xn] such that v(fi) = 0 for each v ∈ Ṽ r T̃ and each 1 ≤ i ≤ m.

Let a ∈ Mn and let γ be a positive integer. Then there exists x ∈ Mn such that

(a) VT (x− a) > γ, and

(b) x1, . . . , xn and f1(x), . . . , fm(x) are T -units.

The case T = ∅ gives a solution to Skolem original problem in M . In this case

the assumption of Theorem 5.2, namely that v(fi) = 0 for each v ∈ Ṽ means that fi is

primitive.

Theorem 5.3: Let M be an algebraic extension of K which is PAC over OM . Let

f1, . . . , fm ∈ K̃[X1, . . . , Xn] be primitive polynomials. Then there exist units x1, . . . , xn

of OM such that f1(x), . . . , fm(x) are units of OM .

We denote the fixed field of an e-tuple σ ∈ G(K)e in K̃ by K̃(σ).

Corollary 5.4: For each positive integer e and almost all σ ∈ G(K)e the field M =

K̃(σ) ∩Ktot,S,ins satisfies the conclusions of all the theorems of Sections 4 and 5.

Proof: By [JR1, Prop. 3.1], almost all fields K̃(σ) are PAC over O. Hence, by Lemma

1.4, M = K̃(σ) ∩Ktot,S,ins is weakly PSC over OM for almost all σ ∈ G(K)e. So, we
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may apply Theorems 4.3, 5.1, 5.2 and 5.3 to each of these fields.

We return now to the general case where M is as in Data 2.1. Theorem 5.1 has

the following consequence for the structure of OM .

Theorem 5.5: Every finitely generated ideal of OM is principal. In other words, OM

is a Bezout domain.

Proof: Let a1, . . . , an be elements of OM . For each subextension L of M/K which

contains a1, . . . , an denote the ideal which these elements generate by aL. We have to

find x ∈ OM which generates aM .

To this end let E = K(a1, . . . , an). Then OE is a Dedekind domain and hence

aE decomposes into a product of powers of prime ideals: aE = pα1
1 · · · pαm

m . Denote the

valuation of E which corresponds to pi by vi. Let ei be the ramification index of pi over

K. For each i find ai ∈ OE such that vi(ai) = αi/ei. Let γ = max{α1/e1, . . . , αm/em}.

Then use the Chinese remainder theorem to find a ∈ OE such that vi(a − ai) > γ for

i = 1, . . . ,m.

Note that a does not necessarily generate aL because a is not necessarily a

{v1, . . . , vm}-unit. So, denote the set of restrictions of v1, . . . , vm to K by T . By

Theorem 5.1, there exists x ∈ M such that VT (x − a) > γ, and both x and x−1 are

T -integral.

Let now L = E(x). If v is a valuation of L that lies over vi, then v(x) = v(ai).

In particular v(x) ≥ 0. Also, x is a T -unit. Hence x belongs to OL and xOL = aL.

Conclude that xOM = aM .

Remark 5.6: Algebraic extensions. Theorem 5.5 partially generalizes Corollary 1.5(a),

(c) of [Ja3], which states that for almost all σ ∈ G(K)e the ring Os(σ) = OKs(σ) is a

Bezout domain.

Suppose that S = ∅. Then M is PAC over OM . If M ′ is an algebraic extension

of M , then M ′ is PAC over OM ′ [JR1, Cor. 2.5]. It follows that Theorems 5.1 and 5.5

hold for M ′ instead of M . In particular, for almost all σ ∈ G(Q)e, if L is an algebraic

extension of Q̃(σ), then ZL is a Bezout domain. This affirmatively solves Problem 1 of

[Ja3].
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