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Introduction

We consider in this work the absolute Galois group, G(Q), of @ equipped with
the normalized Haar measure u. For a positive integer e and an e-tuple
6=(0y,...,0.)€eG(K) we denote by Q(e) the fixed field in @ of oy, . .., ..
The following two properties of @(o) are known to be true ([11] and [12]) for
almost all 6 € G(Q)° (here Q denotes the algebraic closure of ):

(1a) every absolutely irreducible variety defined over Q(¢) has a Q(o)-rational
point; and

(1b) G(Q(e)) is isomorphic to the free profinite group on e generators.

They have been used in [14] to prove that the theory T7(Q, e) of sentences in the
language of ficlds that are true in almost all fields Q(e) is decidable. In (6) it has
been even proved that this theory is primitive recursive.

Shelah suggested that it would be natural to consider the theory T'(Q, e) of all
sentences in the language of fields extended by e unary operation symbols
2, ..., 2, (we denote the extended language by #(ring @, e)) which hold in the
structures (@, 0y, ..., 0,) for almost all 6 G(Q)°. Every sentence @ of the
language of fields naturally corresponds to a sentence ¥* of #(ring, Q, e) such
that ¢ holds in Q(e) if and only if 9* holds in (@, 6). So, we may consider
7i(Q, e) as a subtheory of T(Q), e). More generally, for each positive integer n,
we may consider sentences of Z(ring, Q, ¢) where we restrict the variables to
range only on elements of degree at most n over Q(o). Then, [9], the theory of
these n-bounded sentences is primitive recursive.

In this work we put a limit on decidability results of this type; we prove that for
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e=2, T(1), ¢) is an undecidable theory (Theorem 3.1). Moreover we show that
arithmetic is interpretable in T((, e).

We also consider the probability, prob(#) that a sentence is true in the structure
(0, ¢). This is the measure of the set

Truth(9) = {6 € G(Q)* | & is true in (0, ¢)}.

If 9 is a bounded statement, then prob(#) is a rational number which can be
effectively computed from ¢ (an immediate consequence of [9, Corollary 1.9]).
Here we prove that for an arbitrary ¢, prob(#) is an arithmetically defined real
number. (Theorem 5.4). Conversely, for each arithmetically defined real number
r between 0 and 1 there exists a sentence ¢ with prob(#) = r (Theorem 6.5). In
particular prob(?) obtains transcendental values. Here r is said to be
arithmetically definable if there exists a formula @(X, Y) of arithmetic such that
for each a, b e N, @(a, b) is true if and only if r <a/b.

The main idea behind the proof of these results is to encode enough finite sets
in the fields Q(o). Applying Kummer theory we show (Section 1) how to use the
operation of the ¢’s on the elements of Q to encode the group of roots of unity in
(). Similarly we encode the Q(o)-division points of each elliptic curve E
defined over Q(¢). For e =2 and for almost all ¢ € G(Q), all these sets are finite
([13] and [8]). Once this is done we use an idea of Duret [4] to encode all subsets
of these sets. Thus we get weak monadic theories encoded in T(Q, e). Then,
using the roots of unity we interpret the theory of finite graphs in 7(Q, ¢)
(Proposition 2.3). A use of elliptic curves leads to the interpretation of arithmetic
in T(Q, e) (Proposition 2.4).

The proof that each prob(#) is an arithmetically definable number is based on
the identity Truth((3X)@ (X)) = U, eq Truth(g(x)), and on the observation, that if
WX, ..., X,) is a quantifier free formula in the extended language and
X1, ..., X, €@, then prob(y(x)) is a rational number which can be effectively
computed from y(x).

To prove the converse we first find for the given arithmetically definable real »
an arithmetically definable subset B, of N such that r is essentially equal to the
probability that the number of roots of unity Q(¢) belongs to By. Then we use the
interpretation of arithmetic in T(Q, ¢) to obtain a sentence ¢ of ZL(ring, 1, ¢)
such that prob(¢) =r.

Finally we note that our methods fail in the case e =1, since for almost all
oG(Q) the field ©(o) contains infinitely many roots of unity [S], and also
infinitely many division points of every elliptic curve defined over it [6]. On the
other hand all our results for the case e =2 are actually proved for an arbitrary
infinite base field K finitely generated over its prime field.

1. Division points over K(o)

Throughout this paper we shall be working over a fixed infinite base field K,
finitely generated over its prime field. It is well known that such a field is
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Hilbertian [15, p. 155]. We denote by G(K) the absolute Galois group of K and
for each e equip G(K)* with its unique normalized Haar measure u. For each
6=(0,...,0,)eG(K) let K o) be the fixed field of o,,..., 0, in the
separable closure K, of K, and let K(o) be the maximal purely inseparable
extension of K (o).

Recall that a field L is said to be PAC (pseudo algebraically closed) if every
absolutely irreducible nonempty variety V defined over L has an L-rational point.
The algebraic and model theory of these fields will be treated quite thoroughly in
the forthcoming monograph [7].

We summarize some well known properties of almost all fields K (o) for ¢ =2
that eventually lead to the undecidability of the theory of almost all structures
(K, ). For any field F we denote by U(F) the group of roots of unity in F. We
also denote by {,, a primitive nth root of 1.

Proposition 1.1. For every integer ¢ =2 and almost all 6 € G(K)*

(a) K(o)is PAC,

(b) G(K(0)) is isomorphic to the free profinite group F,, on e generators:

(c) U(K(0)) is a finite group; and

(d) UK(o)={zeK|Nizy0iz=2z A (Ba e K)[a$0 A 0,0 = za]}.
Also, for every positive integer n the measure of the set of all 6 € G(K)° such that
|U(K(0))| = n is positive.

Proof. See [11, p. 76] for (a), [12, p. 286] for (b) and [13, p. 124] for (¢).

In order to prove (d) let 6 € G(K)® and let L= K(o), and consider first an
element z of the right hand side of (d). Let a be as above and denote by n the
degree of the Galois hull of L(«) over L. Then « = ofa = z"w, hence z" = 1.

For the converse we may assume that (b), (¢) hold. Let z € L be a primitive nth
root of unity. Since G(L) is free the map o, 1+ Z extends to an epimorphism
of G(L) onto Z/nZ. The fixed field, N, of the kernel of this epimorphism is a
cyclic extension of L of degree n and the restriction of o, to N generates G(N/L).
By Kummer theory, N is generated over L by a nonzero element « such that
a" e L. Then 0, = {,«, for some primitive nth root of unity &, € L. Since z = £/,
for some 1=i=n—1, we have 0;a’ = za'. Thus z belongs to the right hand side
of (d).

The last part of the proposition follows from the fact that G(K({,))° has
positive measure. [

The roots of unity form the torsion subgroup of the multiplicative group of the
field. To derive a stronger undecidability for the theory of almost all (K, o) we
need information about the torsion of infinitely many elliptic curves over K(o).

Let L be a field of characteristic #2.3. Recall that the Weierstrass normal form
of an elliptic curve E over L is Y* =4X"— g, X — g, where A = g3 — 27g3 # 0. This
form is completely determined by the j-invariant j = 12°¢5A~" and the Hasse
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invariant y = —3g,g5" mod(K*)*. If char(L) =2 or char(L) =3, E has different
Weierstrass normal forms; both of them are nevertheless cubic functions in X and
Y [23, Appendix]. In each case E(L), the set of L-rational points of L, is an
abelian group, with the point at infinity as the zero, and with addition given by
rational functions over L (e.g. |3, p. 214]). Let E,, = {P € E | nP = 0} be the set of
n-division points of E, E,(L)={P e E(L)|nP =0}, and E,(L) the set of points
of E(L) of finite order.

Proposition 1.2 [8, p. 259]. For each e =2, for almost all 6 € G(K)* and for every
elliptic curve E defined over K(s), the group E,.(K(0)) is finite.

It is well known that for each elliptic curve E defined over K, the group £, is
finite, and even isomorphic to Z/nZ X Z/nZ, if n is relatively prime to char(K) [3,
p. 219]. The field K(E,) is then a finite Galois extension of K which contains £,
[8, p. 218] and Y(K(E,)/K) operates faithfully on E,. Thus the transformation
group (UK(LE,)/K), L,) is isomorphic to a subgroup of (GL(2,Z/nZ), Z/nZ X 7/
nZ). This means that there are two maps (denoted by the same letter), an
embedding @: G(K(E,)/ K)— GL(2, Z/nZ) and an isomorphism @ E,— Z/nZ X
ZinZ such that @(oP) = ®(0) - $(P) for each 0 € GYK(E,)/K) and P e E,.

