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ON AX-FIELDS WHICH ARE C
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Introduction
C. CHEVALLEY [6] proved in 1936 the following

THeOREM A. Every form f(X,, ..., X,) of degree d <n with coefficients
in a finite field K has a non-trivial zero in K",

Fields K which are not finite may have a weaker property which is
denoted by

C: If feK[X,,...,X,]is a form of degree d and d'=<n, then f has a
non-trivial zero in K",

This property was introduced by S. Lang in [15], who, combining ideas of
Tsen and Nagata, proved the following transition

TueoreM B. If a field K is C, and E is an extension field of K of
transcendence degree j, then E is C, ;.

Thus algebraically closed fields are C,, finite fields are C,; and function
fields of transcendence degree j over algebraically closed fields and over
finite fields are C; and C,,, respectively.

The investigation of the elementary theory of finite fields led J. Ax in
[2] to consider the following possible property of a field K.

(1) Every absolutely irreducible variety defined over K has a K-rational
point.

Note that the formulation of this property implies that we are using the
convention not to consider the empty set as an absolutely irreducible
variety. ,

Perfect fields K that have the property (1) have been called Ax-fields;
see [14]. J. Ax observed in [1] that it is a consequence of Lang-Weil
theorem [18] that every non-principal ultraproduct F of finite fields is an
Ax-field. Of course, it follows from Chevalley’s theorem that F is also C;.
In addition the absolute Galois group, G(F), of F is abelian, more
precisely it is isomorphic to Z. This led Ax to prove in [2] that indeed the

* This paper was written while Jarden had a Minerva grant.
1 This paper was written while Lewis had a Senior Humboldt award.
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following general theorem holds:
THEOREM C. If K is an Ax-field and G(K) is abelian, then K is C;.
Ax went on to pose
ProBLEM D. Is every Ax-field necessarily C,?

This problem makes sense because as was found later, there are many
Ax-fields with a non-abelian absolute Galois group. An important family
of such fields are given e.g. in [14] by

Taeorem E. If K is a countable Hilbertian field, then for almost all
e-tuples o= (o, ..., 0,)e G(K), K(o) is an Ax-field with F, as its abso-
lute Galois group.

We recall that a field K is said to be Hilbertian if for every m
irreducible polynomials f,, ..., f. € K[T, X] there exist infinitely many
elements a € K such that f,(a, X), ..., f.(a, X) are irreducible in K[X]
(cf. Lang [16, Chap. VIII]).

The notation K(o) stands for the fixed field of the automorphisms
o4, ...,0, in the algebraic closure K of K, the term ‘almost all’ is used in
the sense of the Haar measure of G(K)® and E, is the free profinite group
on e generators. If e=2, then F, is not abelian. Other families of
Ax-fields can be found in [13] and [7].

The main result of this paper gives a partial answer to the Ax Problem:

TueoreMm F. a) Every Ax-field that contains an algebraically closed field
is Cy.
b) Every Ax-field of a positive characteristic is C,.

The main algebro-geometric tool used in proving this theorem is the
well-known decomposition-intersection procedure of a Zariski K-closed
set. We define a field K to be weakly-C, if for every form fe
K[X,,...,X,] of degree d with n=d" there exists a K-closed subset W
of P" which is absolutely irreducible and which is contained in the zero
set V(f) of f. Recall that W is said to be K-closed if it is the zero set in P"
of homogeneous polynomials in K[ X, ..., X, ], while by saying ‘W is an
absolutely irreducible variety defined over K’ we mean that the ideal of
all polynomials in K[X,, ..., X,] vanishing on W is prime and has a
system of generators in K[X,, ..., X, ]. Note that if a K-closed set W is
absolutely irreducible, then it is defined over a finite purely inseparable
extension of K (cf. Lang [17], especially p. 74). Using the decomposition—
intersection procedure we prove:

Lemma G. A necessary and sufficient condition for a Hilbertian field K
to be weakly-C; is that every Ax-field that contains K is C,.



ON AX-FIELDS WHICH ARE C, 23

The proof of this lemma given in Section 2 uses Model-theoretic
methods. In Section 3 we prove it in an algebraic way, by developing the
properties of weakly C; fields. In particular we prove the following
transition principle:

THEOREM H. If a Hilbertian field K is weakly C,, then every extension of
K is also weakly C.,.

