PSEUDO ALGEBRAICALLY CLOSED FIELDS
OVER RATIONAL FUNCTION FIELDS

MOSHE JARDEN! AND SAHARON SHELAH

ABSTRACT. The following theorem is proved: Let T be an uncountable set of
algebraically independent elements over a field K. Then K = K(T) is a Hilbertian
field but the set of 0 € G(K) for which K(o) is PAC is nonmeasurable,

Introduction. A field M is said to be pseudo algebraically closed (= PAC) if every
nonempty absolutely irreducible variety V' defined over M has an M-rational point.

If M is an algebraic extension of a field K and every absolutely irreducible
polynomial f € K[ X, Y], separable in Y, has infinitely many M-rational zeros, then
M is PAC. This is a combination of Ax’s application of “descent” | 1] and the generic
hyperplane intersection method as in Frey [3]. If Oys...,0, are e-elements of the
absolute Galois group G(K) of K, then 15(0) denotes the fixed field in K of
0y,...,0,. Here K is the algebraic closure of K. We denote by p the normalized Haar
measure of G(K ). It is proved in [6, Lemma 2.4] that if K is a Hilbertian field, if
fEK[X,Y]is an absolutely irreducible polynomial and if A(f) = {o € G(K)|f
has a K(o)-zero}, then u(A(f)) = 1. If in addition K is countable, then there are
only countably many /s and therefore the intersection of all the A(fYsis also a set
of measure 1. Thus the set SAK)={o € G(K)*| K(o)is PAC} has measure 1.

This basic result, which is called the Nullstellensatz in [6], has been the cornerstone
for several model theoretic investigations of the fields K (o) (cf. [9, 7 and 4)).

If K is uncountable, then the above argument is not valid any more. It is our aim
in this note to show that indeed the Nullstellensatz itself is not true in this case. More
precisely, we prove

THEOREM. Let T be an uncountable set of algebraically independent elements over a
field K. Then K = K\(T) is a Hilbertian field but S(K') is a nonmeasurable subser of
G(K)* for every positive integer e.

1. The Haar measure of a profinite group. Let G be a profinite group and consider
the boolean algebra of open-closed sets in G. They are finite unions of left cosets xV,
where N are open normal subgroups. The o-algebra generated by the open-closed
sets is denoted by %B,. Every open subset of G is a union of open-closed sets. We
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denote by B the o-algebra generated by the open sets. This is the Borel-algebra of G.
Attached to B is the Haar measure pp of G. We make the convention that p(G) = 1
ensuring the uniqueness of p. The o-algebra generated by B, (resp. D) angd the
subsets of zero sets of B, (resp. B) is denoted by EJB“O (resp. B). For every B € @;0
there exist A, C € B, suchthat 4 CB C C and p(C — 4) = 0. The sets in & are the
measurable sets of G.

LEMMA 1.1. In the above notation we have P, = B.

PrOOF. It suffices to show that if U is an open set, then there exist A, B € €BO such
that4 C UC Band p(B — 4) = 0.

We write U as a union U = U, ., x;M,, where the M; are open normal subgroups
and x; € G, and let ’

e o

For every positive integer n there exists a countable subset J, of I such that
a— (U, x;M)<1/n. Then for J = U%_J,, the set 4= U, x,M;CU
belongs to B, and satisfies p(4) = a.

Consider the closed normal subgroup N = N,esM; of G The corresponding
quotient group G/N has a countable basis for its topology. Denote by m: G- G/N
the canonical homomorphism. Then the sets m(x;M) = x;M;N/N are open in G/N
and their union is #U. By a theorem of Lindelof, 7 has a countable subset K such
that 7U = U, o, 7(x, M) In addition 7~'nd = A and m(U — A) = 7U — wA, as
one may easily check. Hence '

(1) U—ACa'n(U—4)= U (x, M,N — 4).
k€K

U foi) \I’ is a countable subset of I}.

iel’

The right-hand side of (1), which we denote by B, belongs to B,. If we prove that
p(By) =0, then B=A U B, is a set of B, that contains U and satisfies (B — A) =
0. Of course, it suffices to prove that p(x, M, N — A) = O forevery k € K.

