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Introduction

Let K̄1, . . . , K̄e be p-adic closures of a field K. In this paper we investigate the be-

havior of the field Kσ = K̄σ1
1 ∩ · · · ∩ K̄σe

e ∩ K̃(σe+1, . . . , σe+m), where σ1, . . . , σe+m are

automorphisms in the absolute Galois group G(K) of K which are chosen at random

and where K̃(σe+1, . . . , σe+m) is the fixed field of σe+1, . . . , σe+m in the algebraic clo-

sure K̃ of K. More precisely, the compact group G(K)e+m is equipped with a unique

normalized Haar measure (with respect to the Krull topology on G(K)). We prove:

Intersection theorem: Let K be a countable Hilbertian field. Then the following

statements hold for almost all (σ1, . . . , σe+m) ∈ G(K)e+m:

(a) The field Kσ is pseudo p-adically closed (abbreviation: PpC), that is, each

absolutely irreducible variety defined over Kσ has a Kσ-rational point, provided

it has a simple rational point in each p-adic closure of Kσ;

(b) G(Kσ) ∼= De,m, where De,m is the free product G(Qp)∗· · ·∗G(Qp)∗F̂m of e copies

of G(Qp) and a free profinite group F̂m of rank m, in the category of profinite

groups;

(c) The field Kσ admits exactly e non-equivalent p-adic valuations, induced by the

p-adic closures K̄σ1
1 , . . . , K̄σe

e of K;

(d) The value group of each p-adic valuation on Kσ is a Z-group; and

(e) Distinct p-adic valuations on Kσ are independent.

These results extend Theorems 16.13 and 16.18 of [FJ], which correspond to the

case where e = 0. Also, the special case K = Q is proved in [HJ, Prop. 12.9]. The

observation that the p-adic closures of Q are exactly its Henselizations plays there an

important role. Over arbitrary fields, however, this might not hold. Moreover, two

p-adic closures of K may induce the same p-adic valuation on K without being K-

isomorphic. In order to obtain information about the K-isomorphism classes of p-adic

closures of K we use here extensively the theory of sites, developed in [HJ]. In particular,

we have to study the family of PpC fields having exactly e Θ-sites.

The basic notions and results regarding sites are reviewed briefly in section 1. In

section 2 we prove a “strong amalgamation property” for Θ-sites (Proposition 2.4). It
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is then used to give an alternative condition on Kσ to be a PpC field with e Θ-sites

(Theorem 3.11). We apply this condition in the measure theoretic arguments that lead

to the proof of the intersection theorem.

In a forthcoming paper, the first author reformulates this condition as a first order

sentence on fields with e valuations. Then he applies the intersection theorem to study

the elementary theory of free PpC fields with e valuations.

The second author applies the intersection theorem in another forthcoming paper

for a realization theorem of p-adically projective groups of countable rank as absolute

Galois groups of PpC fields which are algebraic over Q.

1. Preliminaries

We first make the following conventions:

The letter p stands for a fixed prime and the letter e for a fixed natural number.

By a variety we always mean an affine absolutely irreducible variety. We do not distin-

guish between equivalent valuations. All fields (with the exception of residue fields of

valuations or unless explicitly stated otherwise) are assumed to have characteristic 0.

We say that a valuation v on a field K is p-adic if the corresponding residue field

is the field with p elements Fp and v(p) is the smallest positive element of the value

group v(K×). By [HJ, Lemma 6.7] there is a canonical bijection v ↔ πv between p-adic

valuations on a field K and places π: K → Qp ∪ {∞}. Moreover, a p-adic valued field

(K1, v1) extends another p-adic valued field (K2, v2) if and only if (K1, πv1) extends

(K2, πv2). We refer to such places as Qp-places on K.

Denote Φ = lim←−Q×
p /(Q×

p )n. The canonical map Q×
p → Φ is injective [HJ, Lemma

6.8(a)], so we may identify Q×
p with its image under this map. A Θ-site on a field K

is a pair ϑ = (π, ϕ), where π is a Qp-place on K and ϕ: K× → Φ is a homomorphism,

such that ϕ(x) = π(x) whenever x ∈ K× and π(x) 6= 0,∞. For each Qp-place π there

exists a (usually non-unique) homomorphism ϕ as above such that (π, ϕ) is a Θ-site

[HJ, Cor. 8.10].

Let K ′ be an extension of K and let ϑ′ = (π′, ϕ′) be a Θ-site on K ′. We say

that ϑ′ extends ϑ (and write ResKϑ
′ = ϑ), if π′ extends π and ϕ′ extends ϕ. We say
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that (K,ϑ) is Θ-closed if ϑ does not extend to any proper algebraic extension of K. If

in addition K/K0 is an algebraic extension, then we say that (K,ϑ) is a Θ-closure of

(K0,ResK0ϑ). By [HJ, Lemma 8.6], (K,ϑ) is Θ-closed if and only if (K, v) is p-adically

closed, where v is the p-adic valuation which corresponds to π.

The sets Q̃×
p and Φ are naturally embedded in Φ̃ = (Q̃×

p ×Φ)/{(a−1, a) | a ∈ Q×
p }.

Now, a Θ̃-site on a field K is a pair (π, ϕ), where π: K → Q̃p ∪ {∞} is a place and

ϕ: K× → Φ̃ is a homomorphism, such that ϕ(x) = π(x) whenever x ∈ K× and π(x) 6=

0,∞. In particular, a Θ-site is also a Θ̃-site.

For a Galois extension L/K we denote the set of all Θ̃-sites ϑ on L such that

ResKϑ is a Θ-site by X(L/K). Thus X(K) = X(K/K) is the set of all Θ-sites on

K. The Galois group G(L/K) acts on X(L/K) as follows: for each σ ∈ G(L/K) and

ϑ = (π, ϕ) ∈ X(L/K), ϑσ = ϑ ◦ σ = (π ◦ σ, ϕ ◦ σ). Also, if L0/K is another Galois

extension, where L0 ⊆ L, and if ϑ ∈ X(L/K), then ResL0ϑ ∈ X(L0/K). Obviously, for

all σ ∈ G(L/K), ResL0(ϑ ◦ σ) = (ResL0ϑ) ◦ (ResL0σ).

We use the following facts about Θ̃-sites [HJ, Prop. 9.3]: If ϑ0 is a Θ-site on a

field K and if L/K is a Galois extension, then ϑ0 extends to a Θ̃-site ϑ on L. Also,

if ϑ′ is another Θ̃-site on L that extends ϑ0, then there exists a unique σ ∈ G(L/K)

such that ϑ = ϑ′ ◦ σ. Finally, for a Galois extension L/K and a Θ̃-site ϑ ∈ X(L/K)

there exists a unique maximal field L0, called the decomposition field of ϑ, such that

K ⊆ L0 ⊆ L and such that ResL0ϑ is a Θ-site [HJ, Lemma 9.5(b)].
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2. The strong amalgamation property of Θ-sites.