Thus we see that the Ax problem can be reformulated as follows,
ProBLEM D*. Is every field weakly-C,?

In Section 4 we have tried to attack this problem by using algebro-
geometric methods to examine forms of small degrees. The case of degree
4 is the first non-trivial one. Indeed, we prove:

Thueorem 1. If K is a field of characteristic #2, then for every form
fe K[X,, Xy, X5, X5, X,] of degree 4 there exists a K-closed subset W <
V()< P* which is absolutely irreducible.

In Section 5, we apply the decomposition intersection procedure to
prove:

THEOREM J. The existential theory of Ax-fields is decidable.

Finally it is our pleasure to express our indebtedness to Andrzej
Schinzel for inspiring conversations on quartic forms.

1. The decomposition-interaction procedure

The decomposition-intersection procedure has already been used by
several authors in connection with diophantine problems (see e.g. Green-
leaf [10] and Fried-Sacerdote [8]). To fix notation we describe here our
version of the procedure.

We consider a fixed field K and denote by K and K, the algebraic
closure of K and its separable closure, respectively. To every non-empty
Zariski K-closed set A in the affine space A" or in the projective space
P" we make correspond a canonical K-closed subset A’, defined in the
following way. First we present A as a union, A =|J V,, of distinct

K-closed irreducible sets. Each one of the V;’s we decompose into its
K-components, V, =) W,. The W, form, for a fixed i, a complete
j —~
system of conjugate absolutely irreducible varieties, defined over K. This
implies that the intersection U; = ()} W, is invariant under the action of

1
the absolute Galois group G(K) of K. Hence, U, is a K-closed set (cf.
Lang [17, p. 74]). Define now A’ = U U.
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We then iterate the procedure and obtain a descending sequence
A2A'2A"2- - 2A™oAM Yo where A™TY=(AM™Y. The se-
quence becomes stationary after finitely many steps, i.e. there exists an m
such that A™=AM*Y = gince both A" and P" are Noetherian
topological spaces (cf. Hartshorne [12, page 5]). Let A*¥= A" be the
smallest set in the sequence.

Each of the K-sets A®, for k=0,1,..., m, has finitely many K-
components. Therefore there exists a finite Galois extension L of K such
that all these K-components are L-closed.

The fundamental property of the procedure can be expressed in

Lemma 1.1. Let M be a field extension of K such that L "M = K. Then
A is not empty if and only if A has a non-empty M-closed subset which
is absolutely irreducible.

Proof. Suppose first that A™ is not empty. Then, in order to be able to
use the above notation, we may assume that A =A* ie. A=A', and A
1s not empty. Let x be a generic point of V, over K. Then, since A =A’,
there exists an i’ such that x € U,. Hence x€V,, so that V,< V, and
therefore i =i’, from which we deduce that V, < U,.. On the other hand,
U, € V,, by construction, hence U; = V,. This implies that V, is absolutely
irreducible, since otherwise there would exist at least two W;; and hence
we would have the contradiction

dim V; =dim (| W, < dim V,,

]
by the dimension theorem (cf. Lang [17, p. 36]). Obviously V, is an
M-closed set.

Conversely, suppose that A contains an M-closed subset W which is
absolutely irreducible (and understood to be non-empty). Let x be a
generic point of W over M. Then there exist i and j such that xe W,
Hence W< W,. Every automorphism of L/K can be extended to an
automorphism over M. Taking into account that all the W,’s are conju-
gate under the action of ¥(L/K), we conclude that W< (| W, =U, c A’

]

Proceeding by induction we prove that W< A*, which implies that A™ is
not empty.

2. The main results

We recall that a field K is said to be C, if every form fe
K[Xy, ..., X,]of degree d with d' <n has a non-trivial zero in K""". A
field K is said to be C; if it is C;, for every deN.

In the following lemma we collect some classical results about C; fields
which are going to be used in the sequel.
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Lemma 2.1. a) Every algebraically closed field is C,.
b) (Chevalley) Every finite field is C,. )
c) (Lang) The maximal unramified extension of @, NQ is
C,.
d) (Tsen—Nagata—Lang) If a field K is C; and E is an
extension of K of transcendental degree j, then E is C,;.

Proof. Assertion a) is trivial. Assertions b), c¢) and d) can be found in
Greenberg’s book [9], pages 11, 94 (see also p. 100) and 22, respectively.

