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NORMAL AUTOMORPHISMS OF ABSOLUTE
GALOIS GROUPS OF p-ADIC FIELDS
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Introduction. A (topological) automorphism o of a profinite group G is said
to be normal if N° = N for every normal closed subgroup N of G; it is said to be
families preserwng if for all g € G, the closed subgroup (g’ generated by g°is
conjugate in G to {g). Finally o is called point-wise inner if g° is conjugate to g
for every g € G.

The groups of all normal automorphisms, families preserving automorphisms,
point-wise inner automorphisms and inner automorphisms of G are denoted by
Aut, (G), Aut(G), Aut(G) and Aut(G), respectively. Clearly Aut,(G) <
Aut (G) < Aut (G) < Aut,(G).

Neuklrch pxoved in [17] that every automorphism of the absolute Galois
group, G(Q), of Q is normal. Applying Representation Theory of finite groups
and a theorem of Scholz [19], Ikeda continued this result and proved in [7] that
Aut, (G(Q)) = Aut (G(Q)). This was also done, in a different way, by Komatsu
n [14]. Then Uchida in [21], Iwasawa in [10], and Ikeda in [8] and [9] have
finally proved the famous conjecture of Neukirch, namely that every
automorphism of G(Q) is actually inner. Beyond this Ikeda showed in [9] that if
p is a prime and K is a finite extension of Q then every point-wise inner
automorphism of G(K), the absolute Galois group of K, is inner. The main
purpose of this note is to strengthen this result and to prove:

THEOREM A. If K is a finite extension of Q,, then every normal automorphism
of G(K) is inner.

An analogous result was obtained in [12], where it was concluded from the
main result that every normal automorphism of a non-abelian free profinite
group is inner. Here we generalize this result in the following way.

We call a class of finite groups full if it is closed under the formation of
subgroups, homomorphic images and group extensions. Examples of full classes
are the class of all finite groups, all p-groups and all solvable finite groups. Let @
be a full class of finite groups. A pro-C-group presented by e generators and d
word-relations is the pro-C-completion of a discrete group presented by e
generators and 4 relations in these generators. We prove:
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THEOREM B. Let © be a full class of finite groups and let G be a pro-C-group
presented by e generators and d word-relations. If e > d + 2, then every normal
automorphism of G is inner.

Every free pro-C-group is a projective limit of free pro-C-groups on finitely
many generators (cf. Ribes {18, p. 67]), hence:

CoroLLARY C.  Let C be a full class of finite groups and let F be a non-abelian
free pro-C-group. Then every normal automorphism of F is inner.

Both Theorem A and Theorem B are special cases of a more general theorem.
In section 1 we define what are ‘pseudo-p-free’ profinite groups. We prove in
two steps that if G is a pseudo-p-free profinite group, then Aut,(G) = Aut,(G).
First we prove, by Representation Theory, that every normal automorphism of
G is families preserving. Then we show that every families preserving
automorphism of G is inner. This is done by refining an argument of Ikeda and
Iwasawa. In Section 2 we prove, using local class field theory, that G(K) is
pseudo-p-free and thus complete the proof of Theorem A. Sections 3 and 4 are
devoted to the proof that G, in Theorem B, is a pseudo-p-free group. The main
tools used there are the Gaschiitz Theory for relation modules and
pro-C-completions.

In a previous version of this paper, the group G in Theorem B was restricted
to be a non-abelian free pro-p-group with p # 2. The proof of this special case
was based on a realization of G as a Galois group over a finite extension of Q,
and therefore failed for the case p = 2. Jean-Pierre Serre then pointed out to us
the possibility of extending the result to free pro-2-groups and to Demuskin
groups on e > 3 generators by outlining a cohomological proof to the extended
theorem. We combined Serre’s ideas with the theory of group-rings to bring up
the result to its present form. Our sincere gratitude is therefore given to Serre.
We are also indebted to Irving Reiner for referring us to Gaschiitz Theory in
Gruenberg’s book [4]. Finally we would like to express our indebtedness to
Alexander Lubotzky for his comment that the proof of Theorem B, previously
given for pro-p-groups, actually works for pro-C-groups.

We would also like to note that Lubotzky, [16], has used our results about
profinite groups to deduce similar results for discrete groups.

1. Pseudo-p-free profinite groups

Definition. A profinite group G is said to be pseudo-p-free if every open
normal subgroup N of G has a closed subgroup M such that:

(a) M is normal in G.

(b) The quotient group 4 = N /M is an abelian group; thus I' = G/ N acts on
A by conjugation.