Lemma 1.3. For every positive integer n relatively prime to char(K) there is a
sequence Ey, F,, Es, ... of elliptic curves defined over K such that for each i =1
there is an embedding

D, (YUK(E; ) K), E; )= (GL(Q2, Z/nZ X ZInZ)
of transformation groups such that
o(§,) = iU for every o € YK(E,; ,)/K)
and which maps §(K(E;,)/K(C,)) isomorphically onto SI(2, Z/nZ). Moreover,

we may take the sequence of fields K(E, ,), K(E,,), K(Es,), ... to be linearly
disjoint over K(L,).

Proof. Let E be an elliptic curve with a transcendental j-invariant. Then it is well
known (Igusa [10, p. 469]) that there exists an embedding

D (G(K(, L)IK()), £,)— (GL2, ZInZ), ZInZ X Z/nZ)
of transformation groups such that
o(E,) = LY for every o € YUK, E,)/K()))

and which maps 9(L(j, E;,)/L(j)) isomorphically onto SL(2, Z/nZ) for every
algebraic extension L of K(&,).

Suppose by induction that we have already found elliptic curves £, ..., E,
that satisty the above requirements. Then L = K(E, ,,, . .., E,. ) is a finite Galois
extension of K that contains §,. For each j' € K™ consider the elliptic curve E'
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defined over K with j' as its j-invariant. The specialization j— j' defines a good
reduction of £ to £’ which maps the group E, isomorphically onto E, (Cassels [3,
p. 254]). Since K is Hilbertian we may choose j' such that this reduction induces
isomorphisms

(G(K(, E)/K()), E,) = (UK(E)IK), E})
and
GL(j, E)/L())) = G(L(E,)/Ly= GK(E,, ENK(E)).

We may therefore choose E,,,, as E’. [

Proposition 1.4. For each positive integer e, for almost all o e G(K) and for
every n €N there exists an elliptic curve E, defined over K, and which has a
K(o)-rational point P of order n.

Proof. It suffices to fix e and n, and to prove that for almost all ¢ € G (K)® there
exists an elliptic curve E, defined over K, which has a K(o)-rational point of
order n.

We may use the sequence E|, E,, E;, ... of elliptic curves, introduced in
Lemma 1.3. The action of 4(K(&,)/K) on &, induces an isomorphism onto a
subgroup A of Z/nZ. For each ae A there is o in G(K(F;,)/K) such that
det(®;(0)) =a. Since ®; maps GYK(E,,)/K(L,)) onto SL(2, Z/nZ) each ge
GI(2, Z/nZ) with dct(g)za is the image under @, of some element of
YK(E;,)/K). Let ay,...,a,eA and for each i =1 denote by a4, ..., a; the
clements of G(K(E; ,)/K) which are mapped under @, (Lemma 1.3), respectively,
onto the matrices

1 0
’ <‘1 - a, a(,>'

< 1 0>
l - a, al ’
For each j we have
1 0N/ 1 1 0

({ >< >=<> and det( >:a,-.

l—a; a/\1 1 1—a; a ‘
Since the order of (}) is n so is the order of P=®7'(}), ay(P)="F and
0;(&,) = £% Hence, for each ¢ in the set

S, a) = {0 € G(K)* | Resgy,,) 6= 0,)

there exists a point in £,(K(e)) of order n. Thus, in order to conclude the proof,
it suffices to prove that the measure of the union S of all S (i, a)’sis 1.

Indeed, choose a 1: € G(K)* (depending on a) such that 7;(§,)= (%, for
J=1,...,e. Thent™'- S(i,a) c G(K(&,)) . Since the fields K(E\,), K(FE,,), ...
are lmearly disjoint over K(£,), the sequence v™'-S(1,a),x"- S(2, a), .
independent in the probability space G(K(&,))¢ [12, p. 285]. Also, the measure ot
S(@i, a) is nonzero and independent of i. Hence the measure of S(a) =
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Uz, S@, a), in G(K(E,)) is 1. Thus, in the space G(K) we have

uisn=p(J 56, ) =l

For two distinct e-tuples a, a’ € A, the sets S(a) and S(a’) are disjoint. Since
there are |A|° such sets, their union, S, is of measure 1. [

The recognition of E.(K(6)) in E(K), in terms of @, depends on the following
combination of [14, Theorem 2.2] and [14, Lemma 1.1].

Proposition 1.5. For every positive integer e, for almost all ¢ € G(K)‘, for every
absolutely irreducible variety V defined over L = K(o) and for every birational
transformation n of V of finite order, defined over L, there exists a point a € V(K)
such that o,(a) = n(a), fori=1, , €.

Corollary 1.6. For each e =1, for almost all 6 € G(K)* and for every elliptic curve
E defined over L = K(o)

E (L) = {Z e E(K) } /\1 oiz=z A (FAaeE(K))oya=a+ Z}‘, (1)

the sum, a + z, is taken by the law of addition in E.

Proof. Suppose first that a point z € E(K) belongs to the right hand side of (1).
Then z € E(L) and there exists a point ¢ as above. Let n be the degree of the
Galois hull of L(a) over L. Then a = o}a = a + nz, hence nz = 0, i.e. z € B (L).
To prove the converse we may assume that ¢ satisfies Proposition 1.5. Then
each z € E,,,(L) induces a birational transformation of E, x+>x +z, of finite
order and defined over L. Then there exists a point a€ E(K) such that
oa=a+z, fori=1,...,e Thus z belongs to the right hand side of (. O

The following result holds for arbitrary fields but it is in particular useful for
PAC fields.

Proposition 1.7 (Duret [9, 4.3 and 5.2]). Let ay, ..., a;, by, ..o, b, be distinct
elements of a field L
(a) If n is relatively prime to char(L) and c is a nonzero element of L, then the
variety V defined over L by the system of equations
X+a=Y", fori=1,...,k X +by=cZ7, forj=1,...,1
is nonempty and absolutely irreducible.
(b) If char(L)=p, ay, ..., G, byy ooy b, are linearly independent over [, and
c € L, then the variety defined by the system of equations
Y=Y =Y, fori=1,...,k;
bX+c=Y-Y, forj=1,...,1

is nonempty and absolutely irveducible.

%?;
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Proof. (a) Let x be a transcendental element -over L and let ¥i, z; be algebraic

elements over L(x) such that x +a,=y/, fori=1,..., k and x + b; = cz}, for
j=1,...,L
Since x+a,,...,x+a, x+by,...,x+b, are distinct prime eclements of

L[x], they are also multiplicatively linearly independent modulo (L(x)*)". Thus,
by Kummer theory G(L(x, y, 2)/L(x)) = (Z/nZ)" [18, p. 219}; in particular
L(x, y), ..., L(x, yo), L(x, z1), ..., L(x, z) are linearly disjoint over L(x). This
means thdt Yj’ — (x +a;) is an irreducible polynomial over L(x, y1, ..., viy), for
i=1,...,k and ¢Z}—(x+b) is an irreducible polynomidl over
L(x,y,zi,...z_,), forj=1, , . Therefore, if (&, n,§) is a K-rational point
of V, then the L ~bp€CldhLdthll x—& can be successively extended to an
L-specialization (x, y, z)— (&, v, & [17, p. 10]. We conclude that V is an
absolutely irreducible variety with (x, y,z) as a generic point. Finally note that,
since "' =[L(x, y,2): K(x)]<[L(x, y,2): L(x)] <n*", the fields L(x, y,z) and
L(x) are lincarly disjoint over L(x). Hence L(x, y,z) is a regular extension of L,
therefore V is defined over L.

