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TRANSFER PRINCIPLES FOR FINITE AND P—ADIC FIELDS

M. JARDEN

1. INTRODUCTION

The aim of this work is to give a new proof to the trans-
fer principle for finite fields proved in [9] and also to add an
analogous principle for the p-adic fields based on Ax-Kochen theorems
[2 and 13]. The new proof is taken from the point of view of the space
of superprimes developed in [11] by Jehne and Klingen and enriches
the principle by a third point. In the process of proof it is shown
that the generalized Artin map proved by Jehne and Klingen to be

continuous and surjective, is also measurable.
The basic objects we consider are a global field K and its ring

of integers R (e.g. K = @ and R = Z ). We attach to them two families

of fields,
{Ep[p € P(K)} and {E(G)[G € G(K)}.

Here P(K) is the set of finite primes of K and EP = R/P are the cor-
responding finite residue fields. The notation G(K) stands for the
absolute Galois group G(KS/K) of the field X, and E(c)’is the fixed
field of o in the algebraic closure K of K. The set P(K) is equippedn 
with the Dirichlet density d. It is defined for a subset A of P(K) as

the limit (if it exists)

||
€A
+ ~log(s-1)

4}
da{a) = lim
s—>1

The compact group G(K) is equipped with the normalfzed Haar measure
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4. It is defined for every Borel subset of G(K) and is invariant under

translations, i.e. u(oS) = p(s) for every ¢ € G(K) and a measurable
- 1 .
set 5. In particular we have u(G(L)) = [L : K] , 1f L is a finite

separable extension of K. We speak about these fields with the lan-

guage Z(R) that consists of the usual language of the theory of fields

augmented by constants for the elements of R. Every sentence of Z(R)
is equivalent to a sentence of the form

(Q,X).-.(Q X ) yAE L) =0n gijo_() # 0,

A

j iJ -

where each of the Qi is either the existential quantifier 3 or the

sniversal quantifier V, and £, ,9.. € R[X.,...,X ]. In ¥ this
13771 1 n P

sentence is interpreted by reducing the coefficients of fij and gi.

J
modulo P. Therefore the following definitions make sense

A(9) = {p ¢ P(0|K, F 6} and 5(8) = {0 ¢ 6(X)|K(o) £ o).

Here 'RP F 8' means that "8 is true in Rp". The transfer principle
Zor finite fields says that d(i(e)) = u(é(e)). For example, 1f 6 is

zhe sentence (3 X)[X2 = 2] and R = Z, then

{peP@]|p=1,7mod 8)} u {2} and

A(8) =
S(8) = G(@(vV2)).
Hence d(A(0)) = %—, by Dirichlet's theorem and u(S(8)) = %- by the

above formula. The general case was reduced in [9] to the case where
3 is a boolean combination of séﬁtences similar to the one appearing
in the example, and have the form (3 X)[f(X) = 01, where f ¢ R[x].
This method goes back to Ax [1], where he used it to establish the
decidability of the elementary theory of finite fields.

In this work we go in another direction and use first non-stan-
dard methods in order to extend the Dirichlet density d of P(K) to
« finitely additive function d' on the family of all subsets of P(K).
It is proved that if A is a subset of P(X) having no density, then
there are two extensions d' and 4' of d such that d{(A) # dé(A).

1 2
Next we consider the compact space QK of superprimes of P(X)

T S,

i

s
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consisting of all non-principal ultrafilters of P(K) and the corres-
ponding ultraproducts Rp = HKP/U. It should be noted that ultraproducts
play a central role in our work as well as in its references (e.g.
(1], [91, [10], [11] etc.) Therefore it deserves a suitable definition.

Let I be a set and let D be a family of subsets of T. Then D
is said to be an ultrafilter of I if 1t satisfies the following con-
ditions: a) I € D and ¢ ¢ D; b) if A,B e D; then & n B e D; c) if

D and a S BcI, thenBeD; d) if A € I, then either & € D or
I ~aAe¢D. an example of an ultrafilter is obtained by considering an
element a ¢ I and defining D to be the family of all subsets of I that
contain a. An ultrafilter of this type is said to be principal. Other
examples of ultra-filters are unfortunately not as constructible as
the principal ones. They are obtained by using Zorn's Lemma. Indeed,
suppose that DO is a nonempty family of subsets of I with the property:
if aA,B ¢ D » then there exists a C © I such that C < A n B, Then, by
Zorn's Lemma there exist maximal families 0 that contain D and have
this property. Each one of them is an ultra-filter of I.