In this section we prove that two Θ-sites on linearly disjoint extensions K1, K2 of a field

K which coincide on K extend to a Θ-site on the compositum K1K2. This is a p-adic

analog of [D, p. 75]. In this paper we use only a special case of this result, in which the

extension K1/K is algebraic and K2/K is regular. Nevertheless, we prove the result in

its most general form.

Notation: We denote the first order language of fields augmented by one unary relation

symbol O (denoting a p-adic valuation ring) and new constant symbols for the elements

of a set A by L1(A).

Lemma 2.1: Let E1 and E2 be linearly disjoint extensions of a field K and let Oi be a

p-adic valuation ring on Ei, i = 1, 2, such that O0 = O1 ∩K = O2 ∩K. Furthermore,

assume that (K,O0) is existentially closed in (E1, O1). Then there exists a p-adic

valuation ring O on E1E2 such that O ∩ Ei = Oi, i = 1, 2.

Proof: There exists a set FpF of L1-sentences whose models are exactly the formally

p-adic fields [PR, p. 83]. Denote the diagram of (Ei, Oi) in L1(Ei) by Diag(Ei, Oi),

i = 1, 2, and define an L1(E1 ∪ E2)-theory Γ as follows:

(2.1)
Γ = FpF ∪Diag(E1, O1) ∪Diag(E2, O2)∪

∪

{
n∑

j=1

ajbj 6= 0

∣∣∣∣∣ a1, . . . , an ∈ E×1 and
b1, . . . , bn ∈ E2 linearly independent over K

}
.

Let Γ0 be a finite subset of Γ. We show that Γ0 has a model. Indeed, let a1, . . . , as (resp.,

b1, . . . , bt) be all the elements of E×1 (resp., E2) which appear in sentences of Γ0 and

set a0 = 0. Also, let ϕ1(a1, . . . , as), . . . , ϕq(a1, . . . , as) be the L1(E1 ∪ E2)-sentences of

Diag(E1, O1) which appear in Γ0. Furthermore, let
∑t

i=1 ak(i,j)bi 6= 0, j = 1, . . . , l, be

a list of all the sentences in Γ0 which belong to the last set in (2.1). Here, 0 ≤ k(i, j) ≤ s

and for each 1 ≤ j ≤ l there is at least one 1 ≤ i ≤ t for which k(i, j) 6= 0.

Since the existential sentence

(∃X1) · · · (∃Xs)
{ q∧

k=1

ϕk(X) ∧
s∧

j=1

Xj 6= 0
}
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holds in (E1, O1), there exist a′1, . . . , a
′
s ∈ K such that

(K,O0) |=
q∧

k=1

ϕk(a′) ∧
s∧

j=1

a′j 6= 0.

For each 1 ≤ j ≤ l, the bi’s for which k(i, j) 6= 0 are linearly independent over K.

Hence, with a′0 = 0,
∑t

i=1 a
′
k(i,j)bi 6= 0, j = 1, . . . , l. Therefore the structure (E2, O2)

is a model of Γ0, with a1, . . . , as and b1, . . . , bt interpreted as a′1, . . . , a
′
s and b1, . . . , bt,

respectively, and the relation symbol O interpreted as the p-adic valuation ring O2 of

E2.

The compactness theorem now yields a model (F,O) of Γ. Thus, (F,O) is a

formally p-adic field which contains copies of (E1, O1) and of (E2, O2). The definition

of Γ guarantees that these copies are linearly disjoint over K. Therefore, the restriction

of O to their compositum gives a p-adic valuation ring as asserted. ut

Corollary 2.2: Let (E1, π1) and (E2, π2) be formally p-adic linearly disjoint exten-

sions of a p-adically closed field (K,π0) and suppose that ResKπ1 = ResKπ2 = π0.

Then there exists a Qp-place π on E1E2 such that ResEiπ = πi, i = 1, 2.

Proof: It follows from the model-completeness of the theory of p-adically closed fields

[PR, Th. 5.1] that (K,π0) is existentially closed in both (E1, π1) and (E2, π2). The

assertion now follows from Lemma 2.1. ut

Remark: An alternative proof for Corollary 2.2 in the case where E1 and E2 are p-

adically closed is given by Pop [P, Lemma 5.6].

The following general lemma can be verified using the tower property of linearly

disjoint extensions [L, p. 50] and [L, p. 58, Cor. 6]:

Lemma 2.3: Let E1, E2 be linearly disjoint extensions of a field K and let K ′, E′1, E
′
2 be

algebraic extensions of K,E1, E2, respectively, such that E′1/K is a regular extension.

Then

(a) The fields E1K
′ and E2K

′ are linearly disjoint over K ′;

(b) The fields E′1 and E′2 are linearly disjoint over K;

(c) The fields E′1E2 and E1E
′
2 are linearly disjoint over E1E2.
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Proposition 2.4: Let E1 and E2 be linearly disjoint extensions of a field K and let

ϑi ∈ X(Ei), i = 1, 2. Assume that ResKϑ1 = ResKϑ2. Then there exists ϑ ∈ X(E1E2)

such that ResEi
ϑ = ϑi, i = 1, 2.

Proof: Case i: E1, E2/K algebraic. In this case we even prove that θ is unique.

Indeed, let ζ be a Θ-site of K, let (K̄, ζ̄) be a Θ-closure of (K, ζ) and let ζ̃ be

an extension of ζ̄ to a Θ̃-site of K̃. Then, for each algebraic extension E of K the

map σ 7→ ζσ = (ResσE ζ̄) ◦ σ canonically maps the set of K-embeddings of E into K̄

bijectively onto the set of all Θ-sites of E that extend ζ.

Indeed, suppose that σ and σ′ are K-embeddings of E into K̄ such that ζσ = ζσ′ .

Extend them to elements σ̃ and σ̃′, respectively, of G(K). Then

ResE(ζ̃ ◦ σ̃) = (ResσE ζ̄) ◦ σ = (Resσ′E ζ̄) ◦ σ′ = ResE(ζ̃ ◦ σ̃′).

Hence, there exists ε ∈ G(E) such that ζ̃ ◦ σ̃ ◦ ε = ζ̃ ◦ σ̃′. Hence, σ̃ ◦ ε = σ̃′ and therefore

σ = σ′.

If κ is a Θ-site on E that extends ζ and (Ē, κ̄) is a Θ-closure of (E, κ) then there

exists a K-isomorphism σ̄: Ē → K̄ such that κ̄ = ζ̄ ◦ σ̄ [HJ, Prop. 8.7]. Then, with

σ = ResE σ̄, we obtain that κ = ζσ.

Having proved our statement about E, the existence and uniqueness of θ extending

θ1 and θ2 follow now from the following fact: Each pair ofK-embeddings σ1, σ2 of E1, E2,

respectively into K̃ uniquely extends to a K-embedding σ: E1E2 → K̃.

Case ii: E1/K algebraic and E2/K regular. Extend ϑi to a Θ̃-site ϑ̃i ∈ X(Ẽi/Ei),

i = 1, 2, and let ϑ̂ = ResK̃ ϑ̃2. By assumption, ResK ϑ̃1 = ResK ϑ̂. Hence, there exists

σ ∈ G(K) such that ϑ̃1 = ϑ̂ ◦ σ. Since E2/K is regular, σ extends to some τ ∈ G(E2).