(b) Replace Kummer theory by Artin—Schreier theory [24, p. 221] and procecd
as before. Note that the assumption about the lincar independence over F, of
i, .., g, by, ..., by implies that the additive group P(L(x))= {u” —u|u e
L(x)} has index p’”’ in the group generated by a,x, s X, bix —¢, ..., bx —

cand by ?(L(x)). O

2. Coding in PAC fields with monadic quantifiers

Every first order language < naturally extends to a language %,, the language
of n-adic quantifiers. It is the simplest extension of £ which allows for each m < n
quantification over certain m-ary relations on the underlying sets of structures of
Z. To obtain ¥, from & adjoin for each m <n a sequence of m-ary variable
symbols X, 1, X2, X,.5, .. .. The variable symbols of ¥ are taken here as
Xy, X2, X3, . ... An atomic formula of ¥, is either an atomic formula of & or a
formula (x;1y, . . ., X)) € X,,;, where m<n and i(1), ..., i(m), j are positive
integers. As usual we close the set of formulas of %, under negation, disjunction,
conjunction and quantification on variables. A structure for %, (or an n-adic
structure for ) is a system (A, 2,, ..., 92,), where A is a structure for % and.
for each m = n, 2, is a nonempty collcctlon of m-ary relations on the underlying
set of A (which we also denote by A). The structure is weak if for each m, all
relations in 2,, are finite. We interpret the variables x; as elements of A and the
variables X, as elements of 2,. Thus “(x,, ..., x,)€ X, means “(xy, ..., X,
belongs to X,,;”, “dx;” means “there exists an element x, in A" and “BX,,,,
means “there exists an element X, in 2,,”.

Theories of ¥,, n-adic theories, are often undecidable. Thus whenever we
“interpret” such a theory in another theory (e.g., a theory of PAC fields), the
latter also turns out to be undecidable.




144 G. Cherlin, M. Jarden

To be more precise let T and T* be theories of languages & and Z7,
respectively. An interpretation of T in T* is a recursive map  — * of sentences
of % onto sentences of £* such that 7' F ¢ if and only if T*F 9. Obviously, if T’
is undecidable, then so is T*.

We are mainly interested in the case where % = Z(ring, K) is the language of
rings enriched by constant symbols for each element of K. For integers g =2 and
p, and for a field F, we say that hypothesis H(p, q) holds in F if

char(Fy=p, ptq, & €F and (FX)'4F%;

or )
char(F)=p, plqg and PF)={u’—u|ueF}+F
Similarly we say that a class, &, of n-adic structures over fields satisfies hypothesis

H(p, q) if for each structure (F, 2,,...,92,) in %, Fis a field that satisfies
hypotheses H(p, q).

For the next lemma consider a class F of weak monadic structures over PAC
fields that satisfy condition H(p, ¢), for some p and g. To each (F, 2) in F we
associate another monadic structure (F, 2') and denote the class of all (F, 2')’s
by #'. The definition of (F, 2") is divided into two cases:

Case A, p+q: 9'is the collection of all sets

DA, u)y={acA|ByeF)|y+0&a+u=y’, where Aec2and uelkF.

Case B, p|q: 2’ is the collection of all sets

E(A, u,v)= {a eA|(Fy el’)[w—f«;—zy” v-y]}, where A€ 9 and u, v € F.
u+a

In both cases each X € @' is contained in some A € 2.

Lemma 2.1. (a) For each structure (F, 2) in F the collection 2' consists of all
subsets of the sets A € 2.

(b) The monadic theory Th(F') is interpretable in Th(F).

(c) To each formula @(X) in %, we recursively associate another formula

@'(X) of &, such that for every (F, 2) € ¥ and A € 9 we have: (F, 2') F @(A) if

and only if {F, 2)E¢@'(A).

Proof. We treat each of the above cases separately.

Case A: Choose an element c € F — F?. Let A € 2 and let X be a subset of A.
By Proposition 1.7(a), and since A is finite and F is PAC, there exist u € F and
y, € F* for each a € A such that a +u =y for all ¢ € X and a +u = cy{ for all
aeA—X. Then X = D(A, u), since (F*)? N¢(F*)? =#. This proves (a).

Now define a map ¢— ¢* from formulas of %, onto formulas of X, by
induction on the structure of ¢. If @ is an atomic formula of %, let ¢ = ¢. If @ is
the formula ¢ € X, define ¢* to be the formula

acAx A @Qy)yx FOAa+uy=y%]
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where wuy, yy are variables symbols on elements and A, is a variable symbol on
sets attached to the variable X. Next let the star operation commute with
negation, disjunction, conjunction and quantification on elements. Finally, if y*
has been defined for a formula y and ¢ is the formula (3.X)y, then define @ to
be (FA ) (Huy)yp*.

One verifies now by induction on the structure of a formula oz, X, ..., X))
with the free variables among {z,X,,..., X,} that for each monadic structure
(F,2) in &, for Ay, ..., A, e2and u,, ..., u, € F we have

(F, 2) Fp*(z, Ay, uy, ..., A, u,) &

M
(F,2") bz, D(Ay, wy), ..., D(A,, u,)).

In particular, if ¥ is a sentence of %, then ¢ is true in (F, 2') if and only if 9 is
true in (F, 2). Thus the map ¥+~ &* is an interpretation of the Th(ZF') in
Th(%).

For a formula ¢(X) of %, let ¢'(X) be the formula

Fu)[@ (X, vy) A (Vay)|ay € X — (Fzx)zx F 0 A ay +vy = 24]]).

For each A € 2 there exists v € F such that A = D(A, v). It follows from (1) that
(F, 2') k@(A) if and only if (F, 2) E ¢'(A). This proves (c).

Case B: Choose an element ¢ € F — 2(F), let A € 2 and let X be a subset of A.
Since F is an infinite field, there exists an element u € F such that ¥, , ala)(u +
@)~ "+ 0 for every function «:A—[F, which is not identically zero. Now apply
Proposition 1.7(b) to find v € F and for each a € A an element y, € F such that
(uta)lv=y-—y, for each ae X and (u+a) 'v=y? -y, +c for each a e A —
X. It follows that E(A, u, v) = X. This proves (a). The proofs of (b) and (c) are
done as in Case A. 0[O

Our next construction allows us to replace monadic structures by certain n-adic
structures. As before we start from a class F of weak monadic structures over
PAC fields that satisfies hypotheses H(p, ¢). For each structure {F, 2) ¢  and
for every m=n let 9,, be the collection of all subsets of Ay X+ XA,,, where
Ay, ..., A, €2. Denote by %, the class of n-adic structures (F, 2,,...,9,)
obtained in this way.

Lemma 2.2. Th(Z,) is interpretable in Th(F). Moreover, to each formula ¢(X)
in &y we can recursively associate a formula ¢'(X) in &, such that for every
(F, 2) € Fand A € 9 we have

(F,2,...,2)Fp(A) & (F 2)Eq'(A).

Proof. The interpretation of Th(%,) in Th(%) goes through the theories of two
auxiliary classes of weak monadic structures.
For each (F,2) in % and each m=<n consider the bilinear map
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7 F™ X F"— F defined by (e, x) = L7, ¢x;. Extend 9 to
y i=1 YV

9 = L”Jl {m(e, Ay X+ XA, ce F"and A, ... A, €2}
and let %' be the class of all monadic structures (F, 2'). Then the relation
B=m(e, A, ..., A,) between the sets in 2 and the sets in 9’ gives an obvious
interpretation of Th(Z') in Th(%). We can then use this interpretation and the
identity A =m(1, A) to recursively associate to each formula @(X) of ¥, a
formula @'(X) of £, such that (F, 2') F @(A) if and only if (F, 2) F¢'(A), for
every (F, 2)e ¥ and A e 2.