Let now U be an ultrafilter of T and suppose that for each
1 € I we are given a field Fi' We introduce an equivalence relation
~ to the cartesian product ! Fi in the following way:

ieT

£ ~ge{iecI|f(i) = g(i)} ¢ D.

The set of all equivalence classes of HFi modulo this relation is
called, the ultraproduct of the F.'s modulo D, and is denoted by

F = HFi/D. Addition and multiplication are defined in F component-wise
and it turns out that F becomes a field.

In particular if I = P(X), and D « QK is a non-principal ultra-

I

filter of P(K), then EU HRP/U is a field that contains X. The
fundamental theorem of ultraproducts would say that if 6 is a
sentence of L(R), then RD F 6 if and only if A(é) e D.

Now, Jehne and Klingen considered in [9] the compact topology on
{t, whose basis was the family of all subsets Q) = {D € QK[A e DU},
where A ¢ P(K). By the preceeding paragraph we have Q(€) = Q(A(8)) =

QKIRU F 98}. Then we show that every extension d' of the
Dirichlet density d can be uniquely lifted to a reqgular Borel measure

$ of QF such that §(2(a)) = d'(a). In particular we have d'(A(8)) =



142 M. JARDEN

§(Q2(A)).

As RD is an extension of K we can intersect it with the alge-
braic closure K of K. It turns out that there exists a ¢ € G(XK) such
that K n RD EK i(c). This o is uniquely defined in G(X) up to a
conjugation. Jehne and Klingen defined therefore ¢ (more accurately,
its conjugacy class) as the value of D under the generalized Artin
map ¢ : QK > G(K). This name is justified by the fact that if L is a
finite Galois extension of K and

L/K
A= {pvé P(K)]ReSLO € (—é—ﬂ},
where (Eéﬁ) is the usual Artin symbol, then A € D. Ax proved in [1]

that ¢ is surjective and that ¢-1(§(6)) = ﬁ(@). Jehne and Klingen

proved that ¢ is continuous. In this work we show that ¢ is measurable

and that S(8) is a Borel subset of G(K). Hence d'(A(8)) = &§(3(8)) =
u(é(@)). The right-hand-side does not depend on the extension 4'.

Hence 5(6) has a Dirichlet density and we have
d(A(8)) = 8(R(8)) = u(5(8)).

This is our strengthened transfer principle for finite fields.

The new theorem proved in this work concerns the language LV(R)
of the theory of valued fields with constant symbols for the elements
of R. This language can be used in order to speak about properties of
valued fields, concerning zeros of polynomials and elements of the
field having certain values. For example, a special case of Hensel's

Lemma can be written as the folloWing sentence of LV(R).

(AX)[v(X) 2 0 A v(F(X)) > 0 A v(f (X)) = 0] ~»

(3V)LE(Y) 0 A v(X-Y) » 0],

here £ ¢ R[X] and it is assumed that the elements of R have non-nega-
tive values.

The basic result about valued fields we are going to use is a
theorem of Ax and Kochem that can be reformulated as follows: (see

(2], [13] and [153:
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Let E and F be two Hensel valued fields with residue fields E and
F, and with value groups I and A.'Suppose that char(E) = 0. If E is
elementarily equivalent o E, as fields, and T is elementarily equiva-
lent to A as ordered groups, then E is elementarily equivalent to F
as valued fields.

In view of this theorem we assume that K is now a number field.
We introduce the following notation: If p ¢ P(K), then Kp denotes the
completion of K at p. If D ¢ QK, then KD = HKp/U. It is a Hensel

valued field with RU as the residue field and hence, the above theorem

can be applied. We also denote by K((t)) the field of power series with

. N’
coefficients in K. Everv element x of its algebraic closure K((t)) has
, . o i/n ~ _ ;
a Puiseux expansion Zi*m ait / with ai € K and n a positive integer.

If 0 € G(K), then ¢ is extended to E}?¥S3 by acting on the coefficients
of the Puiseux expansion. Then, for L = K(t) we have that

G(E n E(G)((t))) is generated by o and an additional element, say T
(see Fried [5, p.0.9]), thus L n E(U)((t)) = E(G,T). Using methods of
Kochen [13] and Kiehne [12] we show that for almost all o € G(K), the
field E(G,T) is an elementary valued-subfield of K(og) ((t)) and if o
corresponds to [ under the generalized Artin map, then i(o)((t))

is an elementary valued subfield of Kp. If 6 is a sentence of LV(R)

we denote

i

D « QK(KD E e}

>
‘CD
1

{p e P(K)‘Kp = 8} Q(8)

i

o c K@ ((©) E 0} T(8) = {0 ¢ 6(x)|T(0,1) £ &)

62}
D
|
1l

Then, using the method of the proof of the transfer principle for

finite fields we prove:
dfa0)) = 8(2(8)) = p(s(8)) = u(T(8)).