Then:

(2.2) ResE1(ϑ̃2 ◦ τ) = ResE1(ϑ̂ ◦ σ) = ResE1 ϑ̃1 = ϑ1, ResE2(ϑ̃2 ◦ τ) = ResE2 ϑ̃2 = ϑ2.

Denote ϑ = ResE1E2(ϑ̃2 ◦ τ). Thus ResEi
ϑ = ϑi, i = 1, 2.

We still have to show that ϑ is a Θ-site on E1E2. Indeed, by (2.2), ϑ̃2 ◦ τ is a

Θ̃-site in X(Ẽ2/E2) whose decomposition field contains E1. Hence it contains E1E2.
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Case iii: K,E1, E2 p-adically closed. Let πi be the Qp-place induced on Ei by

ϑi, i = 1, 2. Corollary 2.2 yields a Qp-place π on E1E2 which extends π1 and π2. We

complete π into a Θ-site ϑ = (π, ϕ) ∈ X(E1E2) [HJ, Cor. 8.10] to obtain from [HJ,

Prop. 8.9(a)] that ResEi
ϑ = ϑi, i = 1, 2.

Case iv: E1/K regular. Let (Ē2, θ̄2) be a Θ-closure of (E2, θ2). Then, with

K̄ = K̃ ∩ Ē2 and θ̄ = ResK̄θ2, the pair (K̄, θ̄) is a Θ-closure of (K,ResKθ2) [PR,

Th. 3.4]. By case II, θ1 and θ̄ have a common extension to a Θ-site on E1K̄, hence

to a Θ-site θ̄1 on a Θ-closure Ē1 of E1. By Lemma 2.3(a), E1K̄ and E2K̄ are linearly

disjoint over K̄. As Ē1/K̄ is regular, Lemma 2.3(b) implies that Ē1 and Ē2 are linearly

disjoint over K̄. From Case III we obtain a Θ-site of Ē1Ē2 which extends θ̄1 and θ̄2.

Its restriction θ to E1E2 is as desired.

Case v: The general case. Let K ′ = (E1 ∩ K̃) · (E2 ∩ K̃). Case I gives a Θ-site θ′

of K ′ which extends both Res
E1∩K̃

θ1 and Res
E2∩K̃

θ2. Case iv allows us to extend θ1

and θ′ to a common Θ-site θ′1 of E1K
′. Conclude, again from Case iv, that E1E2 has a

Θ-site θ that extends θ2 and θ′1, hence also θ1. ut

3. PpCe fields and their axiomatization.

In this section we study the class of PpC fields with e Θ-sites. This is a subclass of

the class of regularly closed fields with respect to a finite set of localizers, as defined

in [HP]. We obtain a characterization theorem for these fields (Theorem 3.11) which

resembles the well-known characterization of p-adically closed fields as fields in which

the Hensel-Rychlik Lemma holds and whose values group is a Z-group [PR, Th. 3.1].

Lemma 3.1: Let ϑ be a Θ-site on a field K and let V be a variety defined over K with

function field F . Then the following are equivalent:

(a) V has a simple K̄-rational point for each Θ-closure (K̄, ϑ̄) of (K,ϑ);

(b) V has a simple K̄-rational point for one Θ-closure (K̄, θ̄) of (K, θ).

(c) ϑ extends to a Θ-site on F .

Proof: Assume (b), and let (K̄, ϑ̄) be a Θ-closure of (K,ϑ) [HJ, Prop. 8.7]. By [PR,

Th. 7.8] and [HJ, Cor. 8.10] there exists a Θ-site ζ on K̄F . Since K̄ admits a unique
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Θ-site [HJ, Prop. 8.9], ResK̄ζ = ϑ̄. Therefore ResKζ = ϑ, whence ResF ζ is a Θ-site on

F which extends ϑ.

Conversely, assume (c) and let (K̄, ϑ̄) be an arbitrary Θ-closure of (K,ϑ). Since

F/K is regular [L, p. 71], Proposition 2.4 yields a Θ-site on K̄F which extends ϑ̄.

As K̄F is the function field of V over K̄, [PR, Th. 7.8] implies that V has a simple

K̄-rational point. ut

Corollary 3.2: The following conditions on a field K with Θ-sites ϑ1, . . . , ϑe are

equivalent:

(a) Every variety V defined over K which has a simple rational point in each Θ-closure

of (K,ϑi), i = 1, . . . , e, has a K-rational point;

(b) Every non-empty variety V defined over K for which ϑ1, . . . , ϑe extend to Θ-sites

on the function field F of V over K, has a K-rational point.

Definition: Let ϑ1, . . . , ϑe be e Θ-sites on a field K. We call (K,ϑ1, . . . , ϑe) a pseudo

p-adically closed field with e Θ-sites (PpCe) if the following hold:

(a) K is PpC;

(b) X(K) = {ϑ1, . . . , ϑe}; and

(c) ϑ1, . . . , ϑe are distinct.

Notation: For a field K with e Θ-sites ϑ1, . . . , ϑe we denote the p-adic valuations

and the p-adic valuation rings on K which correspond to ϑ1, . . . , ϑe by v1, . . . , ve and

O1, . . . , Oe, respectively. We also let O = O1 ∩ · · · ∩Oe.

Remark 3.3: If (K,ϑ1, . . . , ϑe) is a PpCe field, then by [HJ, Cor. 8.10], v1, . . . , ve are

the only p-adic valuations on K.

Proposition 3.4: (I) Let K be a field with X(K) = {ϑi}i∈I , |I| ≤ ℵ0, and let vi

be the p-adic valuation which corresponds to ϑi, i ∈ I. Then for each i, vi(K×) is a

Z-group.

(II) If {ϑi}i∈I are distinct Θ-sites on K and if for each i ∈ I, vi(K×) is a Z-group, then

the following hold:

(a) The p-adic closures of K with respect to vi, i ∈ I, are exactly its henselizations.

Hence, any two p-adic closures of (K, vi), i ∈ I, are K-isomorphic;
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(b) For each i ∈ I, ϑi is the only Θ-site in X(K) which induces vi on K;

(c) the valuations vi, i ∈ I, are distinct;

(d) For each i ∈ I, ϑi extends to a Θ-site on any formally p-adic extension of (K, vi).

In particular, a PpCe field has all the properties mentioned above.

Proof: (I) If vi(K×) were not a Z-group, it would follow from a result of Prestel and

Roquette [PR, Remark 3.3] that K has uncountably many non-isomorphic Θ-closures.

By [HJ, Prop. 8.7] this would imply that X(K) > ℵ0, contrary to the assumption.

(II)(a) This follows from [PR, Th. 3.2].