(¢c) The group 4 contains a closed subgroup B which is a pro-p-group, it is
invariant under I' and I'-isomorphic to the group-ring Z,T.
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If o is a normal automorphism of G, then ¢ acts on the finite quotient group I’
and on the closed subgroups 4 and B. In particular o is a Z -linear operator
of B.

The basic result of this work is:

TueoreM 1. If G is a pseudo-p-free profinite group, then every normal
automorphism of G is inner.

Proof. The proof is carried out in two steps

Step 1. Aut,G = Aug,G

Let ¢ be a normal automorphism of G and let N be an open normal subgroup
of G. We prove that o is families preserving. Using compactness arguments it
suffices to prove that the automorphism induced by ¢ on T'= G/N is families
preserving.

Let M be the closed subgroup of N that satisfies conditions (a)-(c) of the
Definition. If b € B and x €T, then (b*)” = b°*", hence

1

bx=ba'x“»a_ (1)
Recall that B was assumed to be isomorphic to Z,T. Hence we can extend the
action of o to Q,I', by linearity.

Let E be a simple submodule of Q,I'. Then E'= ENZ,JT is a submodule of
Z,T and is therefore left invariant by o. Also, for every element b € E there
exists a positive integer r such that p’b € E'. It follows that ¢ acts also on E and
that (1) is true for every b € E. This means that x is equal to ox 9% ! as linear
operators of E. Hence, if we denote by x; the character of E, we obtain
xg(x) = xg(x°), for every x € T.

It is now well-known that every irreducible character x of T over Op appears
as a character of a simple submodule of Q,I" (cf. Huppert [6, p. 474]). It follows
therefore from Representation Theory that {x) is conjugate to {(x°) for every
x €T (cf. Serre [20, p. 111, Cor 2)).

Step 2. Aut,G = Aut,G

Let ¢ be a families preserving automorphism of G and let N be an open
normal subgroup of G. Again, using compactness arguments, it suffices to prove
that the automorphism induced by ¢ on I'=G /N is inner. As before we
consider a closed subgroup M of N with the properties (a)-(c) of the Definition.
In particular it follows from (c) that B is isomorphic to Zj, where n = [T} and
that I acts faithfully on B.

Our assumption implies that for every b € B there exists an element x(b) €
and a unit p(b) € Z; such that

bo = pHbIxD) )

We contend that there exists a » € Z* such that for every b € B there exists a
root of unity {(b) in Z, such that w(b) = v{(b).
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Indeed write p = p(b) and x = x(b) in (2). If we apply o i— 1 times on both
sides of (2) we obtain

o1

ba’= by’}rx"u.x

Remember that T' is a finite group. Hence there exists a positive integer / such
i . -1 i bo.J
that 2% = z for every z € I. Hence if p = xx° ... x', we get that b°' = pu’

for every positive integer /. In particular for j = |I'| and m = /|T'| we obtain
bo" = pHO” 3)
Let now by, ..., b, be a (multiplicative) basis for B over Z,. Substituting b = b,
fori=1,...,n, in (3) and multiplying the corresponding equalities we have
n
(by .. b= T] b “
i=1

On the other hand, if we apply (3) for ¢ = by ... b, we obtain

n
(by...b,)" =[] bH" (5)
i=1
Equating (4) and (5) we deduce that p(b)" = p(cy” for i=1,..., n. Writing
v = p(c) we obtain that pu(b,) = v{(b,), where {(b,) is an mth root of unity in Z,.
Let now 1 % d € B. Then we can write d = b} ... b} with A, € Z, and not
all of them are zero. It follows that

r r
dn’” — H bio"')\,-z H biVM)\i'

i=] fe=]

On the other hand, applying (3) for ¢ we have

do" = g™ = ﬁ bl_u(d)"‘?\,
i=1
Hence p(d)” =»™, that is p(d)= v{(d) with {(d)" =1. Our contention is
therefore proved.
We proceed and define for every x € I' and every root of unity { in Z, the
following closed subgroup of B:

B&Y = (b B|b°=b").

There are only finitely many such groups and their union covers B. It follows
that there exists a pair (x, ¢) such that B9 ig open in B and hence of a finite
index, say k (c.f. [12, Section 2] or Bourbaki [1, chap. II, §1, exerc. 1b]). It
follows that if b € B, then (b°)* = (b"*)*, hence b° = 5", since B is torsion
free. This means that B9 = B,
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Let now y € I and let g be an element of G that lies over y. Then for every
b € B we have

(gm lbg) - (gu)Alboga — (gu)‘lbvfxgo
- ¢ - wix xy =L wlx, x
(g 'bg) = (g 'bg)” =(g") 'b"%
Hence
(b ) = e,

The element 5** runs over B when b does. Hence y% ~* acts trivially on B. By
(d) T acts faithfully on B, hence y° = y~.

