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Let K be a global field. That is, either K is a number field, i.e., K is a finite

extension of Q = Q, the field of rational numbers, or K is a function field, i.e., K is

a finite separable extension of Q = Fp(t), where t is transcendental element of K over

Fp fixed throughout this note. If K is a number field, let Z = Z, the ring of rational

integers. If K is a function field, let Z = Fp[t]. In both cases let R be the integral

closure of Z in K. It is the ring of integers of K. In the number field case denote

the usual absolute value of x ∈ Q by |x|∞. Then ∞ is the infinite prime of Z. In the

function field case define the absolute value associated to the infinite prime by

|f |∞ = pdeg(f), f ∈ Z.

As every ideal of Z is principal this definition extends also to ideals of Z. We use the

letter l for the primes of Q, i.e., l = ∞ or l corresponds to a prime ideal of Z. Similarly

v will range over the primes of K. To each v we associate the normalized absolute

value | |v [CF, p. 51], the completion Kv, and the ring of integers Rv of Kv (if v is

nonarchimedean).

Consider also the discriminant D(R/Z) of R over Z [CF, p. 11]. It is an ideal of

Z. The absolute discriminant dK of K is defined as |D(R/Z)|∞ if K is a number

field and as q2gK−2
K if K is a function field, where in the latter case qK is the cardinality

of the field of constants of K (i.e., the integral closure of Fp in K) and gK is the genus

of K.

In the following theorem we consider a finite separable extension L of K and

denote its ring of integers by S. For a prime w of L lying over a nonarchimedean prime

v of K we let D(Lw/Kv) = D(Sw/Rv). Then w is unramified over K if and only if

D(Lw/Kv) is trivial [CF, p. 21]. If v is archimedean, we set D(Lw/Kv) = 1. In the

function field K this equality need not hold for the infinite primes. However, we may

choose t such that it will be satisfied.
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Lemma: Suppose that K is a function field and let L be a finite separable extension

of K. Then there exists a separable transcendental element t of K/Fp such that ∞ is

unramified in L. In this case D(Lw/Kv) = 1 for every infinite prime v of K.

Proof: Start with an arbitrary separable transcendental element u of K/Fp. There

are only finitely many primes of Fp(u) that ramify in L [D, p. 111]. Choose a monic

irreducible separable polynomial f ∈ Fp[X] such that the prime of K that corresponds

to f(u) is unramified in L. So, it suffices to take t = f(u)−1 and to prove that the pole

of t in Fp(t) is unrmified in Fp(u).

Indeed u is a zero of the polynomial g(X) = f(X)−t−1 with coefficients in Fp[t−1]

and g′(X) = f ′(X). The specialization t → ∞ maps g(X) onto f(X). As each zero

of the latter polynomial is simple, the discriminant of g(X) is not mapped to zero.

Conclude that the pole of t unramifies in Fp(u) [L, p. 62].

Theorem: Let L be a finite separable extension of a global field K. If ∞ does not

ramify in K, then

(1) dL/d
[L:K]
K =

∏
v

∏
w|v

|D(Lw/Kv)|−1
v

Proof: By the lemma we may assume that that

(2) |D(Lw/Kv)|v = 1 for each infinite prime v.

Use the following relation for the relative discriminants of the rings of integers:

(3) D(S/Z)/D(R/Z)[L:K] = NK/QD(S/R).
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[CF, p. 17]. Compute the infinite absolute value of both sides of (3):

|D(S/Z)|∞
/
|D(R/Z)|[L:K]

∞ = |NK/QD(S/R)|∞

=
∏
l/|∞

|NK/QD(S/R)|−1
l product formula [CF, p. 60]

=
∏
l/|∞

∏
v|l

|D(S/R)|−1
v [CF, p. 59]

=
∏
v/|∞

|D(S/R)Rv|−1
v

=
∏
v/|∞

∏
w|v

|D(Sw/Rv)|−1
v [CF, p. 16]

=
∏
v/|∞

∏
w|v

|D(Lw/Kv)|−1
v .

Thus

(4) |D(S/Z)|∞
/
|D(R/Z)|[L:K]

∞ =
∏
v/|∞

∏
w|v

|D(Lw/Kv)|−1
v .

By (2), the right hand side of (4) coincides with that of (1). In the number field

case the left hand side of (4) equals that of (1), by definition. So, assume that K is a

function field. Recall that D(R/Z) = NK/QD(R/Z), where D(R/Z) is the different of R

over Z [CF, p. 16]. If v is finite, then D(Rv/Zl) is the vth component of D(R/Z) [CF,

p. 16]. The different D(K/Q) is likewise the product of the local differents D(Rv/Zl),

where now v ranges over all primes of K [Ch, Chap. IV, Sec. 8]. (Note that now we

consider the different as a divisor rather that as an ideal as before.) Since the pole of t

is not ramified in L we have D(R/Z) = D(K/Q).

By [D, p. 110]

(5) degQ D(K/Q) = [K0 : Q0] degK D(K/Q).

Here Q0 = Fp and K0 = FqK
are the field of constants of, respectively, Q and K.

Similarly we denote the field of constants of L (i.e., FqL
) by L0.

To compute the degree of the different we apply the Hurwitz-Riemann genus

formula for the extension K/K0(t) [Ch, p. 106]:

(6) 2gK − 2 = −2[K : K0(t)] + degK D(K/K0(t)).
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The separable constant field extension K0(t)/Q is unramified [D, p. 113]. Hence

D(K0(t)/Q) is the trivial divisor and therefore, by the product formula for the dif-

ferents [CF, p. 17] D(K/Q) = D(K/K0(t))D(K0(t)/Q) = D(K/K0(t)). So, we may

rewrite (6) as

(7) 2gK − 2 = −2[K : K0(t)] + degK D(K/Q).

Now combine (5) and (7):

(8) |D(K/Q)|∞ = pdegQ D(K/Q) = p[K0:Q0](2gK−2+2[K:K0(t)]) = q
2gK−2+2[K:K0(t)]
K .

Similarly,

(9) |D(L/Q)|∞ = q
2gL−2+2[L:L0(t)]
L .

Finally use the relations [L0 : K0][L : L0(t)] = [K : K0(t)][L : K] and qL = q
[L0:K0]
K to

conclude from (8) and (9) that

|D(L/Q)|∞
|D(K/Q)|[L:K]

∞
=

q2gL−2
L

q
(2gK−2)[L:K]
K

=
dL

d
[L:K]
K

,

as desired.
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