(b) Let ϑ be another Θ-site on K which induces vi on K. Let (K̄i, ϑ̄i) (resp., (K̄, ϑ̄))

be a Θ-closure of (K,ϑi) (resp., (K,ϑ)). Also denote the p-adic valuation which ϑ̄i

(resp., ϑ̄) induce on K̄i (resp., K̄) by v̄i (resp., v̄). By [HJ, Lemma 8.6], (K̄i, v̄i) and

(K̄, v̄) are p-adic closures of (K, vi). According to (a), there exists a K-isomorphism σ

such that σK̄ = K̄i. By the uniqueness of Θ-sites on Θ-closed fields [HJ, Prop. 8.9],

ϑ̄i ◦ σ = ϑ̄. Hence, ϑi = ϑ.

(c) This follows from (b).

(d) Let (F,w) be a formally p-adic extension of (K, vi) and complete the Qp-place

which corresponds to w into a Θ-site ζ. By (b), ResKζ = ϑi. ut

Corollary 3.5: There is a canonical bijection between PpCe fields and structures of

the form (K, v1, . . . , ve), where v1, . . . , ve are the distinct p-adic valuations on the PpC

field K and vi(K×) is a Z-group, i = 1, . . . , e.

Lemma 3.6: Let (K,ϑ1, . . . , ϑe) be a PpCe field and let (K̄i, v̄i) be a fixed p-adic closure

of (K, vi), i = 1, . . . , e. Also let V ⊆ An be a variety defined over K, and for each 1 ≤

i ≤ e let ai be a simple K̄i-rational point of V . Finally let U1, . . . , Ue be neighborhoods

of a1, . . . ,ae in the topologies induced by v̄1, . . . , v̄e, respectively. Then V ∩U1∩· · ·∩Ue

contains a K-rational point.

Proof: By Remark 3.3 and Proposition 3.4(II)(a), K is regularly closed with respect

to v1, . . . , ve in the sense of [HP]. Since a p-adically closed field admits a unique p-adic

valuation [PR, Th. 6.15], no p-adic closure of K with respect to vi can be K-embedded
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(as a field) into any p-adic closure of K with respect to vj , i 6= j. Therefore [HP, Th. 1.9]

gives a ∈ V (K) ∩ U1 ∩ · · · ∩ Ue. ut

Corollary 3.7: Let (K,ϑ1, . . . , ϑe) be a PpCe field, let f ∈ O[T1, . . . , Tr, X] be an

absolutely irreducible polynomial and let 0 6= g ∈ K[T1, . . . , Tr]. For each 1 ≤ i ≤ e let

ai1, . . . , air, bi ∈ Oi satisfy vi(f(ai, bi)) > 2vi((∂f/∂X)(ai, bi)). Moreover, let Ui ⊆ Kr

be a vi-neighborhood of ai, i = 1, . . . , e. Then there exist a1, . . . , ar, b ∈ O such that

f(a, b) = 0, g(a) 6= 0, a ∈ Ui and vi(b− bi) > vi((∂f/∂X)(ai, bi)) ≥ 0, i = 1, . . . , e.

Proof: For each 1 ≤ i ≤ e let (K̄i, v̄i) be a p-adic closure of (K, vi), with Ōi its valuation

ring. By changing ai slightly we may assume that g(ai) 6= 0, i = 1, . . . , e. Thus we can

find for each 1 ≤ i ≤ e a v̄i-neighborhood U ′i ⊆ Ōr
i of ai on which g does not vanish such

that Kr ∩ U ′i ⊆ Ui. By the Hensel-Rychlik Lemma [D, p. 144] and the assumptions,

there exists ci ∈ Ōi such that f(ai, ci) = 0 and mi = vi((∂f/∂X)(ai, bi)) < v̄i(ci − bi).

In particular (∂f/∂X)(ai, ci) 6= 0, and therefore (ai, ci) is a simple K̄i-rational point of

the variety V (f). Now Lemma 3.6, applied to the neighborhoods U ′i × (bi + pmi+1Ōi)

of (ai, ci), yields a point (a, b) as desired. ut

Lemma 3.8: Let (K,ϑ1, . . . , ϑe) be a PpCe field. If V ⊆ An is a variety defined over

K which has a simple K̄-rational point in each p-adic closure K̄ of K, then V (K) is

Zariski-dense in V .

Proof: Use Rabinovitz’ trick as e.g., in [FJ, Prop. 10.1], and Lemma 3.1. ut

Lemma 3.9: Let w1, . . . , we be p-adic valuations on a field L and for each 1 ≤ i ≤ e let

αi ∈ wi(L×). Then there exists a ∈ L×, so that wi(a) ≥ αi, i = 1, . . . , e.

Proof: First note that if v is a p-adic valuation on L, then for all x ∈ L×, v(x/(px2 −

1)) ≥ max{v(x), 0}. For each i choose ai ∈ L× for which wi(ai) = αi. Then, with

a =
∏e

i=1 ai/(pa2
i − 1) we have wi(a) ≥ wi(ai) = αi, i = 1, . . . , e. ut

Lemma 3.10: Let F/K be a finitely generated extension and let w1, . . . , we be p-adic

valuations on F . Then there exist t1, . . . , tr, x ∈ F such that t1, . . . , tr are algebraically

independent over K, x is algebraic over K(t1, . . . , tr), F = K(t1, . . . , tr, x) and such

that wi(x), wi(tj) > 0 for all 1 ≤ i ≤ e, 1 ≤ j ≤ r. If F/K is also regular then there
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exists an absolutely irreducible polynomial f ∈ O[T, X] for which f(t, x) = 0 (where

O = {x ∈ K× | wi(x) ≥ 0, i = 1, . . . , e}).

Proof: Let u1, . . . , ur be a transcendence base for F/K, so that F is a finite extension

of K(u). Also, set tj = pγ(uj), j = 1, . . . , r, where γ is Kochen’s operator

γ(X) =
1
p

Xp −X
(Xp −X)2 − 1

.

For each i, j, wi(tj) > 0 [PR, Th. 6.14]. Since uj is algebraic over K(tj), j = 1, . . . , r,

the elements t1, . . . , tr also constitute a transcendence base for F/K. Choose a primitive

element x0 6= 0 for the extension F/K(t) and let irr(x0,K(t)) = Xn +a1X
n−1+ · · ·+an

with a1, . . . , an ∈ K(t). Lemma 3.9 yields a ∈ K(t)× such that for each 1 ≤ i ≤ e,

1 ≤ j ≤ n, wi(a) ≥ max{1 − wi(aj), 1}. Then x = ax0 is a primitive element for

F/K(t) and wi(x) ≥ 1 for all 1 ≤ i ≤ e.

Now multiply irr(x,K(T)) by a suitable element of K(T) to obtain a polynomial

f ∈ K[T, X] which is primitive over K[T]. Lemma 3.9 yields b ∈ K× such that

bf ∈ O[T, X], so we may assume that f ∈ O[T, X]. If F/K is regular, then K̃(t) and

F = K(t, x) are linearly disjoint over K(t). Therefore f(t, X) is irreducible over K̃(t).

By Gauss’ Lemma, f is absolutely irreducible. ut

Theorem 3.11: Let ϑ1, . . . , ϑe be Θ-sites on a field K. Then (K,ϑ1, . . . , ϑe) is PpCe

if and only if the following conditions hold:

(a) Let f ∈ O[T1, . . . , Tr, X] be an absolutely irreducible polynomial and for each i

between 1 and e let ai1, . . . , air, bi ∈ Oi satisfy vi(f(ai, bi)) > 2vi((∂f/∂X)(ai, bi)).