It f,...,f, are polynomials in K[X,,...,X,], then we denote by
V(fi,...,f.) the K-set of the common zeros of f,,...,f, in the affine
space A", If the polynomials are homogeneous, then we use the same
notation in order to denote the corresponding K-subset of the projective
space P".

A field K is said to be weakly-C, g, if for every form fe K[X,, ..., X,]
of degree d, with d' =n, the K-set V(f) of P" contains a K-set W which
is absolutely irreducible. A field K is said to be weakly-C, if it is
weakly-C; , for every deN.

A perfect field K is called an Ax-field if every absolutely irreducible
variety W defined over K has a K-rational point.

It is immediate from our definitions that every C,, field is also
weakly-C, ;. On the other hand, every Ax-field K which is weakly-C, 4 is
also C, 4. Note that one has to use the fact that if K is perfect, then every
K-set W which is absolutely irreducible is also defined over K (cf, Lang
(17, p. 74])).

We denote by G(K)=%(K/K) the absolute Galois group of the field
K. It is equipped with a Haar measure p, as is introduced, e.g., in (14, p.
287]. For an e-tuple o = (04, ..., d,)c G(K)¢, we denote by K(o) and by
K (o) the fixed field in K and in K, respectively, of o4,...,0,. The
absolute Galois group of K(o) is generated by o, .. ., a,. If it is isomor-
phic to the free profinite group on e generators, then K(o) is said to be
e-free.

Lemma 2.2. Let K be a countable Hilbertian field. Then:

a) For every eeN and for almost all o € G(K)*, the field K(o) is an
e-free Ax-field. B

b) Let 6 be an elementary statement with coefficients in K, and let e eN.
Then 6 is true in K(o) for almost all o€ G(K)* if and only if 6 is true in
every e-free Ax-field that contains K.

Proof. See [14, Lemmas 7.2 and 7.3].

COROLLARY 2.3. If K is a countable Hilbertian field, then K(o) is C, for
almost all o e G(K).
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Proof. By Lemma 2.2, for almost all o€ G(K), K(o) is a 1-free Ax-
field. Hence K(o) is also C,, by Theorem C.

The key lemma to the main results links all notions introduced in this
section.

LemMA 2.4, Let K be a countable Hilbertian field. Then the following
statements are equivalent:

a) Every finite algebraic extension of K is weakly-C, 4

b) Every algebraic extension of K is weakly-C, ,.

¢) Every Ax-field which is algebraic over K is C, 4.

d) For every e eN and for almost all o€ G(K)* the field K(o) is Cia

Proof. The implications a)=>b)=>c) are obvious. The implication
c)=>d) follows from Lemma 2.2a). In order to prove d)=>a) we consider a
finite extension K’ of K and a form fe K'[X,,..., X;] of degree d.
Apply the decomposition—intersection procedure to A = V(f) and attain a
finite Galois extension L of K’ as in the discussion preceding Lemma 1.1.
Let oy, ..., o, be generators of G(L/K’). Then, there exist oy,...,0,€
G(K) that extend oy,...,o,, respectively, such that K(o) is Cigq. In
particular A has a K(o)-rational point. In addition L N K(o) =K', hence
A™ is not empty, by Lemma 1.1. Another use of Lemma 1.1, this time for
M =K', implies that A has a K'-closed subset which is absolutely
irreducible. Thus K’ is weakly-C, 4.

LemMma 2.5. If K is a countable Hilbertian field and every finite extension
of K is weakly C,,, then every Ax-field F that contains K is C, .

Proof. By the Skolem-Lowenheim theorem we may assume, without
loss, that F is also countable. Then we find a purely transcendental
extension K’ of K such that F is algebraic over K'. The field K’ is also
Hilbertian (cf. Lang [16, p. 55]). By Lemma 2.2 and 2.4 the field K(o) is
C, 4, for every eeN and for almost all o € G(K)*. Hence, by Lemma 2.2,
the field K'(o) is C,y, for every eeN and for almost all o€ G(K')*. Tt
follows from Lemma 2.4, that F is C.

THEOREM 2.6. a) Every Ax-field F of characteristic p>0 is C,. (This
result was also independently obtained by U. Kiehne, A. Macintyre and L.
van den Dries.)

b) Every Ax-field that contains an algebraically closed
field is C,.

c) Every Ax-field that contains the maximal unramified
extension U of ), NQ is C,.