This is the transfer principle for p-adic fields.

Acknowledgement: The author is indebted to Jonatan Stavi for bringing

cthe results of Section 1 to his attention.
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1. AN EXTENSION OF A DENSITY FUNCTION

Let E be a set. Denote by P = P(E) its powers set, i.e. the
collection of all subsets of E. Suppose that for every positive integer
n we have a finitely additive measure on E, i.e. a function

dn: P + R such that

a) d (¢) = 0; dn(E) =1
¢ =>d (AuB) =d (A) + 4 (B)
n n n

o
o
o
o]
i

c) 0<d (A £1
n .
Suppose also that
d) if A is a finite set, then lim 4 (A) = 0.
n-reo n

Define a density function d on E by the limit

d(a) = lim d_(a)
n->« n

(if it exists). Then d has the following properties
A) d(A) = 0 for every finite set A; 4(E) = 1.

B) If A and B are disjoint sets having density, then A U B has
d(a) + d(B)

density as well and we have d(AUB)

C) 0 £ d(A) £ 1 for every set A with a density.

Let now D be a non-principal ultrafilter of W and consider the
ultrapowers and ultraproducts *p = PN/D and "R = ]RN'/D and "d = Hdn/v-
Then *P is a boolean algebra that extends P, the field *]R extends R
and "d: P~ R is a finitely additive function.

* *
Let R_.,_ ={ae R|[IneN:|a|] <n} and
fin

*
JRO ={ae "R l la[ < € for every positive € € R} be the finite and

* * *
the infinitesimal part of R . Then IRfin is a subring of 1R having

*
]RO as an ideal that happens to be the kernel of the surjective map

*
8:*R fin - R that maps every o € ]Rfin to the corresponding Dedekind

e e s ey e e
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cut, Comblnlng d with 6 we have a finitely additive function 4':

dt: P + IR ; ’
CLAIM: If A ¢ E has a density, then d'(a) = d(a).

Indeed, for every positive € ¢ R the set {n ¢ IJlld (A)-d(a [ e}
is cofinite, hence it belongs to D. It follows that [ d(A)-d(A)l<e.
Since this inequality holds for every € > 0 we have d(A)-—d(A) € Ker 9.
Hence d'(aA) = d(a).

If oh the other hand, a subset B of E has no density, then the

(f\_

sSequence {dn(B)}:=1 does not converge. It contains therefore two
subsequences {dn(B)[n € Mi}, that converge to Bi, i =1,2, respectively,
such that 81 # 82. For each i there exists a nonprincipal ultrafilter
Di that contains Mi' Let di be the corresponding extension of d. Then
one proves as before that df(B) = Bi. Hence d (B) # d B).

All these results can be combined in the follow1ng

THEOREM 1.1. Let E be a set, let {dn[n € a} be a sequence of finitely

additive measure on E and let d be the density function on E defined

by this sequence. Then d can be extended to a finitely additive
measure, d': P(E) - R, on E. If B is a subset of E without a density,

then there are two extensions di, dé of d such that di(B) # d;(B).
Clearly Theorem 1.1 implies an analogous theorem for a family of

finitely additive measures indexed by a real parameter:

THEOREM 1.2. Let E be a set and Suppose that for every real s = |

dS: P(E) > R is a finitely additive measure such that 11T+ d (Aa) =0
for every finite subset A of E. Then passing to the limie,

(A) = éi?+ dS(A) defines a density function on E. It can be extended
to a finitely additive measure d': P(E) - R . If R is a subset of E
without a density, then there exist fwo extensions di and dé of d such
that di(B) # dé(B).

2. THE SPACE OF NON-PPINCIPAL ULTRAFILTERS OF A SET

Let E be a set. Denote by QE the set of all non-principal ultra-
filters of E. For every subset D of E let Q(D)==QE(D)=¥{De:QE[D€ D}.
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Then the family {Q(D)ID < E} forms a basis for a Hausdorff, compact
and totally di;connected topology on QE (cf. Jehne and Klingen
{11, p. 210]). Note that the map D - QE(D) preserves the operations
of a union, an intersection and taking a complement.