Moreover, let Ui ⊆ Kr be a vi-neighborhood of ai, i = 1, . . . , e. Then there exist

a1, . . . , ar, b ∈ O such that f(a, b) = 0, a ∈ Ui and vi(b− bi) > 0, i = 1, . . . , e;

(b) For each i between 1 and e, vi(K×) is a Z-group;

(c) v1, . . . , ve are distinct.

Proof: The necessity of (a)–(c) follows from Corollary 3.7 and Proposition 3.4. The

proof of their sufficiency breaks into four parts.

Part A: K is v̄i-dense in each p-adic closure (K̄i, v̄i) of (K, vi), i = 1, . . . , e. By

(b) and Proposition 3.4II(a), (K̄i, v̄i) is a henselization of (K, vi). Thus, according to
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[D, p. 108], it suffices to prove that for each polynomial g ∈ Oi[X] and each b ∈ Oi

such that vi(g(b)) > 0 and vi(g′(b)) = 0, the set vi(g(b + pOi)) has no upper bound in

vi(K×).

Indeed, let g(X) =
∑r

l=0 clX
l ∈ Oi[X] and b ∈ Oi be as above. Put

f(T0, . . . , Tr, X) =
r∑

l=0

TlX
l.

Thus f(c, X) = g(X). Let ai = c, bi = b and for each j 6= i, 1 ≤ j ≤ e, let aj0 = −1,

aj1 = 1, aj2 = · · · = ajr = 0, bj = 1. Then vj(f(aj , bj)) > 2vj((∂f/∂X)(aj , bj)) = 0,

j = 1, . . . , e. For each d ∈ O×i we obtain from (a), applied to the (r + 2)-tuples

(a1, b1), . . . , (ae, be), elements a1, . . . , ar, b
′ ∈ K such that f(a, b′) = 0, vi(al − cl) >

vi(d), l = 1, . . . , r and b′ ∈ b+ pOi. Therefore, vi(g(b′)) = vi(f(c, b′)) > vi(d).

Part B: Condition (b) of Corollary 3.2 holds. Let V be a variety defined over K

such that each ϑi extends to a Θ-site ζi on the function field F of V over K. Let

y = (y1, . . . , yn) be a K-generic point of V , with F = K(y). Let (K̄i, ϑ̄i) be a Θ-closure

of (K,ϑi) [HJ, Prop. 8.7]. By Proposition 2.4, ϑ̄i and ζi extend to a Θ-site on K̄iF and

hence to a Θ-site ζ̄i on a Θ-closure F̄i of K̄iF . Denote the p-adic valuations on K̄i, F ,

F̄i which correspond to ϑ̄i, ζ̄i by v̄i, w̄i, respectively. Also, let t1, . . . , tr, x and f be as

in Lemma 3.10.

We take a K-birational map Λ: V (f) → V and a nonempty Zariski K-open set

U ⊆ Ar such that whenever f(a, b) = 0 and a ∈ U , the point (a, b) belongs to the

domain of definition of Λ. Thus, in F̄i:

t ∈ U, f(t, x) = 0,
∂f

∂X
(t, x) 6= 0, w̄i(tj), w̄i(x) > 0, j = 1, . . . , r.

According to [HJ, Lemma 8.6], (K̄i, v̄i) and (F̄i, w̄i) are p-adically closed and therefore,

(F̄i, w̄i) is an elementary extension of (K̄i, v̄i) [PR, Th. 5.1]. Therefore, for each 1 ≤ i ≤ e

there exist ci1, . . . , cir, di in K̄i such that

ci ∈ U, f(ci, di) = 0,
∂f

∂X
(ci, di) 6= 0, v̄i(cij), v̄i(di) > 0, j = 1, . . . , r,
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Since K is v̄i-dense in K̄i and since U(K̄i) is v̄i-open, we can find ai1, . . . , air, bi ∈ K

arbitrarily v̄i-close to ci1, . . . , cir, di, respectively, such that

ai ∈ U, vi(f(ai, bi)) > 2vi

(
∂f

∂X
(ai, bi)

)
, vi(aij), vi(bi) > 0, j = 1, . . . , r.

Since U is vi-open for each i between 1 and e, (a) yields a K-rational point (a, b) in

V (f) with a ∈ U . Then, Λ(a, b) ∈ V (K).

Part C: γ(K) + γ(K) + γ(K) = O. By [PR, Th. 6.14], γ(K) + γ(K) + γ(K) ⊆ O.

Suppose that a ∈ O. For each 1 ≤ i ≤ e let (K̄i, v̄i) be a p-adic closure of (K, vi) and let

Ōi be the corresponding valuation ring. By Hensel’s Lemma [PR, p. 20], the polynomial

pa[(Xp−X)2−1]−Xp +X has a zero xi in Ōi. The point (xi, 0, 0) is thus a K̄i-rational

point of

G(X,Y, Z) = (Xp −X)[(Y p − Y )2 − 1][(Zp − Z)2 − 1]

+[(Xp −X)2 − 1](Y p − Y )[(Zp − Z)2 − 1] + [(Xp −X)2 − 1][(Y p − Y )2 − 1](Zp − Z)

−pa[(Xp −X)2 − 1][(Y p − Y )2 − 1][(Zp − Z)2 − 1],

which is the numerator of γ(X) + γ(Y ) + γ(Z) − a. By a theorem of Schinzel [S]

and Fried [F], G is absolutely irreducible. Also, (∂G/∂X)(xi, 0, 0) ≡ −1 (mod pŌi).

Hence, (xi, 0, 0) is a simple K̄i-rational point of the variety V (G). By Part B and

by Corollary 3.2, we conclude that V (G) has a K-rational point (x, y, z). Since the

denominator of Kochen’s operator does not vanish on a formally p-adic field, we have

γ(x) + γ(y) + γ(z) = a. Hence, a ∈ γ(K) + γ(K) + γ(K).

Part D: X(K) = {ϑ1, . . . , ϑe}. By [E, p. 78], O ∩ pO1, . . . , O ∩ pOe are the distinct

maximal ideals of O. Conclude from [PR, Th. 6.14] and Part C that O is the Kochen

ring of K and that v1, . . . , ve are the distinct p-adic valuations.

Now let ϑ be a Θ-site on K and let v be the p-adic valuation it defines on K.

Thus v = vi for some 1 ≤ i ≤ e. By assumption (b) and Proposition 3.4II(b), ϑ = ϑi.

According to Corollary 3.2, Parts B and D together with assumption (c) prove

that the structure (K,ϑ1, . . . , ϑe) is PpCe. ut
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Note that the arguments in Parts C and D of the above proof assume only that

K is pseudo p-adically closed with respect to the p-adic valuation rings O1, . . . , Oe —

i.e., every variety defined over K has a K-rational point, provided that it has a simple

K̄i-rational point for each p-adic closure K̄i of K with respect to Oi, 1 ≤ i ≤ e. A

similar argument yields the following result:

Corollary 3.12: Suppose that K is pseudo p-adically closed with respect to the p-

adic valuation rings Oi, i ∈ I. Then γ(K) + γ(K) + γ(K) =
⋂

i∈I Oi. If I is finite, then

the rings Oi, i ∈ I, are the only p-adic valuation rings on K.