2. The absolute Galois group of a local field. The first instance of a
pseudo-p-free profinite group is presented by the following

Tueorem 2. If K is a finite extension of Q,, then G(K) is a pseudo-p-free
profinite group.

Proof. Let L be a finite Galois extension of K with a Galois group
I'=6(L/K). The group of units U of L is a compact group on which I' acts.
Denote also by L, and L,, the maximal non-ramified and the maximal abelian
extensions, respectively, of L. The group I' acts on the inertia group
A, =8(Ly/Lay) < A=8(Ly/L) via extension to L, and conjugation. The
local reciprocity map §: U—> A, is a continuous ['-isomorphism, by local class
field theory (cf. [2, p. 144] and Koch [13, p. 79]).

Denote now by p the maximal ideal of the ring of integers of L and let
U, =1+ " be the group of units of L of level r. Then U, is a pro-p-group. If r is
sufficiently large, then the map exp : b"—> U, is an isomorphism (c.f. Goldstein
[3, p. 96]). By the normal basis theorem there exists an element ¢ € L such that
{a*|x €T} is a basis for the extension L/K (c.f. Lang {15, p. 229)]), in
particular it is linearly independent over Z,. Multiplying « by a sufficiently high
power of p we can assume that a €p". Let p = exp(a). Then {p*|x €T} isa
basis for a multiplicative free Zp-module. The image of this module by 8 is a
closed subgroup of A4 which is isomorphic to Z,I" as a ZPI‘-module.

Theorem A follows from Theorems I and 2.

If we denote by K(” the maximal p-extension of K, then we can prove, as in
Theorem 2, that §(K(” /K) is a pseudo-p-free group and hence that every
normal automorphism of §(K? /K) is inner. It is well-known that §(K‘” /K)
is either the free pro-p-group on [K:Q,]+ 1 generators or a pro-p-group
presented by [K': Qp] + 2 generators and one relation (a Demuskin group),
according to whether the primitive pth root of unity, g'p, does not belong or does
belong to K (cf. Koch [13, p. 97, Satz 10.5 and p. 96, Satz 10.3]). In any case, the
number of generators of §(K (" / K) exceeds the number of its defining relations
by at least 2. Theorem B which is proved in the next section by group-theoretical
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methods appears therefore as a generalization of the theorem about (K (” /K)
which is proved using arithmetical methods.

Problem: Is every automorphism of G(Qp) normal?

3. The Gaschiitz theory. We use the Gaschiitz theory about relation
modules in order to establish our second example of pseudo-p-free groups,
which is necessary in order to complete the proof of Theorem B.

Denote by I, = {37, a,x; € ZG | 27_, o; = 0} the augmentation ideal of the
group-ring ZG of a group G over Z. Then Io=3 cclx—DZG. If
I>N—>GHI—1 is a short exact sequence of groups, then 7 extends in a
canonical way to an epimorphism of rings, 7 : ZG—ZT, the kernel of which is
IyG and we therefore obtain the following exact sequence of rings

0—>1yG—>ZG-15ZT—>0 (1)

The ideal I; is mapped by = onto I, hence (1) induces the following exact
sequence

0-—>IyG—>1;—51.—0 )
Dividing by I 1, we obtain
01y G/ Iylg—> 1/ 11— I.—>0. 3)

Pulling back the action of T' on /. through =, the group I;/I,1, becomes a
I'-module and 7 becomes a I'-homomorphism

(a+ Iylg)'=ax+ 1,1;, fora€1,and x €T.

The subgroup 7, G /Iyl is invariant under the action of I' and one can prove
that the map (n— 1)+ I,/;>nN’ is a T-isomorphism of 1yG /11, onto
N=N/N’, where T acts on N by conjugation (cf. Gruenberg [4, p. 6]). We can
therefore replace 1, G /1,1 in (3) by N and obtain the following exact sequence
of right I-modules

0—>N—>1,/1,I;~ I,—>0. 4)

Then we tensor the short sequence (4) with a field K of characteristic 0, apply
Maschke’s Theorem saying that short sequences of KT'-modules split and obtain
the following decomposition of KT'-modules

K®I;/Iyl;)= KN ®KI, Q)

Also, KI'= K @ KI., hence adding K as a direct summand to both sides of %)
we have:

KQ®l;/Iyl;)® K= KN ®KT (6)
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Consider now the special case where G = F is the free group on a set X and
also replace N by M. Then it can be proved that I, is the free ZF-module on the
set {x—1]x€ X} and one can further deduce that I.//pl, is the free
ZT-module on the set {(x — 1) + I.1,, | x € X }. In particular if X consists of e
elements, say x|, . .., x,, then we may conclude from (6) that

(KT)'® K= KM ®KT (7

Applying Krull-Schmidt’s Theorem to (7) (cf. Huppert [3, p. 66]) we can cancel
KT on both sides and achieve the structure of KM as a KI'-module

KM =(KT) '@ K

This is a theorem of Gaschiitz (cf. Gruenberg [4, p. 8]).