Proof. a) If F is algebraic over F,, then F is even C,, by Lemma 2.1.
Otherwise F contains the Hilbertian field F,(t), where t is transcendental
over F,. By Lemma 2.1, every finite extension of F,(t) is C,. Hence, by
Lemma 2.5, F is also C,. Assertion b) and ¢) are proved in the same way.
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3. Weakly-C,; fields

Weakly-C; fields play an important role in the proof of Theorem 2.6. It
is therefore not without interest to study the properties of weakly-C;
fields for their own sake. In particular this study leads to an alternative,
‘algebraic’ proof of Theorem 2.6. However, since the proofs of the basic
properties of the weakly-C, fields are, more or less, a repetition of the
proofs for the C;-fields, we do not bring them in full detail and emphasize
only the new ingredients.

Our first step is to reformulate the concept of quasi-C; fields in terms of
points. We recall that an extension F of a field K is said to be primary if
K,NF=K.

Lemma 3.1. A field K is weakly-C,, if and only if every form fe
K[Xo, ..., X, ] of degree d with d'=n has a zero x=
(xg,...,%,)#(0,...,0) such that the rational function field K(x) is a
primary extension of K.

Proof. Suppose that K is weakly-C;, and let f be a form as above.
Then the K-set V(f) in P" has a K-closed subset W which is absolutely
irreducible. Then W is defined over a purely inseparable extension K' of
K. Let x be a generic point of W over K'. Then x is a non-trivial zero of f
and K(x)/K is a primary extension.

Conversely suppose that f and x are as stated in the lemma and that
K(x) is a primary extension of K. Denote by W the K-closed set
generated by x in P". Then W is irreducible over K, since k(x) is linearly
disjoint from K, over K (cf. [17, p. 67]). Hence W is absolutely
irreducible, since its K-components must be conjugate over K, (cf. [17, p.
34]).

The next lemma is the analog of Lemma 3.1 and 3.2 of [9].

LemMa 3.2. Let K be a field which is not separably closed and let ky be
an integer. Then there exists a form ¢ ¢ K[ X, ..., X, ] of degree k> k,
such that if K(xq,...,x.) is a primary extension of K, then

(P(xl?"'axk):()?x'l:"':xkzo' (1>

Proof. By assumption K has a Galois extension L of degree [>1 with,
say, a Galois group G. Let w4, ..., o, be a basis for L/K and consider the
form

=[] (X, + wiX)

ogeG

of degree | and with coefficients in K. If (x)=0, then there exists a
o € G such that

wix,++oix=0. (2)
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Furthermore, if K(x,, ..., x))/K is a primary extension, then K(x4, . .., x;)
is linearly disjoint from L over K and hence x,=---=x,=0.
Next construct the form

lpZ:: lp(lp(Xl’ LI Xl): lp(XHla L X2l): fee dj(X(l—l)l+17 e aXl7‘))

It is of degree [* and has the property (1). Iterating this procedure, we

obtain the desired form «.

Based on Lemma 3.2 one can next prove the analog to Theorem 3.4 of

[9].

ProprosiTioN 3.3. Let K be a weakly-C,; field and let fi, f,, ..., f, be
forms over K of degree d with n variables. If n>rd', then fy, f,, .. ., f, have
a common non-trivial zero in some primary extension of K.

Then one proceeds to attain the ahalog of Theorem 3.6 of [9].

ProposrtioN 3.4. If a field K is weakly-C; and E is an extension of K of
transcendence degree j, then E is weakly-C, ;.

An entirely new property of weakly-C; fields appears if the basic field is
Hilbertian.

ProrosiTioN 3.5. If a Hilbertian field K is weakly-C,, then every exten-
sion of K is also weakly-C,.