Remark 3.13: From Part A of the proof of Theorem 3.11 we also deduce that if

(K,ϑ1, . . . , ϑe) is a PpCe field, then K is v̄i-dense in any p-adic closure (K̄i, v̄i) of

(K, vi).

4. Density of Hilbertian sets.

We begin by strengthening a lemma of Geyer [FJ, Lemma 9.25] which allows one to

substitute a variable in an irreducible polynomial by another polynomial and to get,

under certain conditions, an irreducible polynomial.

Lemma 4.1: LetK be a field of arbitrary characteristic. Let f ∈ K[T,X1, . . . , Xn] be an

irreducible polynomial such that ∂f/∂T 6= 0. Let g ∈ K(Y1, . . . , Ym) be a nonconstant

rational function such that the numerator of g(Y)+c (in its reduced form) is absolutely

irreducible for each c ∈ K̃. Then the numerator of f(g(Y),X) is irreducible over K.

Proof: Let g = g1/g2, with g1, g2 relatively prime in K[Y1, . . . , Ym]. Consider the K-

algebraic set V in A1+n+m defined by the equations f(T,X) = 0 and g1(Y)−Tg2(Y) =

0. Since g1(Y) − Tg2(Y) does not vanish identically on V (f), the dimension theorem

[L, p. 36] implies that each K-component of V has dimension n+m− 1. We prove that

V has only one component.

Let (t,x,y) and (t′,x′,y′) be points in V of dimension n +m − 1 over K. Then

dimK(x) = dimK(x′) = n, and t (resp., t′) is algebraic over K(x) (resp., K(x′)). Also,

dimK(x,t)(y) = dimK(x′,t′)(y′) = m−1 and dimK(y) = dimK(y′) = m. Since f(T,X) is

irreducible the map (t,x)→ (t′,x′) extends to aK-isomorphism ψ0: K(t,x)→ K(t′,x′).

14



By assumption the numerator g1(Y)− cg2(Y) of g(Y)− c is irreducible over K̃ for each

c ∈ K̃. ¿From the model-completeness of the theory of algebraically closed fields [FJ,

Cor. 8.5] we deduce that g1(Y)− tg2(Y) is irreducible over K̃(x) and therefore also over

K(t,x). Consequently, ψ0 extends to aK-isomorphism ψ: K(t,x,y)→ K(t′,x′,y′) such

that ψ(yj) = y′j , j = 1, . . . ,m. Conclude that V is irreducible over K.

So, let (t,x,y) be aK-generic point of V and letW be the projection of V on An+m

with respect to the variables (X,Y). Then (x,y) is a generic point of W . Moreover,

dim(W ) = dim(V ) = n+m−1. Therefore W = V (h) with h ∈ K[X,Y] irreducible. For

d = degT f the polynomial h(X,Y)g2(Y) vanishes identically on V (f(g(Y),X)g2(Y)d).

By Hilbert’s Nullstellensatz [L, p. 33], there exists a positive integer r and a polynomial

g3 ∈ K[X,Y] such that

h(X,Y)rg2(Y)r = f(g(Y),X)g2(Y)dg3(X,Y).

As f(g(Y),X)g2(Y)d =
∑d

i=0 ai(X)g1(Y)ig2(Y)d−i with ai ∈ K[X] and ad 6= 0, this

polynomial is relatively prime to g2(Y). Since h(X,Y) is irreducible it follows that

there exists s ≥ 1 such that h(X,Y)s = f(g(Y),X)g2(Y)d.

We have to show that s = 1. Assume that s ≥ 2. Then, for each i between 1 and

m,

0 = s ·h(x,y)s−1 ∂h

∂Yi
(x,y) =

∂f

∂T
(g(y),x)

∂g

∂Yi
(y)g2(y)d + d · f(g(y),x)g2(y)d−1 ∂g2

∂Yi
(y).

Observe that f(g(y),x) = f(t,x) = 0 and g2(y) 6= 0. Moreover, since ∂f/∂T 6= 0 and

dimK(x) = n, we have (∂f/∂T )(g(y),x) = (∂f/∂T )(t,x) 6= 0. Hence (∂g/∂Yi)(y) =

0. Conclude from the algebraic independence of y1, . . . , ym over K that ∂g/∂Yi = 0.

Therefore ∂g1/∂Yi = ∂g2/∂Yi = 0 and hence g is a constant or a pth power (if char K =

p > 0), contrary to the assumption. ut

Corollary 4.2: Let K be a field of arbitrary characteristic. Let

f ∈ K[T1, . . . , Tr, X1, . . . , Xn]

be an irreducible polynomial such that ∂f/∂Ti 6= 0, i = 1, . . . , r. For each i between

1 and r let gi ∈ K(Yi1, . . . , Yi,m(i)) be a nonconstant rational function such that the
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numerator of gi(Yi) + c is absolutely irreducible for each c ∈ K̃. Then the numerator

of the polynomial f(g1(Y1), . . . , gr(Yr),X) is irreducible in K[Y,X].

Now, let K be a Hilbertian field with e valuations v1, . . . , ve. For each positive

integer r equip the ith factor of Kr × · · · ×Kr (e factors) with the vi-topology. Geyer

[G, Lemma 3.4] proves that if v1, . . . , ve are independent, then the diagonal map x 7→

(x, . . . ,x) maps each Hilbertian subset H of Kr onto a dense subset of Kr × · · · ×Kr.

If however, v1, . . . , ve are p-adic valuations, they need not be independent. So, Geyer’s

Lemma does not apply. Nevertheless we may prove the density of the Hilbertian sets in

this case by using the properties of the Kochen operator.

Lemma 4.3: Let v1, . . . , ve be p-adic valuations of a Hilbertian field K, let a1, . . . , ar

be elements of K and let βi ∈ vi(K×), i = 1, . . . , e. Then each Hilbertian subset H of

Kr contains x ∈ H such that vi(x− a) ≥ βi for i = 1, . . . , e.

Proof: Consider a Hilbertian set H(f1, . . . , fm; g) where fj ∈ K[T1, . . . , Tr, Y ] is an

irreducible polynomial, j = 1, . . . ,m, and 0 6= g ∈ K[T1, . . . , Tr] (we use the notation

of [FJ, §11.1]). Apply Lemma 3.9 to obtain an element b ∈ K× such that vi(b) ≥ βi,

i = 1, . . . , e.