Next replace each (F, 2') € F' by the weak monadic structure (F, 2"), where
9" consists of all subsets of sets in 2'. Lemma 2.1 asserts that the theory of F”, of
", the class of all (F, 2"), is interpretable in Th(%"). Moreover, by Lemma 2.1,
we can recursively associate to each formula @(X) of %, a formula ¢"(X) of £
such that (F, 2") £ @(A) if and only if (F, 2') E ¢"(A), for every (F, 2) € & and
A€l

Finally, for each (F,2)e %, m=n, ccF", A ..., A,€2 and Bc
w(e, Ay X+ - X A,,), the set

S(e, Ay, ooy Ay BY={(xy, ..., x,) €A, X XA, |7n(c,x) € B}

belongs to 2,. Conversely, let A,, ..., A, € 2. Since F is infinite there exists
¢ F" such that $)7, (x; — x/)¢; # 0 for every distinct x,x’ € A; X - - - X A,,. Then
the map x— (e, x) from A, X ---XA,, into F is injective. Hence, if we start
from Rc A, X---xA, and define B={x(c,x)|xeR}, then R=S5(c,
Ay, ..., A, B). This representation of 2,, gives an obvious interpretation of
Th(%,) in Th(F"). Moreover, the identity A=S(1, A, A), can be used to
recursively associate to each formula @(X) of £, a formula ¢@'(X) of ¥, such that
(F,9,,...,9,)E@(A) if and only if (F, 2") k ¢'(X) for every (F, 2) € ¥ and
A€l
A combination of the above three interpretations gives the desired one. L[]

Proposition 2.3. Let F be a class of weak monadic structures over PAC fields that
satisfies hypotheses H(p, q). Assume that

(2) For every n =1 there exists (F, 2) € F and there exists A € 2 of cardinality
at least n.
Then Th(%) is undecidable.

Proof. Apply Lemma 2.2, for n =2, to %. Then recursively associate to each
sentence  in the language ¥ (graph) of symmetric graphs the sentence 9% of 7,

(VA € 9,) (VR € 2,)[R = A X A and R symmetric = (A, R)F 9].
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Let T'be the set of sentences ¢ of #(graph) such that Th(%) Ed* By (2) and by
Lemma 2.2, T = Th(finite symmetric graphs), hence [5, p. 79] T is nonrecursive.
It follows that Th(%,), hence also Th(%) is undecidable. [

Remark. Proposition 2.3 remains true if we remove the restriction on the
structures to be weak and demand instead in (2) that A is finite. Similar changes
should be made in Lemmas 2.1 and 2.2.

In our next proposition we replace (2) by a stronger condition and then
interpret arithmetic in Th(%). This is a stronger result than the interpretation of
the theory of finite graphs in Th(%), since it is known that arithmetic is much
more complicated than the theory of finite graphs. By ‘Arithmetic’ we mean the
complete theory of the structure ' = (N, +, -, 1).

Proposition 2.4. Let F be a class of weak monadic structures over PAC fields that
satisfies hypotheses H(p, q). Assume that for all {F, 2) € F the cardinality of the
sets A € 2 is unbounded. Then Th(.N) is interpretable in Th(F). Moreover there is
a recursive map @(x)— @*(X) from formulas of arithmetic to formulas of ¥, such
that for all (F,2)e % and Ae9 we have (F, 2)E@*(A) if and only if
NE@(lA]).

Proof. We apply Lemma 2.2, for n =3, to % and interpret Th(&) in Th(%).
Recall that for each (F, 2) e %, the collection 2, contains with cach set A all
subsets of A. Therefore the map A +— |A| maps 2, onto N.

We give explicit first-order definitions of the preimages in 2, of =, -+ and -

Equality: |A\| = |A)|< (3R € 2,)[R < A, X A, is a bijection between A, and
Ayl

Addition: |A,|+ |A,] = |A| & there exist B,, B, in 9, partitioning A with
[A}] = |B,| and |A,] =|B,|. ‘

Multiplication: [A,] - |Aj|=]A| if and only if there exists R in 2, such that
Rc Ay X A, X A is a bijection between A X A, and A,

This interpretation gives a recursive map, @(x) @'(X), from formulas of
Z(arith) with the variable x onto formulas @'(X) with the variable X such that
for all (F, 2) € F and for each A € 9,

In particular, if ¢ is a sentence of F(arith), then NEY if and only if
Th(F)Ed. 0O

Remark. It can be shown that the interpretability of Th(A') in Th(F) follows

already from the existence of a structure (F, 2) €  such that the cardinality of
the sets 4 € 9 is unbounded.
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3. The theory of almost all (K,6y,...,0,)’s

We combine the methods developed in Section 2 with the algebraic background
of Section 1 to obtain undecidability results for theories over PAC fields

Recall that we are working over a fixed infinite base field K, finitely generated
over its prime field. For each e =1 extend the language #(ring, K) (Section 2) to
a language ¥ = £(ring, K, ¢) by adding ¢ unary function symbols Xy, . .., 2, and
also extend ¥ to a language Z(ring, K, e) by adding constant symbols for each

element of K. Every e-tuple (0, . . ., 0,) of automorphism of K, over K extends
uniquely to an e-tuple of automorphisms of K, also denoted by oy, ..., 0. S0

(K, ¢) is a structure for (ring, K, ¢). We denote by T(K, e) the sct of all
sentences ¥ of L(ring, K, e) true in (K, ¢), for almost all o€ G(K)“. In general
we define the truth set of a sentence ¢ of L(ring, K, e) as

Truth(9) = {6 € G(K)* | (K, o) F ¥}
It is a measurable set. Indeed, if @(x,, ..., x,) is a quantifier free formula and
Xy ..., x, €K, then Truth(e(xy, ..., x,)) is an open-closed set. For an arbitrary
formula ¢(x, y) we have

Truth((y)e(x, y)) = LyJ Truth(e(x, y)),

where y ranges over K. Conclude by induction on structure that Truth(¥) is even
a Borel subset of G(K)".

The measure of Truth(¢}) may be considered as the probability of ¢ to be true
among the (K, ¢)’s and we write Prob(?) = u(Truth(#)).

Theorem 3.1. For e=2, T(K, e) is an undecidable theory. Moreover Th(N) is
interpretable in T(K, e). Also, there is a recursive map @(x)— @™ from formulas
in arithmetic onto sentences in ¥(ring, K, e) such that for almost all 6 € G(K)*

NE@(UR(a))]) & (K, o) F ™.

Proof. Let S be the intersection of the countably many sets Truth(¢) where
9 e T(K, e) and the set {6 G(K)*| U(K(0)) is finite} (Proposition 1.1). Then
1(S) = 1. For each ¢ €S the field K(o) is a PAC field that satisfies hypotheses
H(char(K), 2) and U(K(s)), the group of roots of unity in K(e), is finite. We
associate with @ the monadic structure over K(e), consisting of one set, namely
U(K(o)) and let F be the class of all these structures. Since U(K(0)) is
unbounded as ¢ ranges over S (Proposition 1.1), Proposition 2.3 implies that
Th(%) is undecidable.

Proposition 1.1(d) suggests an interpretation of Th(F) in Th(K, e): replace
zeA by

(E]a)(A 0z =2 A0Z= Za>.
i=]
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If @* is the interpretation of a formula ¢ of 4, then @* is also the interpretation
of (34)@. We conclude that T(K, ¢) is undecidable.

To interpret Th(/) in T'(K, ¢) we first consider an elliptic curve F defined over
an algebraic extension L of K as the set of solutions in K2 of a certain cubic,
f(X,Y), in Weierstrass normal form. Denote by FE(L) the set of first
coordinates of points in F,,(L). Note that for each x e E{,(L) there exists at
most three points of E(L) having x as their first coordinate. Now associate with
each o € S the collection

9,’(0’) = {U(K(U))} N {Et/m(]g(o.))

By Proposition 1.2 we may assume that every set in 2'(o) is finite. By
Proposition 1.4, the cardinality of the sets in 2'(e) is unbounded. Thus, the class
7' = {{K(0), 2'(s)) oS} of monadic structures satisfies the conditions of
Proposition 2.4. Conclude that Th(A) is interpretable in Th(%'). Moreover,
there is a recursive map @(x)— @'(X ), from formulas of arithmetic onto
formulas of %, such that for every ¢ € S and every A € 2'(o), Th(N)E @(lA]) if
and only if (K(e), 2'(6)) k ¢'(A).

Now use Corollary 1.6, to interpret Th(%') in T(K, e). Observe that here 94
should be replaced by saying “there exist coefficients in K (o) of the cubic f(X, Y)
such that the corresponding discriminant is not zero” (here it is necessary to
distinguish between char(K) =2, char(K) =3 and char(K) + 2, 3), while “x € 4™
should be interpreted as “x is a root of unity or x is the first coordinate of an
elliptic curve E defined over K(o)”. Conclude that Th(AN) is interpretable in
T(K,e).