Assume that there exists a k € K such that p(x, M, N — 4) > 0 and let ny,...,n,
be representatives of N modulo N N M,. Then x, M,N — A = U} _ (x,M,n, — 4)
and therefore, there exists a 1 <p =<7 such that p(x M n, — A4)> 0. Note that
An, = A, since n, € M; for every j € J. Hence, p(x, M, — A) = p(x, M, — An,)
= w(x, Myn, — A)>0.1It follows that

PL( U x;M; U kak) = p(4) + plx M — A4)>a,
JEJ
which contradicts the definition of a. [
LEMMA 1.2. In the above notation let S be a subset of G. Suppose that for every
B € B, there exists an epimorphism r. G — H such that (a) B =r~'rB and (b)

py(rS)=1.Then G — S contains no subset of a positive measure. If also G — S has
the above property, then S is not measurable.
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PROOF. Assume that G — S contains a set B & 9. By Lemma 1.1 there exists a set
B € %, such that B C Band u(B — B) = 0. Let /: G — H be an epimorphism such
that (a) and (b) hold. Then p,;(#(G ~ B)) = 1 and G — B = r~'r(G — B). It follows
that u(G — B) = 1, hence w(B) = 0. O

2. Rational function fields of one variable. Let 1 be a transcendental element over
an infinite field K and let £ = K(t). Then E is a Hilbertian field. If E is also
countable, then, as noted in the introduction, S(E) = {0 € G(K)*| E(o) is PAC})
is a set of measure 1 for every e = 1. In the noncountable case we are able to prove
only the following weaker result.

PROPOSITION 2.1. If K is an uncountable field, then the complement of S(E) in
G(E) contains no subsets of positive measure.

The first step in the proof is a generalization of a basic result for polynomials in
several variables. We use here both #4 and | 4 | to denote the cardinality of a set 4.

LeEMMA 2.2. Let A be an infinite subset of a field K. If F C K[ X,,...,X,]is a set of
nonzero polynomials and | F|<|A|, then #{(a,,...,a,) € A"|f(a,,...,a,) # 0 for
every f € F} =|A4].

PrOOF. Our assertion is true for n = 1, since every polynomial f € F has only
finitely many zeros. Suppose, by induction, that the assertion is true for n — 1,
where n = 2. Then, since every f € F has a nonzero coefficient g € K[ X,,..., X, _,],
we have # {(a,,...,a,_,) € A" "|f(ay,...,a,_,, X,) # 0 forevery f€ F} =|A4]|.
For every (ay,...,a,_,) in the above set there exists, by the case n = 1, an element
a, € A such that f(a,,...,a,) ¥ 0 for every f € F. Therefore, our assertion is also
true for n. O

CoROLLARY 2.3. If {U,|i € I} is a family of nonempty Zariski K-open sets in A"
and |I|<|A|, then |A" N N, ., U|=]4].

PrOOF. Every U, is defined by finitely many polynomial inequalities. [

We define the rank of an infinite algebraic extension as the cardinality of the
family of all finite subextensions. The rank of a finite algebraic extension is merely
said to be finite.

A finite separable extension has only finitely many subextensions. Hence, if F is
the compositum of m finite separable extensions of a field £ and m is an infinite
cardinal number, then rank(F/E) = m.

LeMMA 2.4. Let F be a separable extension of E with rank(F/E) <|K| and let
f € E[X, Y] be an irreducible polynomial in F[ X, Y, separable in Y. Then there exists
an x € F such that f(x, y) is separable irreducible in F[Y).

Proor. Let {£;|i € I} be the family of all finite separable extensions of E which
are contained in F. By assumption |/ |<| K| . By a theorem of Inaba [5, §4], there
exists for every i € I a nonempty Zariski K-open set U, C A? such that if (a, b) €
U(K), then f(a+ bt, y) is separable irreducible in E[Y]. The intersection
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N,e,; U(K) is, by Corollary 2.3, not empty. If (a, b) lies in this intersection and
x = a + br, then f(x, Y) is separable irreducible over every E,, hence also over F,
O

LEMMA 2.5. Let N be a Galois extension of E with rank(N/E) <| K| . Then every
0,.....0, € G(N/E) can be extended to elements 7,...,7, € G(E), respectively, such
that E(v) is a PAC field.

PROOF. We well-order the absolutely irreducible polynomials of K[X, Y] which
are separable in Y in a transfinite sequence { f, | a < m}, where m =| K|, such that
each of the polynomials appears ¥ times in the sequence. For every a < m we
define a finite separable extension E, of E in which f, has a zero and such that the
set of fields (N} U {E, | a < m} is linearly disjoint over E.