Using again [S] or [F], we obtain that the numerator of each of the rational func-

tions c + ak + b
(
γ(Zk1) + γ(Zk2) + γ(Zk3)

)
, k = 1, . . . , r, is absolutely irreducible for

each c ∈ K̃. Hence, by Corollary 4.2, the numerator of

hj(Z, Y ) = fj

(
a1+b

(
γ(Z11)+γ(Z12)+γ(Z13)

)
, . . . , ar+b

(
γ(Zr1)+γ(Zr2)+γ(Zr3)

)
, Y

)
,

j = 1, . . . ,m, is irreducible in K(Z)[Y ]. We may therefore find zij ∈ K such that the

denominator of hi(z, Y ) is nonzero, its numerator is irreducible in K[Y ] and both the

numerator and the denominator of

g
(
a1 + b

(
γ(z11) + γ(z12) + γ(z13)

)
, . . . , ar + b

(
γ(zr1) + γ(zr2) + γ(zr3)

)
, Y

)
are nonzero. Let xk = ak + b(γ(zk1) + γ(zk2) + γ(zk3)). Then fj(x, Y ) is irreducible,

and vi(xk − ak) = vi(b) + vi(γ(zk1) + γ(zk2) + γ(zk3)) ≥ vi(b) ≥ βi. ut
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5. The intersection theorem.

We now come to the main results of this paper.

5.1 Notation: Let K be a field with e p-adic closures K̄1, . . . , K̄e. Denote the unique

p-adic valuation of K̄i by v̄i [PR, Th. 6.15]. Let vi be the restriction of v̄i to K. With

each (σ1, . . . , σe+m) ∈ G(K)e+m we associate the field

Kσ = K̄σ1
1 ∩ · · · ∩ K̄σe

e ∩ K̃(σe+1, . . . , σe+m).

Let v̄σi
i be the p-adic valuation of K̄σi

i defined by v̄σi
i (xσi) = v̄i(x) for x ∈ K̄i. Denote the

restriction of v̄σi
i to Kσ by vσi. For i between 1 and e let Oσi = {x ∈ Kσ| vσi(x) ≥ 0},

let Oσ = Oσ1 ∩ · · · ∩Oσe, and let OK = {x ∈ K| v̄i(x) ≥ 0, i = 1, . . . , e}.

For K = Q, [HJ, Prop. 12.9] states that for almost all σσσ ∈ G(Q)e+m the field Qσ

is PpC and vσ1, . . . , vσe are distinct. Since the rank of the latter valuations is 1 they

are independent. Arbitrary p-adic valuations need not be of rank 1. So we replace the

latter argument by a direct one (Lemma 5.3). Also, the proof of [HJ, Prop. 12.9], relies

on the v̄i-density of K in K̄i. Again, this need not hold in general. However, since the

quotient of v̄i(K̄×
i ) by vi(K×) is a torsion abelian group [E, Cor. 13.11], each element

of the former group is less than some element in the latter group. So, in the following

proofs, whenever we speak on a v̄i-neigborhood of an element of K̄σi
i we may assume

that it is defined by an element of v(K×). This occurs frequently in applications of

various versions of Krasner’s lemma. As we lack an appropriate reference we reproduce

here a combination of Krasner’s lemma with the continuity of roots.

Lemma 5.2: Let E be a Henselian field with respect to a valuation v. Denote the

unique extension of v to Ẽ also by v. Consider a polynomial f ∈ E[X] of degree n with

n distinct roots x1, . . . , xn. Then, for each β ∈ v(E×) there exists γ ∈ v(E×) such that

the following holds: If g ∈ E[X] is a polynomial of degree n with v(f − g) > γ, then

the roots of g are distinct and can be enumerated as y1, . . . , yn such that v(xi− yi) > β

and E(xi) = E(yi), i = 1, . . . , n.

Proof: Let β ∈ v(E×) and assume without loss that β > mini 6=j{v(xi − xj)}. Then

there exists γ ∈ v(E×) such that if v(f − g) > γ, then the roots of g can be enumerated
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as y1, . . . , yn such that v(xi − yi) > β, i = 1, . . . , n [PZ, Th. 4.5]. Thus yi is the unique

root of g with v(xi − yi) > β (In particular y1, . . . , yn are distinct.) Moreover, for each

σ ∈ G(E) we have v(σxi − σyi) = v(xi − yi). Thus, yi has at least as many conjugates

over E as xi has. As this holds for each i, yi and xi have the same number of conjugates

over E. In other words, [E(xi) : E] = deg(irr(xi, E)) = deg(irr(yi, E)) = [E(yi) : E].

By Krasner’s lemma E(xi) ⊆ E(yi) [Ri, p. 190]. Hence E(xi) = E(yi). ut

Lemma 5.3: Under the assumption and notation of 5.1, suppose that K is a countable

Hilbertian field. Then for almost all σσσ ∈ G(K)e+m the p-adic valuations vσ1, . . . , vσe of

Kσ are independent.

Proof: Without loss, we show that vσ1 and vσ2 are independent for almost all σσσ ∈

G(K)e+m.

For each σσσ ∈ G(K)e+m, Kσ is algebraic over K and therefore vi(K×) is cofinal

in vσi(K×
σ ). Also, vi(K×) is countable, i = 1, 2. Therefore it suffices to prove that for

fixed positive elements α1 ∈ v1(K×) and α2 ∈ v2(K×) and for almost all σσσ ∈ G(K)e+m

there exists x ∈ Kσ such that

(5.1) vσ1(x) > α1 and vσ2(x− 1) > α2.

To this end consider the polynomial Y 2−T1Y +T2 and use Lemma 4.3 to construct, as

in [FJ, Lemma 15.8], a sequence (ak, bk, ck,0, ck,1) ∈ K ×K × K̃ × K̃, k = 1, 2, 3, . . . ,

together with a sequence L1, L2, L3, . . . of linearly disjoint extensions of K such that for

each k ≥ 1:

(5.2a) (ak, bk) is vi-close to (1, 0), i = 1, . . . , e;

(5.2b) the polynomial gk(Y ) = Y 2 − akY + bk is irreducible over K;

(5.2c) gk(Y ) = (Y − ck,0)(Y − ck,1); and

(5.2d) Lk = K(ck,0) = K(ck,1).

For each k ≥ 1 we apply Lemma 5.2 on the polynomials gk(Y ) and Y 2 − Y , use

(5.2a), (5.2b), (5.2c) and obtain δ(k) ∈ {0, 1} such that

v̄1(ck,δ(k)) > α1, v̄1(ck,1−δ(k) − 1) > α1, and ck,0, ck,1 ∈ K̄1.
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Similarly we obtain ε(k) ∈ {0, 1} such that

v̄2(ck,1−ε(k)) > α2, v̄2(ck,ε(k) − 1) > α2, and ck,0, ck,1 ∈ K̄2,

and also ck,0, ck,1 ∈ K̄3, . . . , K̄e. In particular, Lk ⊆ K̄σ1
1 ∩ · · · ∩ K̄σe

e for all σ1, . . . , σe ∈

G(K). Now for almost all σσσ ∈ G(K)e+m [FJ, Lemma 16.11] yields k ≥ 1 such that

σ1(ck,0) = ck,δ(k), σ2(ck,0) = ck,ε(k) and resLk
σi = 1 for i = e+ 1, . . . , e+m.