Finally we reserve a monadic variable, say X;, to be interpreted only as
U(K(o)), while all other monadic variables are interpreted as before, either as
U(K(0)) or as E;,(K(a)). This gives a recursive map ¢'(X;)— ¢* from formulas
of %, onto sentences of #(ring, K, e) such that for every 6 S, (K(0), 2'(0)) E
®'(U(K(e))) if and only if (K, ) F@*. Combine this with the above to obtain
the final statement of the theorem. []

L is an elliptic curve defined over K(o)).

Problem 3.2. Is T(K, 1) a decidable theory?

4. Arithmetically defined functions

Recall that an n-ary relation R on N is arithmetically definable (we will usually
omit the word ‘arithmetically’) if there exists a formula @(x;i,...,x,) of & such
that for each xeN", we have xe R if and only if N'Fq(x). Similarly define
definable functions f:N"— N.

A real number r is said to be definable if there exists a formula @(x,y) of ¥
such that r >a/b if and only if /' F ¢(a, b). In particular every rational number is
definable. More generally, a sequence {g,},., of real numbers is said to be
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definable, if there exists a formula (x, y, z) of N such that g, > a/b if and only if
NEp(n, a, b). Similarly one defines a definable sequence {q.(k)}y-1 of real-
valued functions and observes that if q(k)=lim, ... q,(k), for every k €N, then
g(k) is a definable real-valued function.

It is well known that recursive functions are definable. Moreover, a function
(resp. relation) which is defined from definable functions by the recursive
operations (composition of functions, induction and minimalizations) is itself
definable [22, p. 313].

Lemma 4.1. Let {q,}5—, be a definable sequence of nonnegative real numbers with
a=Yi_, q, finite. Suppose that for all n we have

Yn = z qi- (1)

i>n

Then for each definable real r with 0 <r < a there is a definable increasing sequence
{n(i)}7=) such that ¥.7—, q,(i) = 1.

Proof. Define the sequence {n(i)}{~, by induction so that for each k
0<r—qun—" "~ GayS 2 q; ()
i>n(k)
Indeed, if ¢,y - - - » Guey have already been defined, then, since g;— 0, and by
(2) there exists an i >n(k) such that ¢, <r —q,qy =" = Gne)- Let n(k + 1) be
the first integer larger than n(k) such that

Gnk+1) <r-— Gny =" T Gnx)- (3)
If n(k + 1) =n(k) +1, then, by (2),
F=quu) ~ """ T Gak) T Dnk+) = 2 qdi —qnixy+1 = 2 q;-
: i>n(k) izn(k+1)

If n(k +1)>n(k) +1, then, by (1)

F=Guy ™ T Gnt) S Gty ny-1 S Z qi-
izn(k+1)—1
Thus in both cases (2) holds for & + 1. Note that to define n(1) (2) degenerates to
the assumption 0<r < },.0¢;.

The right hand side of (2) is the tail of a convergent series. Conclude that
¥ = Y71 @iy Also, the definition of {n(i)}7., involves only recursive operations
on the definable number r and the definable sequence {q,},-1. Hence {n(i)}i_; is
a definable sequence. [

Lemma 4.2. Let B be a definable set of positive integers and let T be a finite set,
disjoint from B. Suppose that q: T U B— R is a definable function such that

(4a) g, =0 for eachne TUB and s = ¥, crup 4. IS finite;

(4b) ¢, <max,.5q, for each t e T; and

(4c) for every b € B there exists b’ € B such that 3, <qy < qs.
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Then for all definable r with 0 <r <, there exists a subset T, of T and a definable
subset By of B such that ¥,c7, g, + Lpep, qp =1,

Proof. By Lemma 4.1 it suffices to define a bijective map 7 :N-— 7" U B such that
the sequence {¢ ()}~ satisfies condition (1).

Indeed define first s from {1,...,|T|} onto T in an arbitrary way. Then
proceed by induction. Assume that n>|T| and that m(n) has already been
defined such that if i€ B — {a(|T|+1),..., w(n)} = C, then ¢; < ¢, Define
m(n+1) as the first element of C such that Qnm+n=max,.cq;. Then m:N—
{1, ..., |T|} - B is injective. Since for every ¢ >0 there are only finitely many
b € B such that g, = ¢, the map 7 is also surjective.

If n<|T|, then (4b) implies that ¢, <%, Gy For n>|T|, (4c) gives a
subset {b(0), b(1), b(2), ...} of B such that s (n)=b(0) and i) < Aoy <
dpgy for j=0,1,2,.... For each j=1 let n(j)> [T| such that m(n(j)) = b()).
Then n << n(j) and G riny) = 2_"q,r(,,). Hence

o ) Z:‘ »
> Ty = 2, D = 2, 2 "0y = Qnnys
i j=1 j=1

=i

as required. [

S. Definability of Prob(9)

In this section we assume that ¢ = 1. We saw in Section 3 that for each sentence
& of L(ring, K, ¢), Truth(?) is measurable.

To describe the nature of Prob(#) we assume that K is an explicitly given
finitely generated extension of a prime field. Then one can effectively give an
encoding i: K— N such that i(K) is a recursive subset of i(K) [6, Theorem 2.6].
This can be used to explicitly encode the formulas of YL(ring, K, e) in N such that 1
is not a code of a formula.

Let A, (resp. E,) denote the set of sentences @ SL(ring, K, e) in prenex form
(i.e., consisting of a string of quantifier variables followed by a quantifier-free
formula) whose intial quantifier string is of the form (Vx)(3y) - - - (resp.
(Ix)(Vy) - - -) and is of length n (that is, there are n distinct blocks of quantifiers).
Denote by Truth(A,) (resp. Truth(E,)) the collection of all sets Truth(¥) with
e A, (resp. & € E,). Then the equalities

Truth((©@x)@(x)) U Truth((Qy)y (y)) = Truth((Ox, y)p(x) v ¥(y)),
Truth((0x)¢(x)) N Truth((Qy)y(y)) = Truth((Qx, y)p(x) A P (y)

(where Q is either 3 of V ¢(x) (resp. y(y)) is a formula in Y(Ring, K, ) whose
free variables are among the x,’s (resp, y,’s); the x,’s do not occur in Y(y) and the
y;’s do not occur in ¢(x)), imply that Truth(A,) and Truth(E,) are closed under
finite unions and intersections.
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Definition. For n =0, the collection Truth(A,) (resp. Truth(k,)) is encoded by a
function f from N onto Truth(A,) (resp. Truth(£,)) and functions g, g2 N — N if

(1a) f(code(®)) = Truth(#), for every & € A, (resp. ¢ € E,);

(1b) f(g(k, m))=f(k) Uf(m) and f(g.(k, m)) = f(k) 0 f(m), for all k, meN;
and

(1c) g1, g» and the ternary relation on N defined by u(f(k)) > a/b are definable.

Lemma 5.1. Truth(E,) is an encoded collections of subsets of G(K)".

Proof. In each sentence ¢ € E, there are only finitely many elements x4, ..., X,
involved. Let L be a finite normal extension of K that contains x,, ..., X, and
denote by L, the maximal separable extension of K in L. The number ¢ of
e-tuples v e G(Ly/K)* such that (L, t) £ can be effectively computed [6, Lemma
2.5] and Prob(¥) = ¢/[Ly:K]‘. In particular the function code() — Prob(1) is
recursive. Write Prob(®) as a(9)/b(9), where a(9)=0 and b(#)=1, or a(?¥)
and b(9) are relatively prime positive integers.

Define now f(code(9)) = Truth(d) for ® ek, and f(m)=0 for meN-
Truth(E,). Let also g (code(n), code(d)) =code(n v &), gi(k, code()) =
code(?), gi(code(n), m) = code(n) and g,(k, m)=1, for n, & € E, and k, m € N-
Truth(E,). Finally let g,(code(n), code(d})) = code(n A #), for n, ¥ €l and
g(k, m) = 1 if k or m belong to N — Truth(E,). Then (1b) is satisfied. Also, g1, &>
and the ternary relation “u(f(k)) > a/b> are recursive, hence definable. Thus 1
g, and g, encode Truth(E;). [

Lemma 5.2. Suppose that the functions f, g, and g, encode Truth(A,). Then we
can define functions f', gi and g5 that encode Truth(F, ;).