Indeed let B < m and assume, by transfinite induction, that £, has been defined
for every a < f. Let F be the compositum of N and all the fields E, with a < f.
Then F is a separable extension of E with rank(F/E) < m. By Lemma 2.4 there
exists an x € E such that f(x, y) is separable irreducible in F[Y]. If y € E satisfies
f(x, y) = 0, then we may define £, = E(y) and Ejg is linearly disjoint from F over

The compositum M of all the fields E, is a separable algebraic extension of E
which is linearly disjoint from N and which is PAC. The automorphisms ¢,,...,0,
may be extended to automorphisms 7,...,7, € G(M). Their fixed field K(7) is an
algebraic extension of M and hence is a PAC field itself. [

PROOF OF PROPOSITION 2.1. We follow the pattern of Lemma 1.2 and note first
that every open-closed set of G(E )" is determined by a finite Galois extension of E.
It follows that if B is a set belonging to the o-algebra %, of G(E)* generated by the
open-closed sets, then there exists a Galois extension N of E with rank(N/E) <8,
such that r~'rB = B, where r: G(E)® — (N /E)‘ is the restriction map.

By Lemma 2.5, rS, = G(N/E)*. Hence, by Lemma 2.1, G(E)* — S,(E) contains
no sets of a positive measure.

3. Rational function fields of many variables. There is one case where we have
enough information about the set G(E) — S(E), which allows us to reach a
decisive conclusion about the nonmeasurability of the set S,(E). This is the case
where K itself is a rational function field of uncountably many variables over a field
K-

LEMMA 3.1. Let T be a nonempty set of algebraically independent elements over 4
field L and let M = L(T'). Then every e elements o,,...,0, of G(L) can be extended to
e elements p,,....p, of G(M) such that M(p) is not a PAC field.

PrOOE. We single out an element ¢ € 7 and denote L' = L(T — {t}). Then
o,,...,0, can be extended to elements 0/,...,0, of G(L'). We may therefore assume
without loss that T consists of one element 7.

Consider first the case where one of the o,’s is not the identity automorphism and
note that L is algebraically closed in the field F' = L((1)) of formal power serigs in 1.
Therefore, a,,...,0, may be extended to elements p,,..., p, of G(F). The restrictions
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Pise-sp, Of py,...,p, to M are elements of G(M) that extend o,,...,0, and M(p) is
not a PAC field. Indeed, M(p) = M N F(p) and F(p) is a Henselian field with
respect to a real-valued valuation defined by the specialization 7 — 0. Therefore,
M(p) itself is Henselian (cf. Ax [2, Proposition 12]) and it is not separably closed.
Theorem 2 of Frey [3] implies that M(p) is not a PAC field.

If 9y = .- =0,=1, then noting that the separable closure M, of M is not
contained in L((¢)), we may choose Pis-... P, in G(L,((2))) that do not fix M. Then
we proceed as before. [

We are now in a position to prove our main result,

‘THEOREM 3.2. Ler T be an uncountable set of algebraically independent elements over
a field K, and let E = K(T). Then for every positive integer e, both S(E) and
G(E) — S(E) contain no sets of positive measure. In particular SE) is nonmea-
surable.

Proor. By Proposition 2.1 we have only to prove that S,(E) contains no sets of
positive measure. Indeed, if B C G(E)® is open-closed, then there exists a finite
subset 7; of T and there exists a finite Galois extension Fy of Ky(T,) such that B is
the listing to G(E)° of a certain subset of S(Fy/Ky(Tp))e. 1t follows that if B € By
then there exists a countable subset T, of T such that with I = Ky(T)) and r:
G(E)* - G(L)* the restriction map, we have B = r~'yB.

Note now that E = L(T — T,) and that T — T is a nonempty set of algebraically
independent elements over L. Hence, by Lemma 3L, H(G(EY — S(E)) = G(L)". It
follows by Lemma 1.2, that S/ E) contains no sets of positive measure. [J

COROLLARY 3.3. If F is a finite extension of E, then S(F) is a nonmeasurable set.

Proor. If S,(F) were measurable, then either S,(F) or its complement would have
a positive measure in G(E ), a contradiction. [

Note that there exist Hilbertian fields E, which are PAC (see [8, Theorem 3.3)D.
Every nonprincipal ultrapower E of E, is an uncountable Hilbertian PAC field. As
already noted before every algebraic extension of E is again a PAC field. Hence,
S E) = G(E)* for every positive integer e. Thus Theorem 3.2 cannot be extended
to arbitrarily uncountable Hilbertian fields.

‘The most interesting case which remains open is that of E = C(1).

PROBLEM. Are the sets S.((1)) measurable?

Note that in case of a positive answer, we have w(S(C(1))) = 1, by Proposition
2.1.
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