In particular, ck,0 ∈ Lk ⊆ Kσ. Since resLk
σ2

i = 1 for i = 1, 2, we have vσ1(ck,0) =

v̄1(σ1(ck,0)) = v̄1(ck,δ(k)) > α1 and vσ2(ck,0−1) = v̄2(σ2(ck,0)−1) = v̄2(ck,ε(k)−1) > α2.

Hence x = ck,0 satisfies (5.1). ut

Lemma 5.4: Under the assumption and notation of 5.1, suppose that K is a Hilbertian

field. Let αi ∈ vi(K×), i = 1, . . . , e. Suppose that f ∈ OK [X1, . . . , Xr, Y ] is an

absolutely irreducible polynomial and that a01, . . . , a0r, b0 are elements of OK such that

(5.3) vi(f(a0, b0)) > 2vi

( ∂f
∂Y

(a0, b0)
)
, i = 1, . . . , e.

Then for almost all σσσ ∈ G(K)e+m there exist a1, . . . , ar, b ∈ Oσ such that f(a, b) = 0,

vi(a− a0) > αi, and vσi(b− b0) > 0.

Proof: Let n = degY (f). Since K is Hilbertian we may apply Lemma 4.3 inductively

to construct a1,a2,a3, . . . ∈ Kr and b1, b2, b3, . . . ∈ K̃ such that for each j ≥ 1,

(5.4a) vi(aj − a0) > max{αi, γi}, with γi ∈ vi(K×) sufficiently large, i = 1, . . . , e;

(5.4b) f(aj , Y ) is irreducible over K of degree n and f(aj , bj) = 0; and

(5.4c) the sequence K(b1),K(b2),K(b3), . . . is linearly disjoint over K.

By (5.3), the Hensel–Rychlik lemma gives a root b0i of f(a0, Y ) in K̄i such that

v̄i(b0i − b0) > vi((∂f/∂Y )(a0, b0)). By Lemma 5.2 and (5.4a), f(aj , Y ) has a root

bji ∈ K̄i such that v̄i(bji − b0i) > vi((∂f/∂Y )(a0, b0)). In particular v̄i(bji − b0) >

vi((∂f/∂Y )(a0, b0)). Since both bj and bji are roots of the irreducible polynomial

f(aj , Y ) there exists a K-isomorphism of K(bj) onto K(bji) that maps bj onto bji.

Extend this isomorphism to an automorphism σji of K̃ over K.
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By (5.4c) and by [FJ, Lemma 16.11], for almost all σσσ ∈ G(K)e+m there exists

j such that resK(bj)σ
−1
i = resK(bj)σji for i = 1, . . . , e and resK(bj)σi = 1 for i =

e+ 1, . . . , e+m (use that the map σ 7→ σ−1 of G(K) onto itself is measure preserving.)

But then bj = b
σjiσi

j = bσi
ji ∈ K̄

σi
i for i = 1, . . . , e and bσi

j = bj for i = e+ 1, . . . , e+m.

Conclude that bj ∈ Oσ. ut

Theorem 5.5: Under the assumption and notation of 5.1, suppose that K is a count-

able Hilbertian field. Then for almost all σσσ ∈ G(K)e+m the following statements hold:

(a) Kσ is PpC;

(b) Kσ admits exactly e p-adic valuations which are induced by K̄σ1
1 , . . . , K̄σe

e ;

(c) For each p-adic valuation v on Kσ, v(K×
σ ) is a Z-group; and

(d) G(K) ∼= De,m.

Proof: The proof of the isomorphism G(Kσ) ∼= De,m for almost all σσσ can be carried out

exactly as the proof of [HJ, Lemma 12.8]. All we have to do is to replace Q by K, to

replace Qp,alg by K̄1, . . . , K̄e and to use Lemma 4.3.

Next suppose that E is a p-adic closure of Kσ. Then G(E) ∼= G(Qp) [HJ, Cor. 6.6].

Hence G(E) is conjugate in G(Kσ) to some G(K̄σi
i ) [HJ, Prop. 12.10] and therefore E is

Kσ-isomorphic to K̄σi
i . Thus, Kσ has, up to a Kσ-isomorphism, only e p-adic closures.

Conclude from [PR, Remark 3.3] that vσi(K×
σ ) is a Z-group.

By Lemma 5.3, the set of all σσσ ∈ G(K)e+m for which the valuations vσ1, . . . , vσe

of Kσ are independent has measure 1. By Theorem 3.11, all that is left to prove is that

the following condition holds for almost all σ ∈ G(K)e+m:

(5.5) Let f ∈ Oσ[X1, . . . , Xr, Y ] be an absolutely irreducible polynomial and for each i

between 1 and e let a01, . . . , a0r, b0 ∈ Oσi satisfy

vσi(f(a0, b0)) > 2vσi

(
(∂f/∂Y )(a0, b0)

)
.

Also, let αi ∈ vi(K×
σ ), i = 1, . . . , e. Then, there exist a1, . . . , ar, b ∈ Oσ such that

f(a, b) = 0, and for each i, vσi(a− a0) > αi and vσi(b− b0) > 0.

To show this we first choose a countable dense subset T of G(K)e+m. Next, suppose we

are given the following data: automorphisms τ1, . . . , τe+m ∈ T , a finite Galois extension
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L ofK contained inKτ , an absolutely irreducible polynomial f ∈ (Oτ∩L)[T1, . . . , Tr, X],

elements a01, . . . , a0r, b0 of Oτ ∩L such that for each i between 1 and e, vτi(f(a0, b0)) >

2vτi

(
(∂f/∂X)(a0, b0)

)
and elements αi ∈ v̄i(L×), i = 1, . . . , e. Let S(τττ , L, f,a0, b0, ααα) be

the set of all σσσ ∈ G(L)e+m for which there exist a1, . . . , ar, b ∈ Oτσ such that f(a, b) = 0

and such that for each i we have vτσ,i(a−a0) > αi and vτσ,i(b−b0) > 0. By Lemma 5.4,

applied to the p-adic closures K̄τ1
1 , . . . , K̄

τe
e of L, the set S(τττ , L, f,a0, b0, ααα) is of measure

1 in G(L)e+m. Since K is countable, the set R =
⋃
τττ
(
G(L)e+m − S(τττ , L, f,a0, b0, ααα)

)
,

where the union ranges over all possible data, is a zero set in G(K)e+m.

Now suppose that σσσ ∈ G(K)e+m −R and let f,a0, b0 and ααα be as in (5.5). Then

there is a finite Galois extension L of K, L ⊆ Kσ, which contains a01, . . . , a0r, b0 and

the coefficients of f and such that αi ∈ v̄i(L×), i = 1, . . . , e. As T ∩ σσσG(L)e+m 6= ∅

there exists λλλ ∈ G(L)e+m such that (σσσλλλ,L, f,a0, b0, ααα) is a set of data as above. Hence

σσσ /∈ σσσλλλ
(
G(L)e+m−S(σσσλλλ,L, f,a0, b0, ααα)

)
so λλλ−1 ∈ S(σσσλλλ,L, f,a0, b0, ααα), which is exactly

the assertion of (5.5). ut
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