Let now d' be a finitely additive measure on E in the sense of
Section 1 with the additional assumption that d'(A) = 0 for every finite
subset A ¢ E. Define a function § on the class of all compact (= closed)

subsets of QE by
§(T') = Inf{d'(D)|D < E and T < Q(D)}

then § has the following properties
1) 0 € 8(I") <1
<
2) Fl < P2 ﬂ»S(Fl) < 6(?2)
3) &(T ﬂF2) < 8(r,) + 6(?2)

1 1
4) Fl n F2 = g = 6(F1UF2) = S(Fl) + 6(?2).

PROOF. We have only to prove the inverse inequality to 3) in the case
Fl n F2 = #4. Indeed, QE as a compact Hausdorff space is normal, hence
there exist two disjoint open subsets Al and A2 such that Pi - Ai for
i =1,2. Further A, = U Q_(D, ) for a family {D, } of subsets of E.
i a E ia ila

Since Fl is compact it can be covered by a finite subfamily

T CLjni Q D < =Uni .

i S Yot E( ia) hence Fi < QE(Di), where Di a=1 Dia Clearly

D1 n D2 is a finite set. If D € E and Fl u F2 < Q(D), then

S(Tl) + 6(?2) < d'(DnDl) + d'(DnDz) =

d'(D n (DIUD2)) < d' (D)
Hence

<
G(Fl) + 6(?2) < 6(F1UF2).
All this means that 8§ is a content function in the sense of
Halmos [7,p.23]. It has the additional properties
5) D < E=§(Q(D) =a'(D).

This follows since Q(D) c Q(D') is equivalent to D < D', i.e. D
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is contained in D up to a finite s§t. In particular it follows that

¢) §(¢) = 0 and S(QE) = 1.

7) The function § is a regular content, i.e. for every compact subset
I' of Q. we have §(I') = Inf{§(A)|T ¢ A° and A is compact in QE}
where A° denotes the interior of A.

This follows from 5), since the sets 2(D) are both compact and

n in §
open in g

We conclude, by Halmos [7, p.234, Thm. E arnd p.237 Thms. A and B]

that:

THEOREM 2.1. Let E be a set, let d' be a finitely additive measure

on E that vanishes on finite sets. Then there exists a unique regular
Borel measure & on QE such that S(QE(D)) = d' (D) for every subset D

of E.

3. A MEASURE ON THE SPACE OF THE SUPERPRIMES OF A GLOBAL FIELD

Let K be a global field and denote by P = P(K) the set of finite
primes of K. For every p € P let ip and Kp be the residue field and
the completion of K with respect to 1. Denote further by QK = QP(K)
the compact space of the non-principal ultrafilters of P(K). (They
are also known as the superprimes of K, cf. [11, p.209]). For every
real s > 1 the series Z (Np)_S converges, hence
a_m) =] (p) /7

PeA peP
in the sense of Theorem !.2. the limit a(a) = %i?+ dS(A) defines a
-5

pep "
(Np) °is a finitely additive measure on P

density function d of P, known as the Dirichlet Density. By Theorem
1.2. d can be extended to a finitely additive measure d4': P(P) > R
that vanishes on finite sets. By Theorem 2.1, d' can be uniquely
lifted to a regular Borel measure § on QK such that §(Q(D)) = 4' (D)
for every subset D of P. We call § an extension of the Dirichlet
density.

It is known (cf. [11, section 31) that to every D e Qk and for
every Galios extension L of K there corresponds a generalized Artin
symbol (E%EJ, which is a conjugacy class in the Galois group G(L/K)
For each embedding of L in the algebraic closure of KD = NIK /D, the
group G(L/L n KU) is procyclic and generated by an element of (LSK)

If K'/K is a sub-Galois extension of L/K, then the restriction of
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L X'/K
(~%§) to K' coincides with (—7;—). If in particular K' is finite over

1
X, then (KI;K) is the conjugacy class characterized by the condition

K'/K,  K'/K
(n)"‘(n)}ép,

¥
where (K /K) is the usual Artin symbol. Finally denote by ¢ = ¢L/K the

map of Q  into the set Con G(L/K) of all conjugacy classes of G(L/K)
L/K
that assigns to each D in QK its generalized Artin symbol (—6—). Then

(1) {p ¢ P|p is unramified in K' and

¢ is surjective and also continuous with respect to the Krull topology
of Con G(L/K).

Consider now the Haar measure u of G(L/X) with respect to the
Krull topology, normalized by the condition u(G(L/K)) = 1. Tt induces
a measure on Con G(L/K) such that the map Con G(L/K) - Con G(L/K)
that maps every o € G(I/K) onto its conjugacy class, con ¢, is
measurable. This measure on Con G(L/K) will also be denoted by u. Thus,
if S is a measurable subset of G(L/K) which is closed under conjuga-
tion, then u(S) = u(Con S). Also, if K'/K is a finite Galois sub-
extension of L/K, S is a conjugacy domain in G(K'/X), (i.e., a subset
of G(K'/K) which is closed under conjugation) and S is its lifting to
G(L/K), then u(Con §) = [x':k] '|§].