Proof. Using Proposition 3.4, it suffices to prove that K(t) is weakly-C,,
when 1 is transcendental over K. This has been essentially done in Section
2 by model-theoretic methods. Here we shall only sketch an algebraic
proof for this statement. '

We have to take a form fe K(1)[ X,, . .., X, ] of degree d, consider the
projective K(t)-closed set A = V(f), apply the decomposition-intersection
procedure to A and prove that the corresponding set A™ is not empty. In
this procedure we produce finitely many K(t)-irreducible subsets V of A

and consider their I?(?)—components W,. All of these sets are defined over
a finite normal extension F of K(t). We then specialize t to an element t
of K and reduce all the corresponding objects. The specialization ¢ — t
has to be done such that, (among others) the degree of F over K(t) is
unchanged, the V’s remain irreducible and the W, remain absolutely
irreducible. The first two conditions are guaranteed by the Hilbertian
property and the last one by, say, the Bertini-Noether theorem (cf. Lang
(16, p. 157)).

The reduced algebraic sets obtained are exactly those which appear in
the decomposition-intersection procedure applied to the reduced set A.
In particular A* is not empty, since K is assumed to be quasi-C;. Hence
A* is not empty.
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CoroLLARY 3.6. a) Every field of a positive characteristic is weakly-C,.

b) Every field that contains an algebraically closed field
is weakly-C,. : ' :
c) etc.

In particular this corollary supplies an algebraic proof to Theorem 2.6.

A primary extension of a primary extension of a field K is again a
primary extension of K. Using Lemma 3.1 we have a kind of a ‘going-
down’ property of weakly-C; fields.

Lemma 3.7. If L is a primary extension of a field K and if L is
weakly-C, then K is also weakly-C.,.

CoroLLARY 3.8. Let K be a global field. Then K (o) is a weakly-C; field
for every o € G(K). It follows that every Ax-field that contains K (o) is Cs.

Proof. By a theorem of Ax, there exists a non-principal ultra-product F
of finite fields such that K, N F =K (o) (see [1, p. 175]). The field F is Cy,
since the finite fields are. Hence K (o) is weakly-C,, by Lemma 3.7.

CoROLLARY 3.9. The field R of the real numbers is weakly-C;.

Proof. The field Ralg:-@ﬂ[}% is of the form Q(o), where o is the
complex conjugation. Hence, as in the proof of Corollary 3.8, there exists
an ultraproduct F of finite fields such that R, = QNF. As is well-known,
R, is an elementary subfield of R. By Scott’s Lemma, (cf. Bell and
Slomson [3, p. 163]) R can be elementarily embedded in an ultrapower
*R=R.,/P of Ry, Then R can be considered as an algebraically closed
subfield of *F=F'/%. The field *F is C,, since F is. It follows from
Lemma 3.7 that R is weakly-C,.

Note that we have used here model-theoretic methods to derive a
result for R from properties of finite fields.

We are not in a position to decide whether or not Q is weakly-C,. The
following proposition is a partial result in that direction.

ProrosiTion 3.10. For every field K and for every positive integer d there
exists a finite extension K, of K which is weakly-C ,.

Proof. By Theorem 2.6 every Ax-field containing K is C;. Let T be a
set of axioms for Ax-fields that contain K (cf. [14, p. 278]) and let A be
the diagram of K (cf. Chang—Keisler [4, p. 78]). Then every model of
TUA is a C,-field. By Godel completeness theorem C, 4 is provable from
TUA. Hence C,, is provable from a set TUA,, where A, is a finite
subset of A. Let K, be a finite extension of K that contains all the
elements of K appearing in A,. Then every Ax-field that contains K is
C, 4 If K is Hilbertian and countable, then we deduce from Lemma 2.4
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that K, is weakly-C;,. In the general case K contains a countable
Hilbertian field E (unless K is algebraic over a finite field, in which case
K is already C,). Hence E has a finite extension E,, which is weakly-C, 4
and such that every Ax-field containing E, is C, 4. We claim that the field
K,=KE, is weakly-C, 4. Indeed, if fe K [X,,...,X ] is a form of
degree d, then its coefficients belong to a countable Hilbertian field L that
contains E,. By Lemma 2.4, L is weakly-C, 4, hence V(f) contains an
L-closed set W which is absolutely irreducible. The set W is obviously
also K,-closed, consequently K, is weakly-C, 4.

4. Quartics

This section presents an attempt to attack problem D* the hard way,
1.e. by carrying out the decomposition—intersection procedure directly,
using diophantine methods. We have not gone very far in this direction
and have essentially treated only forms of degree 4. It turns out that
already in this case the procedure is quite involved. To handle forms of
degree 6 by these methods appears to be very difficult.

Throughout this section we are working over a field K of characteristic
not 2.