Proof. Denote by K= the set of all finite sequences of elements of K and define
amap hy: E, . X K="= A, by

@(a) if x and a are of equal length,

(@00, ) = |

“false” otherwise,

where “false” is some fixed false sentence in A,. Use i:K—N to encode K=
in N by a function i,:K"“—=N; e.g., ix(x;,. ., %) =piv. .. pitw) | where
Pi, ..., pp are the first n primes. Define an ‘inverse’ function i35 N—> K= by
i;{m)=aif i(a)=mand i;'(m)=1if m¢i(K~ ) and let L :N x N— A, be the

function defined by

Flcode(hy(“(FX)@(x)”, i (m))))
h(k, m)= if k = code(“(Ix)¢(x)”) and “@(x)" € A,,
¢ if k ¢ code(E,++).
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Then define f’ on N by
1k = U hk, m), @)

=

if k¢code(E,.,), then f'(k)=0. On the other hand, if k = code(#), &=
“I)e(x)”, “@p(x)" €A, and x = (x,, . . . , X,), then

116 = U feode(h(d, i (m))
= f(code(hy(F, 1))) U f(code(‘““false)) U ‘LIJ%rf(cocie((p(a)))
= L}j{ Truth(g(a)) = Truth(“(3x)p(x)”).

Thus f" maps N onto Truth(E,.,) and satisfies J'(code(d)) = Truth(#}) for each
dek,,,.

Next it is possible to define in & a function 81 :NXN—=N such that if
C="@)e(x)” and »n=<Ay)y(y)” are two sentences in E,.., then
gi(code(), code(n)) = code(9), where ¢ = “(FxLy)e) v yly') and x', y’
are strings of variables (belonging to {x,, x,, x, . . .}) that do not occur in £ v g,
of the same length as x, y respectively. Then

J'(g1(code(£), code(n))) =f"(code(?¥)) = Truth(1})
= Thruth({) U Truth(n) = f'(code(&)) U f'(code(n)).

If m¢code(E,,,) define g (code(£), m)=code({); if k¢code(E,.,) define
g1(k, code(n)) = code(n) and if k, m ¢ code(E, ) define g1k, m)=1. In all cases
I/ 81k, m)) = £ (k) U " (m),

Dualize now this definition to obtain a definable function g2:N X N—N such
that f'(g,(k, m)) = f'(k) N f’ (m).

It remains to prove that the ternary relation on N given by “u(f'(k))=>al/b is
definable. Indeed, there is a function g:N X N— N which is inductively defined
from g,, and hence is arithmetically definable such that flglk, m)) =L, hik, ).
Then, the relation R(k, m, a, b) which expresses

u(f(g(k, m)))>alb

is arithmetically definable.
If now k = code(#) and ¢ = “(3Ix)p(x)” € E,,,, then, by (2),

w700 = (U Atk m)) = tim (g, m)),

==

Therefore the relation “u(f’(k)) > a/b” is arithmetically definable. [

Theorem 5.3. For each sentence 9 of ¥(ring, K, e), Prob(®}) is a definable real
number.
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Proof. Every sentence ¢ of L(ring, K, ¢) is equivalent to a sentence in prenex
form, and hence can be considered as belonging to A, or E,, for some n = 0. Use
induction on n to prove that Truth(A,) and Truth(E,) are encoded collections of
subsets of G(K)“. Note since A, = F,, the case n =0 is covered by Lemma 5.1.
The transition from A, to E, ., is covered by Lemma 5.2 and the transition from
E,to A,.,, is similar but dual.

It follows from conditions (1a) and (1c) in the definition of ‘encoded’ that for
each sentence ¥, the binary relation on N given by “Prob(®#) >a/b” is definable.
Hence Prob() is definable. L[]

6. Presentation of definable reals as Prob(9); char(K) =0

We assume in this section that e =2 and that K is a finitely generated extension

of Q.

Definition. A positive even integer m is said to be a cyclotomic number for K if
KNQ, c@,). Here Q, is the maximal abelian extension of ( and Con
denotes a primitive mth root of 1.

If K is explicitly given, then K N @ and therefore also K N Q,, can be explicitly
computed [6, Lemma 2.7]. By the Kronecker-Weber theorem [19, p. 210] there
exists an even m such that K N Q,, < Q(&,,). So m can be recursively computed
by checking the last inclusion successively for m=2,4,6,8.. ...

The degree of cyclotomic extensions of finitely generated extensions of (2 can
be expressed with Euler’s totient function, @(n). This is the number of positive
integers less than n which are relatively prime to n. It is well known that

pn)=n]] <1 = %) 1)

In

(here and throughout the rest of this section we reserve the letter [ to range over
the primes). In particular ¢ is multiplicative, i.e. @(mn) = @(m)q@(n) for m and n
relative primes; @(I) =[— 1; and @(nl) = ¢(n)l if [ | n. For arbitrary m, n e N, we
write d =gcd(m, n) and k=lem(m, n), use mn=dk and (1) and find that
p(m)p(n) = @(d)p(k). Now, it is well known that [Q(,): Q] = ¢(n) [19, p. 47].
Thus, using Q(&,) = (&, £,.), we have

p(k) _@(m) o) _

o(d) o) @@ [Q(En) : QULHID(E,) : QLa)]-

[Q(0) : Q(EL)] =

It follows that @(£,,) is linearly disjoint from Q(¢,) over @(Z,). This will be
useful below.
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Lemma 6.1. If m is a cyclotomic number for K, then

(a) [U(K(E,))| = m

(b) [K(E): K(Ew)] = @(k)/ @(m), for every multiple k of m;

(¢) if ged(m, n)=d and &, € K, then K(§,,) is linearly disjoint from K(L,) over
K; and

(d) if Fis an extension of K and n = |U(F)| is finite, then

|U(K(Cm) n F)J = ng(m, I’l,).

Proof. The field K(&,) is linearly disjoint from Q,, over @(¢,). Hence
U(K (L)) = U(Q(&,,)). Since m is even, the last group has order m. This proves
(a).

For (b), the above mentioned linear disjointness gives

[K(C/\) : K(Cm)] = {@(Ck) : @(zm)J = (/)(k)/(p(m)

Now we prove (c). Let K,=Q, NK. Since Q(§,,) is linearly disjoint from
(&) over Q(&y) and Q(&,) = Ko<= Q(E,,), the fields ko(E,,) and Ko(&,) are
linearly disjoint over K,. Also, K is linearly disjoint from K,(&,) for every
positive integer r. Let k =lem(m, n). Then K(&) = K(§,,)K(L,) and Ky(&) =
Ko(£m)Ko(E,). Hence

[K(Ck):K] [Ko(é/\) K()] [Ko(En): K()][K()(Sn) Kol =[K(E,) K|[K(E,): K].

It follows that K(Z,,) is linearly disjoint from K(¢,) over K.

Finally we prove (d). Since U(K({,,) N F) is a subgroup of both U(K(Z,,)) and
U(F), its order, d, divides m (by (a)) and n. On the other hand, since £, U(F),
we have Cyeqom,n € K(E,,) N F. Hence ged(m, n) | d. 1t follows that ged(m, n) =
d. O

Fix a cyclotomic number m for K and let M = K(§,,). For each divisor d of m
let

I(d) = (v e GMIK)Y | UM (®)] = d)
(M() is the fixed field of ¥ in M). For each positive integer n let
P(n)={oe G(K) ||UK(e)|=n}.

Lemma 6.2. For d = ged(m, n) and k =lcm(m, n) we have

()| p(m) 1 , 1
H(Pn ))—~[ K] @k)* /%}[/(1<1_F>[}}/d<1_(ﬁv>’ @

Proof. For each v e I'(d) let p(n, t) = {6 € P(n)|res,; 6 =t}. By Lemma 6.1(d);
P(n) is the disjoint union of all p(n, t) with ve I'(d). Hence, it suffices to prove
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for each t € I'(d) that

, o ey L
(P (n, ) = [M K]' @(k)* /H/d <l 18) 14«[;[:/(1 <1 (- 1)u> , )

Iin I{n

Indeed let £ = M(x), N=E({,) and
O(n, N, )= {6 e GIN) | N(&.) & K(0)}.