The most important observation of this section is contained in

LEMMA 3.1. The map ¢:QK + Con G(L/K) is measurable with respect to

every extension § of the Dirichlet Density d of P(K).

PROOF. Let K'/K be a finite Galois subextension of L/K, let S be a
conjugacy domain in G(K'/K) and let S be its lifting to G(L/K). Then

(2) ¢‘1(cOn S) = Q(C), where
K'/K

C={pe P()[p is unramified in K' and ( ) < s}.

- P '
Indeed, let p € ¢ 1(Con S). Then (Eé§) € S and hence (KF{K

) < s.
It follows that C contains the set !

{p e P(K)lp is unramified in K' and (§%§§) = (E%%E)},

which is contained in D, by (1). Hence C ¢ D and D « Q(Cc). Conversely,

suppose that U ¢ Q(C). Then the set {p € P(K)[p is unramified in K!'

K'/X K'/K K'/K

——pL>=(/)and(/
K'/K -1

not empty. Hence (—77—0 € S, hence D ¢ ¢ "(Con S).

and ( ) < S} belongs to D in particular it is

-1, =
The set C has a Dirichlet density equal to [K':K] |s], by




TRANSFER PRINCIPLES FOR FIELDS 149

\'J 1
Cebotarev Density Theorem (cf. Cassels a Fréhlich [3, p.165]). Hence,

by (2), by Theorem 1.1 and by Theorem 2.1, we have
5(™ (Con $)) = 8(R(C)) =a(c) = EK':K]‘llé[ = u(Con §).

Every subset of Con G(L/KX) that belongs to the Boolean algebra
generated by the sets of the form Con S can be represented as a
disjoint union of them. Hence § o ¢‘1 and U coincide on this field.
Since both § o ¢-1 and Y are o-additive measures they coincide also
on the o-field generated by the sets Con S (by Alexandroff Theorem,
cf. Halmos [7, p.54]). This o-field is the Borel field of Con G(L/K).
It follows that § o ¢—1 and U coincide also on the completicn of the

Borel field.

REMARK. If K is a number field, then the set C in the last proof has
also a natural density and it is equal to the Dirichlet density of C
(cf. Goldstein [6, p.256] plus Deuring-Macclauer Argument in

(6, p. 169]). Theorem 3.1. remains therefore true, if § is the

natural density of P(X).
4. A TRANSFER PRINCIPLE FOR FINITE FIELDS.

Let K be a field. Denote by KS and E its separable and algebraic
closure, respectively. Let G(K) = G(KS/K) be the absolute Galcis group
of K and let u be its normalized Haar measure. Every o in G(K) 1is
uniquely extendable to E; we denote by E(o) its fixed field in i.

Denote by L(K) the first order language of the theory of fields
augmented by constant symbols for the elements of K. Suppose that

A(Xl,...,Xn) is a formula of L(K) all of its free variables are
among {Xl""'xn}' For every Xl""'xn in i we define
§(A(§J) = {g € G(K)]Gxi = X, for i = 1,...,n and A(g) is true in K(o)}.

LEMMA 4.1. If K Is a countable field, then §(A(§)) is a Borel set of

G(K) .

PROOF. We prove the Lemma by a structure induction on A. Suppose first
that A(x) is an atomic formula. Then A(x) has the form £(x) = 0,

where £ ¢ K[X]. In this case §(R(§)) is empty if f(x) # 0 and
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S(A(x)) = G(KS n K(x)) if f(x) = 0.

The induction steps follow from the identities

S(=A(x)) = G(K_ n K(x)) - §(A(x)),
SO ) U A x)) = S0 (x) U SO, ()

S(ENAMx,Y)) = U_ 5(A(x,y))
veX

and from the fact that K is countable.

COROLLARY 4.2. Let K be a countable field and let 8 be a sentence of

L(X). Then
S(8) = {0 € G(K) |6 is true in X(0)}

1s a Borel set of G(K) which is invariant under conjugation.