LemMa 4.1. If d is a prime and fe K[ X,, ..., X,] is an irreducible form
of degree d, then V(f) contains a non-empty K-closed set W of P* which is
absolutely irreducible.

Proof. If f is irreducible over K,, take W = V(f). Otherwise f decom-
poses over K, f=@,¢, " -+ @, where ¢>1 and the ¢; are irreducible over
K. All the ¢; are conjugate over K. In particular they have the same
degree. Thus d =c¢ - deg¢; implies that ¢ =d and that deg ¢, =1. The
linear subvariety W= V(g,, ¢,,..., @) of V(f) is K-closed and non-
zero, since there are more variables than forms. Obviously W is also
absolutely irreducible.

CoroLLary 4.2, If fe K[ X,, ..., X ] is a form of degree d and d=
1,2,3,5,7 or 11, then V(f) contains a non-empty K-closed set W of P*
which is absolutely irreducible.

Proof. If d =2 or 3, then either f is irreducible over K and Lemma 4.1
applies or f is reducible over K and hence has a linear factor ¢ with
coeflicients in K. In the later case V(g)< V(f). If d =5, then either f is
irreducible over K and Lemma 4.1 applies or f has a factor g which is
irreducible over K and of degree at most 2. Then V(g)< V(f) and as
noted, V(g) contains a non-zero K-closed set W which is absolutely
irreducible.

If d =7, then either f is irreducible and Lemma 4.1 applies or f has a
factor g of degree <3 and we can use the preceding paragraph.
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Suppose finally that d = 11. If f is irreducible over K, then Lemma 4.1
applies, otherwise f has a K-factor g of degree <5. If deg g# 4, then the
first paragraph applies, if deg g =4, then f has also a factor h of degree 7
and we can use the preceding paragraph.

Lemma 4.3. Let K be an algebraically closed field and let q,q, be
quadratic forms over K in the variables X,, X;, X5, X5, X such that the

projective set V(qi,q,) has dimension 2. Suppose that V(qy, q,)=
4

U V(A1 An), where the Ay are linear forms over K. Then no five forms Ay
i=1

are linearly independent over K.

Proof. Assume that there are five A; which are linearly independent.
There are two cases.

Case I. There are i and j such that A;;, A;», A;y, Ajp are linearly indepen-
dent. Thus, after a linear change of coordinates we may suppose that
V(X,, X5), V(X;, X)), V(X,, A) are components of V(qy, g.), where A is
a linear form not containing X,. For k =1,2 we write g, in the form

q = aX%+ (b1X1 + b2X2+ b3X3 + b4X4)XO+ p(X1> X27 XB) X4): (1>

where a, by, by, bs, bye K and p is a quadratic form over K. Using the fact
that g, vanishes on V(X,, X,) and on V(Xj, X,), we deduce that a =b, =
b, = b; = b, =0, which means that X, does not appear in q,. Moreover, gy
vanishes on V(X,, A), hence, q, = fiXo+ A, with f, and g, polyno-
mials, and g, not containing X,. It follows now that f, =0, since qy, g
and A do not contain X,,. Thus q, = g;A and g, = g;A. Therefore V(A) <
V(qi, q»), contrary to dim V(qy, q2) = 2.

Case II. We suppose Case 1 does not occur. Since V(q,, q.) =2, for
each i =1, 2,3, 4, the pair A;;, A;» is a linearly independent set. Hence, if
some five of the A; form a linearly independent set, we may, after a
change of variables, assume

A =X, Ay = X5, Agy = X3, Ay = Xy, Az =X,

Being in Case IT implies that Ayy, Aga, Ai1, Aip are linearly dependent, and
since we can remove X; from A;,, we may assume that A; = ¢, X, + b.X, for
i =2,3,4. Similarly, if 2=i<j=4, then X, X|, A;», A;, are linearly depen-
dent and hence Ay, = Ay, = Ay (=aX,+bX, = A, say). If, say, a# 0, then
we may replace X, by A and finally make another change of variables to
assume that A =X,. Thus g, and ¢, both vanish on V(X X,) for
i=1,2,3,4. This implies, in the notation (1), that p=0. Therefore
V(Xy) < V(qy, @) which is again a contradiction to the assumption
dim V(qi, q2) = 2.