Notice that since m is also a cyclotonic number for E, Lemma 6.1(c) implies that
M NN = E. We divide the rest of the proof into parts.
Part A: A representation of P(n, ©). We claim that
P(n, v)= {6 e G(N)* ]1esM(r~t}ﬂ (M Q(n, N, 1) 4)

 mid

Indeed, if 6 € P(n, ©), then U(K(0)) is a cy(,hc group of order n and therefore
contains ¢, but no &,,. It follows that ¢ belongs to Q(n, N, [) for every prime /.
Conversely, suppose that ¢ belongs to the right hand side of (4). Then n divides
|U(K (0))]. If |U(K(0))| > n, then there exists a prime / which divides m/d such
that N(&,,) < K(o). But, since dl = ged(m, nl), we have ENE(C) =M N K(o),
a contradiction. Thus ¢ also belongs to P(n, 7).

Part B: Independence of the intersectands at (4). If [ does not divide m/d, then
ged(m, nl) =d. Hence, by Lemma 6.1(c), M N NG )=MNECL,)=E 1t
follows that N(C,,) is linearly disjoint from K () over N, and kl = lem(m, nl).
Continue by induction and prove in this way for distinct primes /,, ..., [y which
do not divide m/d, that N(&,, ---1) is linearly disjoint from M over E.
Therefore the collection of fields N(&,,) for [ 4 m/d and the field K(&) are
linearly disjoint over N. This implies that the intersectands on the right hand side
of (4) are independent in the probability space G(N)* [12, Lemma 4.1].

Part C: Computation of measures. Denote by py the normalized Haar measure
of G(N). If [ 4 m/d and [|n, then, by Part B, and by Lemma 6.1(b)

[N(Gu): N1 =[K(E) : K(ED] = (kD) (k) = L.
Hence,

un(Q(n, N, D)) =1—[N(L,):N] “=1-1""
If | } m/d and [ 4 n, then [ + k. Hence, as above, [N(§,,):N]= @(kl)/p(k) =
[ — 1. Therefore un(Q(n, N, )y =1- (I —1)7*. It follows from (4) and from Part
B that

1 _
(P, ) = E]E< ){I( — ). 5)
On the other hand Lemma 6.1(b) gives
w(P(n, ©) = — P, ) = Lo’ (P, ) (©)

[N:K [E: K] @(k)*
The combination of (5) and (6) gives (3). O
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Remark 6.3. If p > mn is a prime, then, in the notation of Lemma 6.2, K(£,) is
linearly disjoint from MN. For each A e G(K(E,)K) let
S) ={oe G(K) [ resge,) 6 =1}
If =1, then, by (4), P(n) NS(A) is empty, hence u(P(n)NSA)=0. If L1,
then, to compute u(P(n) N S(h)), replace the pth factor on the right hand side of
(3) by (p —1)7° Thus, in this case
1

WA SB =R - ) (1-L) <p-ne o)

In both cases u(P(n) N S(A)) is computable.

Since e =2, the infinite product [T, (1 — (I —1)")(1 —17)~" converges. Hence
there exists a positive integer ¢, such that if ¢! | m and p >c,, then for every
positive integer n

1-p~¢ I-(p-1°

L w07 (8)
=@ —-1)"m =17

Iin

0.9<

Every multiple of a cyclotomic number for K is also a cyclotomic number for K.
So we may choose m such that (8) holds.

Lemma 6.4. There exists ¢ >0 such that for every divisor d of m and for every
positive integer n with ged(m, n)=d and ¢(lem(m, n))>ce(m) there exists a
positive integer n' such that ged(m,n')=d, @(lcm(m, n'))>cp(m) and
2(P(n)) < u(P(n")) < u(P(n)).

Proof. By the prime number theorem there exists ¢; >0 such that for every
X > ¢ there exists a prime p such that

1.Ix<p —1<¢1.8x )

Take ¢ =max(m, cy, ¢;) and let n be a positive integer such that @(k) > cp(m),
where k = lem(m, n). By (9) there exists a prime p such that

3 _(p____(k)_ —_ q _(;_0_(!22
mq)(m)<p 1<m(p(m)' (10)

In particular p >¢,, m. Take n' =dp. Then ged(m, n’) = d and k' = lem(m, n') =
mp. Hence @(k') = @(m)(p — 1) > @(k) > cp(m). Now combine (8) with (10):

1 q)(k)g 1 “p_‘* 1— (1 . 1)V¢.
2 < (P(m)”(P - 1)") 11— (p — 1)‘6’“”” -/ < 1. (11)

Iin

Compute from (2) that (P(n’))/u(P(n)) is equal to the middle term of (11), to
conclude the proof. [J
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Theorem 6.5. Let K be a finitely generated extension of © and let e =2. Then for
every definable real number r between O and 1 there exists a sentence & of
F(ring, K, e) such that Prob(#) = r.

Proof. In the notation of the preceding Lemma 6.2 let A={ne N |
I(ged(m, n)) + B}. Since the membership of n in A depends only on ged(m, n),
the set A is recursive. By Lemma 6.2, u(P(n)) # 0 if and only if n € A. Since for
almost all o€ G(K), U(K(s)) is finite (Proposition 1.1), this implies that
Yinea H(P(n)) = 1. We divide the rest of the proof into two parts.

Part A: A presentation of r as a sum of measures. In the notation of Lemma 6.4
let B={neA|q@(lcm(m, n))>ce(m)}. Since lim;_... p(k) = [21, p. 114], B is
a recursive cofinite subset of A. Choose a prime p greater than m and every
neA — B such that (p — 1) < max,z u(P(n)). For (n, A) € (A — B) X G(K(E,)/
K) =T define g,,=up(P@m)NSH)), and for neB define g, = u(P(n)). By
Lemma 6.2 and Remark 6.3, ¢:TUB—>R is a definable function and
Yeerun g = 1. Inequality (7) implies (4b) of Section 4, and Lemma 6.4 implies
(4¢) of Section 4. Conclude from Lemma 4.2 that for each definable real 0 <r=1

there exist distinct (n;, Ay), . . ., (g, ) € T and there exists a definable subset By
of B such that
k
> u(P() N S() + 2, u(P(n)=r. (12)
i=1 ne by

Part B: Representation of the left hand side of (12) as Prob(9). For i=
..., k+1 let y,(x) be the formula x =n,, and let Y, ,(x) be a formula of
arithmetic such that & F . (x) if and only if n € By. Fori=1, ..., k+1 there
exists a sentence 9; of #(ring, K, e) such that for almost all 6 € G(K), the truth
of 9, in (K, &) is equivalent to the truth of y,(|U(K(e))]) in (K, &) (Theorem
3.1).

For each AeYK(Z,)/K) let ME,)=(Le?, ..., 5%, with integers
¢(A), ..., c(A,) between 1 and p—1. Let ; be the following sentence of
L(ring, K, e)

(32)[3/’ =1AzF1A /\ 0.z = Z{:(A,):|.
i=

Then (K, o)k, if and only if resge,o=4h The desired sentence 4 of
F(ring, K, e) can now be taken as

k
l/] (0 A ) v P
The measure of ¥ is equal to the left hand side of (12), hence to r. [

Corollary 6.6. Let K be a finitely generated extension of (b and let e =2. Then
there exists sentences O of ¥(ring, K, e) such that Prob(d¥) are transcendental
numbers.
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Proof. The number 7" is a definable transcendental number between 0 and 1.
Example 6.7. For K = (), take & to be the sentence
e i
(VZ)H/\ Sz=zAHa)aFOAZ 2z :za]J%z =lvz= —]}‘
g1 .

By Proposition 1.1(d), ¢ is an interpretation of the statement “|U(Q(e))| =2".
Compute from (2) that

, 1
Prob(#) = || (l ------- > (13)
However, it seems to be unknown if the right hand side of (13) is transcendental.

Problem 6.8. Fina a concrete example of a sentence ¢ in L(ring, @, 2) such that
Prob(¥) is transcendental.

7. Presentation of definable reals as Prob(d); char(K) = p

Throughout this section K denotes an infinite finitely generated extension of
F,, and e=2. Then [?/, NK=T[,, where ¢ is a power of p. For each positive
integer n denote by K,, = [ K the unique cyclic constant field extension of degree
n. As for the characteristic 0 case we first compute the measure of the sets

P(m)={o e G(K)*| [U(K(0))| = m}.

Lemma 7.1. For each positive integer n, u(P(q" — 1)) =n"¢(e)™", where { is the
Riemann zeta function. If m + 1 is not a power of q, then u(P(m)) =0.