Return now to the case where K is a global field with a ring of
integers R. If 6 is a sentence of L(R) and P is a prime of R, then
8 has an interpretation in ip' by reducing the elements of R modulo

P. Therefore, the following definitions make sense

A(8)
Q(8)

{p e p(K){Rp E o},
0 ek k o).

i

Recall also that a perfect field F is said to be pseudo-finite if

G(F) ¥ Z and if every non-void abgolutely irreducible variety defined
over F has an F-valued point. It was proved in [9, Cor. 2.6] that the
set S of all ¢ € G(K), such that i(o) is pseudo-finite is of measure
1. It was further proved in [9, Thm. 3.9] and also in (10, Thm. 4.4],
that D ¢ QK, if 0 € S and if E(O) ;K K n ED’ then ED is an elementary
extension of K(¢). In particular if 6 is a sentence of L(rR), then

K(o) k 6 if and only if Ky F 6.

THEOREM 4.3. Let K be a global field with a ring of integers R and

let 8 be a sentence of L(R). Then

a) Q(8) = Q(a(8))
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b) If § is any extension of the Dirichlet density d of P(K), then

(8) 1is S-measurable. ,

c) If ¢: QK E ;;n G(K) is the generalized Artin symbol map,
$(D) = (—%7—0, then ¢ ! (con(5(8) n 8)) = 2(6) n ¢ (con ).

d) S(6) is a conjugacy domain and it is U-measurable

e) A(®) has a Dirichlet density (and even a natural density if K is a
number field).

£) u(S(8)) = 8(2(8)) = A(A(9)).
PROOF. a) follows from the basic property of ultraproducts:
i KP/D F 6 if and only if A(8) e D.

b) It follows from a) that Q(6) is a compact open subset of QK, hence
it is d-measurable.
¢) follows from the remarks preceeding the proof, since if
K /K . L
NS (—77-), then K (o) “x K n KD' by section 3.

d) is a special case of Corollary 4.2.

e),f) let d' be an extension of the Dirichlet density 4 of P(K) and

let § be its lifting to Q.. Then d'(A(8)) = 6(Q(A(8))) = 6(7(6)), by
Section 3 and by a). Also §(Q(8)) = u(5(8)), by c¢), d) and Lemma 3.1,
since U(S) = 1. It follows that d'(A(8)) = u(S(8)). The right hand-

side of this equality does not depend on the specific extension d'
of d that has been chosen. Hence, by Theorem 1.2, A(6) has a

density and d'(ﬁ(@)) = d(A(8)). Our assertion is therefore valid.

COROLLARY 4.4. Let K be a global field with a ring of integers R and

let © be a statement which belongs to the o~field generated by the
sentences of L(R). Let 5(8) and 5(6) be as above. Then
§(R(8)) = u(S(8)) for every Borel measure § that extends the Dirichlet

density d of P(K).

PROOF. The Corollary follows from Theorem 4.3, since the operators S

and 2 commute with countable unions, countable intersections and
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taking complements. Also, both b and § are o-additive, hence

Alexandroff Theorem [7, p.54] can be applied.
5. A TRANSFER PRINCIPLE FOR P-ADIC FIELDS

We restrict ourselves in this section to the case where X is a
number field. If p € P(K), then Kp denotes the completion of K at p.
We also denote by Up and Tp the maximal unramified and tamely
ramified extension, respectively, of Kp' Let U ¢ QK, let Kv==H KP/D

nd let = K D.
a e UD KD ﬂvH Up/

CLAIM: ED nnrT /D= ED' Indeed, let x ¢« Ev/and denote by Xp the p-th
coordinate of a representative of x modulo D. Then there are only
finitely many p's such that char(Kp) < [KD X): KD] All the other p's
satisfy x_ € T , hence x ¢ I T /D,
p o P

Now, for every p € P(K), the group G(u /Kp is isomorphic to
Z , and the group G(T /K ) is generated by two elements, Up and Tp
The restriction of ¢ to Up is the Frobenius automorphism and T

generates G(Tp/U ). This group is isomorphic to II Zip, where p runs

o -
over all rational primes other than char(Kp). The generators ¢ and
-1 (Ip
T, satisfy the defining relation g t o =T where K
P Y 7 pPp T Tp T = 1%l

(cf. Iwasawa (8, Thm. 2]). It follows that if we denote by o = )
and T = ) the restrictions of I o /U and 1T t /D to KD then ¢ and
T generate G(KD) The restrlctlon of o to UD generates G(UD/KD
which is isomorphic to ZZ Together ¢ and T satisfy the profinite
defining relation orto -1 = T9, where g is an element of ZZ, not in
% , which is the "finite" part of;qup/U.
For every p ¢ P(K) denote by vp: K; + Z the normalized valuation