Lemma 4.4, If qy, q» € K[ X,, Xy, X5, X5, X,] are quadratic forms, then
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V(q,, q2) contains a non-empty K-closed subset W <P* which is absolutely
irreducible.

Proof. If K' is a purely inseparable extension of K, then every K'-
closed subset of P* is also K-closed. Therefore, replacing K by its
maximal purely inseparable extension, we may assume that K is a perfect
field.

If some form in the rational pencil

{a,q,+ a,q> | ay, a, € K, not both 0} (2)

vanishes on a K-closed linear variety A of dimension m=2, then
V(qi,q2) 2 V() NA=B, for i=1 or i =2, where B is K-closed and is
either equal to A or is projectively equivalent over K to a quadratic
hypersurface in [P". By Corollary 4.2, B contains a K-closed set which is
absolutely irreducible. Thus we can assume

No form in the rational pencil (2) vanishes on a K-closed (3)
linear variety of dimension =2.

In particular (3) implies
No form in the rational pencil (2) splits over K. (4)

Indeed, if a form q of (2) splits, q = Ap, then either A has coeflicients in
K, or X has coefficients in a quadratic extension of K and is conjugate to
w. In the former case g vanishes on the K-closed hyperplane V(A) and in
the latter g vanishes on V(A, w) a contradiction to (3).

If V(q,, q2) = V(q,) for k=1 or k =2, then our conclusion follows from
Corollary 4.2. Hence we can assume that V(q,, q.) # V(q.) and therefore
that dim'V(q,, ¢q,) = 2. Obviously we may also assume that V(q,, q,) is not
absolutely irreducible.

Let V(qy, q2) = Z be a decomposition into Ky-components. Then
i=1

i =

4 =(deg q,)(deg q») = Z k. - deg Z,, where k; is the intersection multiplic-
i=1

ity of V(q,) and V(q,) along Z; (cf. [12, p. 53]). It follows that 2=n <4.
If any Z, is defined over K, we have the desired conclusion. Hence we
may suppose that no Z; is defined over K. If all the Z;’s are linear, then
they have the form Z, = V(A;, A;»), where \;y, A;, are linear forms over K,
since dim Z; =2. The set{Z,, ..., Z,} is closed under conjugation. Hence,
its intersection is a K-closed linear variety which is contained in V(qy, ¢»)
and, by Lemma 4.3, is not empty. We may therefore assume that one of
the Z;’s is non-linear. Then its conjugate over K is also non-linear. Thus

V(qi, q)=ZUZ, where Z,Z are absolutely irreducible L-
closed conjugate quadratic surfaces and L is a quadratic
extension of K. (5)



ON AX-FIELDS WHICH ARE C; 33

Our proof will be complete if we show that (4) and (5) lead to a
contradiction. Indeed, Hodge and Pedoe show in [11, p. 202 and 204]
that it is possible to change variables over K such that Z attains the form
V(X,, p'(X,, X5, X5, X,)), where p’ is a quadratic form over K. Making
the inverse change we find that Z = V(A, p), where A is a linear form and
p is a quadratic form over K. We claim:

The ideal (\, p) of K[Xo, X1, X,, X5, X,] is prime. (6)

Indeed, we may again suppose that A is X, and that p does not contain
X,. Then

K[ X, X1, Xa, X5, X, )N, py=K[X,, X5, X5, X J/(p).

If (A, p) is not prime, then the above ring is not an integral domain, hence
p is not irreducible. Thus p = m m,, where 7, and r, are linear forms.
Thus Z = V(A, m)U V(A, m,) is a union of two linear varieties, a con-
tradiction to (5).

It follows from (6) that gy, g, €{A, p). Hence there exist c;, ¢, € K and
linear forms <y, y, over K such that q,=c;p+viA and g, =cp +¥2A
Moreover, by (4) ¢;#0 and c¢;#0. Hence cq;—q,=(cy,—v2)A, where
¢ = c,c7 ! and (4) implies that c¢ K. Let ¢” # ¢ be a conjugate to ¢ over K.
Then the linear form A° divides ¢“q;—q, and therefore V(A A7) <
V(q1, q»). This is a contradiction to the assumption that no K-component
of V(q, q,) is linear.

LemMa 4.5. If fe K[Xo, X1, Xo, X5, X,] is a quartic form, then V(f)
contains a K-closed subset W of P* which is absolutely irreducible. (L. van
den Dries informed the authors that he had also obtained this result.)