Proef. For each field £ containing K, U(E) = (F, N E)*, a cyclic group of order
q" — 1, for some n =1, or an infinite group. Thus, if m is not of the form ¢" — 1,
then w(P(m)) =0.

For the first assertion note that

P(g" —1)={oe G(K,)| K, &K (o) for every prime I} (1

Since the fields K,,;, as [ ranges over the primes, are linearly disjoint over K,,,

a(Pa" =) =n I (15 =0t O )

li

Theorem 7.2. For every definable real number r between 0 and 1 there exists a
sentence ¥ of ¥(ring, K, e) such that Prob(9) = r.

Proof. By Proposition 1.1 and by Lemma 7.1, Yi., u(P(g"—1))=1. Let
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B={neN|n>({2—1)""} and compute from (2) that for cach n € B we have

Su(P(g" = 1)< M(P(qf”+l = D) <u(P(g" = 1))

Choose a prime [, > (1 + (¢/2—1)"")&(e)" and note that if n = (¢2—1)"", then
n <ly, hence K, is linearly disjoint from L = K, over K. For each € G(L/K)* let
S ={oeG(K) |res,o=2}. If h=1, and n=<(2-1)"", then P(¢"—1)N
S(A) is empty (by (1)). If A1, then,

w(P(@" —1H)NSA)) = u(P(g" — 1))u(SA) <Iy*. (3)

Note that (2) implies that u(P(g" — 1)) is a monotonically decreasing function of
n. Hence max, ., (P(g” — 1)) is achieved for the smallest b € B. This b is less
than 1+ (¢/2—1)"". It follows from (2) and (3) that

w(P(g" = 1) NS() < maxu(P(g" 1))

For (n, M) e (N— B) X G(L/K)* =T define ¢, , = p(P(g" — 1) N S(})) and for n e
B define g, = u(p(q¢"™")). By (2) and (3), ¢: T UB—R is a definable function
and  Y,erusg.=1. By Lemma 4.2 there exist distinct elements
(1, M), ..., (ny, 6,) € T and there exists a definable subset B, of B such that

Z u(P(@" =) OSA) + 2 u(Pg"—1)=r. “4)

nebBqy
Fori=1,..., k let ¥,(x) be the formula x =¢" — 1. For i =k +1, let y,,(x)
be a formula of arithmetic such that Nk, ,(x) if and only if x =¢" —1 and
n € B, (note that since g” is a recursive function of n, such a formula exists). The
rest of the proof follows now as in Part B of the proof of Theorem 6.5 (replace p
by ly, &, by &, with r=g%—1 and K({,) by L). O

Example 7.3. For K =[,(t), where ¢ is transcendental over [,, take ¥ as the
interpretation in (ring, K, e) of the statement “|(U(K(s)))|=p — 1. Then
p(S(MH) =TT (1 =17 = (e)"". In particular for e =2d, even numbers,

@n) .

2(e ')

[2, p. 387], where B, is the e-th Bernoulli number. Since B, is rational [2, p. 382},
{(e) is transcendental.

Lle)=(=1)""7

8. More undecidability results

In this section we sketch more undecidability results over PAC fields over finite
fields that can be proved by the methods developed so far or by a slight
modification of them.

Proposition 8.1. Let F be a class consisting of one weak monadic structure
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(F, 2), where F ia a PAC field of characteristic p which is not separably closed.
Suppose that

(1) For every n =1 there exists A € 2 with |A] = n.
Then Th(AN) is interpretable in Th(F).

Proof. Let £ be a nontrivial Galois extension of F of minimal degree. By Sylow’s
theorem F contains an extension of F’ of F such that F/F' is a cyclic extension of
a prime degree [ If [sp, then I*(Z,)/F is a Galois extension of degree
<l—1<[F:F]. By the mm1ma11ty of b & e F. Use Kummer theory to find a
primitive element ¢ for £/F’ such that ¢’ e F'. So, hypotheses H(p, [) (Section 2)
holds in F'. If p = [, then, by the Artin—Schreier theory, hypotheses H(p, {) hold

in F'. By a lemma of Ax [1, p.268], " is PAC. Therefore, by Proposition 2.4,
Th() is interpretable in Th(%'). It is now routine to interpret Th(%') in Th(F).
So Th(X) is interpretable in Th(%). [

Example 8.2. Let F be an infinite algebraic extension of a finite field and let 2 be
the collection of all finite subfields of F. By the Lang—Weil theorem [20], F is
PAC. Hence arithmetic can be interpreted in Th({F, 2)).

Remark. It can be shown that if 2 contains infinite sets but the A’s in (1) are
finite, then Th(%) is undecidable.

For the next result suppose that K is a finite field but otherwise retain the
convention of Section 3. -

Theorem 8.3. For a finite field K and for e =2 the theory T(K, e) is undecidable.

Proof. Here we need to replace Proposition 1.1 by the following result [13,
Lemmas 7.1 and 7.2]: For almost all (o, ..., 0,) € G(K)*

(la) K(o,) is an infinite field, hence a PAC field (Example 8.2);

(1b) for every positive integer n, K(0,) has a cyclic extension of degree n; and

(1c) K(o) is a finite field.

We also need the simple observation:

(2) For every positive integer n, the measure of the set of ¢ e G(K) such that
|K(6)| = n is positive.

As in the proof of theorem 3.1 let S the intersection of the sets Truth(d),
where ¢ ranges over T(K, e) and the set of ¢ e G(K)* satisfying (1). To each
6 € § associate the monadic structure (K(0,), {K(6)}) and let F be the class of
all these structures. By Proposition 2.3, Th(%) is undecidable. Now interpret
Th(#) in T(K, e) in the obvious way and conclude that 7'(K, e) is an undecidable
theory. [J

The following result settles a point raised by Macintyre.
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Theorem 8.4. For a prime p, let 2 be the collection of all finite subfields of T,.
Then Th(N) is interpretable in the theory of the monadic structure (I, 2).

Proof. Note that although [Tf,, is a PAC field it does not satisfy hypotheses
H(p, q). So, we can not apply Proposition 2.3 directly. On the other hand each of
the finite fields satisfies hypotheses H(p, 2), but it is not PAC. Nevertheless, it is
always possible to solve a given system of equations in a larger finite field. Thus
we are able to modify the proof of Proposition 2.4.

We make this idea explicit for the first step, the analogue of Lemma 2.1. First
letq=2if p#F2and g=3if p=2 Theneach E € 9 satisfies hypotheses H(p, q),
except in the case p =2, where we have to assume that tye B For E, F e 2 such
that £ < F and for u € F let

D(E, F,uy={ack

By e F)[y+0and a +u=y7}},

and let 9' be the collection of all D(E, F, u)’s. We prove that 2’ consists of all
finite subsets of T,,.

Indeed, for a finite subset X of [ﬁ,, let E be a finite field that contains X (and &4
if p =2). Choose an element ¢ € E* — (E*)?. The system of equations a +u = ya
fora e X and a + u = ¢y for a € A — X is absolutely irreducible (Proposition 1.7).
By the Lang-Weil theorem these equations have a solution with y, s 0 for all
a €A in each finite field F which is sufficiently large. If an addition F is an odd
extension of E (resp. of degree prime to 3, if p=2), then ce F* — (F4. It
follows that X = D(E, F, u).

To interpret Th({F,, 2)) in Th({F,, 2)) replace a € X by

uyeFy A Ex c Fy A (EYX)[)’x%O AyxeFyna+ ux =y%l,

and 3X by (FEx)(AFy)(Jux).
Finally, to interpret Th(.¥) in Th({F,, 2')) repeat the proof of Lemma 2.2.

Again, if A, ..., A, are subsets of a finite subfield E of [!E,,, solve the system of
inequalities %72, (x; — x{)c; =0, where x#x' range over A; X XA, in an

appropriate finite extension F of E. Then proceed as in Proposition 2.4. 0

Remark 8.5 (Macintrye). The same method shows the theory of pairs (F, E) of
finite field EcF (resp. EcFcl,) is undecidable (Follow the proof of
Proposition 2.3). This stands in contrast to the decidability of the theory of all
finite fields (resp. finite subfields of IF,) (Ax[1, p. 264]).
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