* P K
of X . Then v = *VD =1 v /D is a valuation of KD with Z:D = ( )/D

*Z%) = zF K /’U as the value group. Thus KU is a valued field, which

is Henselian and UD is its maximal unramified extension. The residue
field of KD is KU = ] RP/D. It is a field of characteristic 0. The
group Z is an isolated subgroup of Z . One can therefore consider the
canonical projection Z - Z/Z and combine it with v to get a
valuation v: KD - ZLQZ which is obviously trivial on 9. Consider
therefore a maximal subfield Kb of KD on which v is trivial. This

subfield is isomorphic to the resjidue field of KU with respect to v
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(cf. Endler [4, p.35]), and it is called the bounded product of the
Kp'S modulo D (see Kiehne [12]). T@e restriction v of ‘v to Kg maps Kg
onto Z and the residue fields of Kb with respect to v coincides with
*
the residue field of KD with respect to v, hence it is isomorphic to
KD' The maximality of Kb implies that Kb is algebraically closed in
KD' and this, together with the Henselian property of KD implies that
Kb is Henselian too. It follows by Ax - Kochen Theorem that Kb is an
elementaryuvalued subfield of K (cf. Kiehne [12, Thm. 2.21). In
addition, KU is pseudo-complete, hence Kb is a complete valued field.
It follows that Kb can be identified with the power series field
KD((t)) with the canonical valuation.

Now, the restriction of ¢ to KD generates G(KD , which is still
lsomorphlc to ZZ The restriction of o to Q belongs to the Artin class
(Eég). Hence K(G)((t)) is a valued subfield of KD (t)) which is also
complete and has K(o) as a residue subfield. If o belongs to S, i.e. if
0 is pseudofinite, then ﬁ(c) is an elementary subfield of EU' as we
mentioned in section 4. Using the Ax-Kochen Theorem again we find that
E(G)((t)) is an elementary valued subfield of ED((t)) hence also of
KD K is an unramified field extension of E(o), hence K is contained
in UD. The restriction map G(UD/KU - G(K(O)) is therefore surjective,
hence it is an isomorphism, since G(K(U)) Tz by assumption (c¢f. Ribes
[14, p.76]). Also K(o) is algebraically closed in K(g) ((t)).

Hence K KD = U and the restriction map G(U D/KD) -+
G(K((t))/K(c ) ((t))) is also an isomorphism. Another application of the
Ax~-Kochen Theorem implies that K((t)) is an elementary subfield of UD'
In particular it follows that E((t)) is algebraically closed in U.

Further, it is well-known that G(E((t)) =z hence the restriction map

~ Pt )
G(UD) + G(K((t))) is an isomorphism. Every element x of X((t)) has a
Puiseux expénsion X = zm t]/ with a, € K and m € Z, and n € N,
J /-\_—/

For a fixed n, this expansxon is unique. The action of T on K((t))
is given by
. o . '/
(1) ™ =) a.rltd/?
.g ant

where {Cnln € N} is a compatible sequence of roots of unity, i.e.

n k , ~ ,
Z =1and ¢ = [ . The action of o on KD is continuous, hence the
n kn n
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action of o on K((t)) is given by

(2) oa tj/n .

vajg

In particular ox = x if and only if oa:J = aj for every j§ 2 m.

To establish our last step downwards we consider the fields
L = K(t) and L(o ) =T n KD and L(T) =Tn UD' Then L(c,r) is a
valued subfield of K(o)((t)) with K(o) as a residue field and as the
walue group. Also L(G,T) is Henselian, since it is algebraically closed
in E(o)((t)). It follows, by Ax-Kochen Theorem, that E(O,T) is an
elementary valued subfield of E(G)((t)), hence also of KD.

- K({t))
L - }
I | ~ U
Xy R KD((t))
- K
L(t) — ‘
K

1< .—-——-—"""—_
i

,~ Ky ()
! - Ky — 7
- Lo,T)
o) —

—_——

SN KC(E))
=K(t

N T

Note that if we start with a 0 € G(K), then (2) defines a
canonical extension of o to E. The automorphism T depends on the
Cn’s but its fixed field does not} fherefore E(c,r) is uniquely
determined by o.

We now imitate the procedure of Section 4 and denote by L (R)
the first order language of the theory of valued field with constant
symbols for the elements of R. The models of L (R) that we consider
in the next Lemma are all submodules of K((t)) that contain L, where

K((t)) is equipped with the canonical power series valuation.