Proof. We may assume again that K is a perfect field. If f is reducible
over K, it has a factor g of degree 1 or 2 with coefficients in K and we
may use Corollary 4.2 to obtain W. Thus we may suppose that f is
irreducible over K. In this case f factors over K as f=g; - * g, Wwhere m
equals 1,2 or 4 and the g are conjugate over K. If m =4, then the g; are
linear and V(f) contains the K-closed non-empty linear variety
V(g1 82, 83, 84). If m =1 then V(f) is absolutely irreducible. If m =2,
then the g are quadratic and V/(f) contains the variety V(gi, g»). The g
may be chosen to be defined over a quadratic extension L of K with a
basis e;, e,. Thus g, =e;q, + e>qn, where qy, q, are quadratic forms with
coefficients in K. Hence V(gy, g,) = V(q1, q») and, by Lemma 4.4, the last
variety contains W.

COROLLARY 4.6. If fe K[X,, . .., Xis] is a form of degree 13, then V(f)
contains a K-closed set W which is absolutely irreducible.

Proof. If f is reducible over K, then it must have a factor of degree
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1,2,3,4,5 or 7 and the conclusion follows from Corollary 4.2 and
Lemma 4.4. If f is irreducible over K, then we use Lemma 4.1.

Combining all the lemmas together, we arrive at the following result.

TueOrREM 4.7. Every field K of characteristic not 2 is weakly-C, , for
d=1,2,3,4,5,7,11 and 13.

CoroLLARY 4.5. Every Ax-field K of characteristic not 2 is C, 4 for
d=1,2,3,4,5,7,11 and 13.

S. The existential theory of Ax-fields

The elementary theory of Ax-fields has been proved to be undecidable
(see [5]). It is therefore not without interest to observe here that the
decomposition—intersection procedure leads to a decision procedure for
the existential theory of Ax-fields.

A sentence in the elementary language of the theory of fields is said to
be existential if it has the form

3%, 3%V A0 = 008, () £0), (1)

where f; and g; are polynomials with integral coefficients. We may
replace each inequality g;(X) # 0 by the equivalent formula 3 Y;[ Y;;g;(X) —
1=0]. Thus we may assume that the sentence has the form

ax, - EXn[\{ /]\ £:(X) =o]. (2)

The formula in the square brackets of (2) defines a Q-closed algebraic set
A of the affine space A". Thus (2) can be rewritten in the form

3x,---3AX,[Xe Al (3)

In order to test whether (3) is true in every Ax-field of characteristic 0
one applies the decomposition—intersection procedure for A over Q. This
can effectively be done by elimination theory (cf. Van der Waerden [20, p.
116] and [19, § 37] or Ax [1, § 2]).

If A* is empty, then we consider an Ax-field M that contains Q such
that L "M =Q. Here L is the finite Galois extension of () over which all
the absolutely irreducible varieties that occur in the procedure are
defined. Indeed, we may take M as Q(o,, . .., o,) with suitable e eN and
o, ..., 0,€G(@Q), as has already been shown in the proof of Lemma 2.4.
By Lemma 1.1, A has no M-rational point. Hence if A™ is empty, then
(3) fails to be true in some Ax-field that contains Q.

If A* is not empty, then, by Lemma 1.1, A has a Q-closed subset W
which is absolutely irreducible and one can effectively find W. The variety
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W has an M-rational point in every Ax-field M that contains Q. In this
case (3) is true in every such M.

Now we find a finite set of primes, S, such that W is defined and
absolutely irreducible when considered as an [, -closed set for every
prime p not in S (cf. Ax [2, p. 253] and [1, p. 169]). Then we repeat the
decomposition-intersection procedure for A over [, for each pe S. If A*
is not empty in each of these cases, then (3) is true in every Ax-field.
Otherwise (3) is false in some Ax-field. Indeed if L is a finite extension of
F,, then there exists an infinite algebraic extension M of [, such that
ged((L:F,], [M:F,)=1. The field M is an Ax-field, by Lang-Weil’s
theorem [18] and L "M =[F,. One applies Lemma 1.1 once more.

We have thus proved:

THEOREM 5.1. a) The existential theory of Ax-fields of a given charac-
teristic is decidable.
b) The existential theory of Ax-field is decidable.
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