LEMMA 5.1. Let A(Xl,...,Xn) be a formula of LV(R) whose free variables

are among the {X .,Xn}. Let Xyreee X be elements of E((t)). Then

17"
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SO ) = {o € G(¥) Jox, = x, for i = 1,...,n and L(o,7) F A(x)} is

a Borel subset of G(X). '

PROOF. Suppose first that A(Xl,...,Xn) is an atomic formula, i.e.
a formula of the form f<X1""'Xn) = 0 or of the form
ord(f(Xl,...,Xn)) < m, where f ¢ L[Xl,...,Xn] and m € Z . Each one of
the x, can be written in the form x, = Z. a..tj, where a, , ¢ E.

i i j=m "ij ij
Denote by K' the field generated over K by the aij' for i = 1,...,m.
Then S(A(x)) = G(K') if A(x) is true in E((t)), and S(l(§)) is empty

otherwise. In both cases S(A(x)) is a closed subset of G(K), hence a

Borel set.

The rest of the proof is carried out exactly as in Lemma 4.1.

Let now 6 be a sentence of LV(R). Consider the following sets:

A(e)={pep<x>lxp o} B(e>={pep<1<)[f<p(<t)) E e}
Q<e>={DeQKlKD E 6} MO = (Dea [ky((t)) E o)

$(8) = {0 eG(X)|K(0) ((£)) o} T(8) = {0 € G(X) |L(o,7) k o}
Then we have:

THEOREM 5.2. Let X be a number field with a ring of integers R and let

6 be a sentence of LV(R(t)). Then

a) A(6) and B(O) differ only by a finite set.

b) A(B) = Q(8) = Q(A(8)) = QB(H))

c) S(8) and T(8) differ only by a set of measure zero.

d) If § is any extension of the natural density d of P(K), then
5(6) is S8-measurable.

e) If ¢: QK * Con G(K) is the generalized Artin map, then
¢-1(Con(s(8)ns)) = Q(e)n¢—1(Con S).

f) S(8) is a conjugacy domain and it is U-measurable.

g) ‘2(8) has a natural density.

h) W(T(8)) = u(s(8)) = 6§(A(8)) = 6(R(8)) = da(B(8)) = d(a(e)).
PROOF. a) Assume for example that A(8) = B(8) were an infinite set.

‘Then there would exist a D ¢ QK that contains A(6) but not B(8). This
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would lead to a contradiction, since by Ax-Kochen II ip((t))/v is
elementarily equivalent to Ky =T KP/D.
g) As was mentioned above, the difference between S(8) and T(8) is
contained in the zero set G(K) - S.

The rest of the Theorem is proved as Theorem 4.3., using Lemma

5.1. and the discussion that preceeded it.
6. ON ONE VARIABLE STATEMENTS AND A RECURSIVE COMPUTATION PROCEDURE

If one wishes to ignore the middle terms in Theorem 5.2. h) that
involve the measufe of QK, cone can take the following short cut.
According to Ax [1, p.266] there exists a primitive recursive set I
of sentences in the language LV(R) such that a valued field F is
a model of I if and only if F contains X, F is Henselian, its
value group is a Z -group and its residue field is pseudo finite.

Ax proves that Il is a set of axioms for the theory of sentences of
LV(R) that are true in Kp' for almost all P e P(K) (i.e. for all
but finitely many p's). He proves further [1, Thm. 16] that for
every sentence 6 of LV(R) there exists a one variable sentence A of

over R such that
(1) A(8) ~ A(A) 1i.e. such that I F 8 <« A.

Here a one variable sentence over R is a boolean combination of
sentences of the form (3x) f(x) = 0, where f ¢ R[(X]. Also we write
A X A' for two subsets A and A' of P(K) that differ from each other
only by a finite set. \ i

If o belongs to S, i.e. if E(o) 1s pseudofinite, then E(G)((t))

is evidently a model of II. Hence
(2) S(8) m~ s(X)

where here » means equality up to a set of measure zero. The fact

that E(G) is algebraically closed in E(U)((t)) implies that

(3) S(A) = S(A).




TRANSFER PRINCIPLES FOR FIELDS 157

Also, it follows from Hensel's Lemma that
(4) A(A) ~ A(N).

From the Translation Theorem for one variable sentences [9, Lemma
3.15] we know that K(X) has a natural density which is a rational
number, S(A) is measurable and S(A(N)) = u(g(l)). Hence, using

(1), (2), (3) and (4), we conclude that the same is.true for A(8)

and S(6), i.e. A(8) has a natural density which is a rational number,
S(8) is measurable and §(A(8)) = u(s(8)).

As in [9, p.263] one can use Godel's completeness Theorem in
order to establish a recursive procedure to find for a given sentence
B of LV(R) a one variable sentence such that (1) holds. Using (4)
one can proceed and obtain also a recursive procedure to compute the

rational number §(A(8)).
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