We extend this theorem to groups presented by e generators and d relations.

Letr,, ..., r, be d elements of F. Denote by R the smallest normal subgroup
of F that contains r,, ..., r, and let G= F/R. Denote by x,,...,x, the
images of x|, ..., x, in G. Then G is presented as the group on e generators
X, ...,x,and the d defining relations r,, . . ., r,. Retain for G all the notation
included in (6). Denote also by # the canonical homomorphism from £ to G and
let M =6 "'N. As in (2) we have an exact sequence

0-~>1RF-~>IF-£>IG~—>O

which gives rise to the following exact sequence of I'-modules

O—>(IgF + Iply, )/]FIM”‘)IF/IFIM“a—”G/IG]N”"O (8)

Tensoring (8) by K and using Maschke’s Theorem we arrive at the
KT'-decomposition

(KD)'=(K @ (IxF + Iply )/ 1Ly ) ® (K @ (I6/ 161y ) ®)
Using the two identities
xThx = l=(x7=Dr= D =D+ T =D - D+ (r - Dx
xy—l=(x-DH-H+Ex-H+-1

and the normality of R in F one concludes that (IpF + I;1,,)/ 11y, is the
ZT-module generated by {r,—1|i=1,...,d}. Using Maschke’s Theorem
again we see that there exists a KTI'-module C such that

CO(KQUgF+I:M)/Iply)=(KT)"
If we combine this result with (9) we have

C®(KT) =(KT)'®(K®(;/1:1y)) (10)




54 MOSHE JARDEN AND JURGEN RITTER

Assume now that d < e and use Krull-Schmidt’s Theorem to cancel (KT) from
both sides of (10) to obtain

K®(I;/I1y)=C®(KT)"“ (11)

Ife>d+1andif we use (11) in (6) we get a weak generalization of Gaschiitz’
Theorem

KN=C@®K®(KD) . (12)

The group N is finitely generated, hence N is a finitely generated abelian
group. Denote by 7' the maximal subgroup of N that contains N’ such that
T/N’ is a torsion group. Then T is a normal subgroup of G and N/T is a
torsion-free abelian group of rank, say m. Moreover, KQIN/NY=K®
(N/T), as KT-modules and we can therefore replace (12) by

KQ(N/T)y=C®K DK "' as KT-modules. (13)

Also
N/T=2", as groups. (14)

The results of this Section can be summed up in the following theorem.

THEOREM 3: Let G be a discrete group presented by e generators and d
relations with e > d + 1. Let N be a normal subgroup of G with a finite quotient
group I'. Then N contains a subgroup T which is normal in G such that (14) holds
Jor some positive integer m. Moreover, if K is a field of characteristic zero, then
K®(KT)e 9! appears as a direct summand of the KT-module K ® N/T.

4. Pro-C-group. The object of this section is to pass to the pro-C-limit,
starting from Theorem 3. Here € is a full class of finite groups which is fixed
throughout this Section.

Let G be a group and denote by % = ¥ the family of all normal subgroups of
G that belong to €. Then G(C)=lim, _; G/H is the pro-C-completion of G.
There is a canonical homomorphism 7 of G into é(@), the kernel of which is the
intersection G, of all H in %. The image of G is dense in G(C).

Let H be a subgroup of G that belongs to s and let 7 €%,. Then I is a
normal subgroup of H but not necessarily of G. However, if gir- .., 8, are
representatives of left cosets of G modulo H and I,=1]&fori=1,...,n, then
J=1I1,0--- N1 isnormalin G and H/J is a subgroup of the direct product
H/I X ... X H/I, of groups belonging to €. It follows that H/J and hence
also G/J belong to €. This implies that if we denote by H the closure of TH in
G(C), then H is the pro-C-completion of H. It is ot difficult to see that in
addition G/ H is canonically isomorphic to é(@)/H and that H = 7~ 'H. Thus
the correspondence H—H is a bijection from % onto the collection of all open
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normal subgroups of G(C) Standard arguments also show that if L is a closed
normal subgroup of H, then a / L is the pro-C-completion of H/L.

We are interested in particular in the pro-C-completion of Z. Denote therefore
by A the set of all primes / that divide the order of groups belonging to €. If
I €A, then Z/1Z belong to €, by Sylow’s Theorem. It is well-known that every
l-group has a normal sequence of subgroups with factors isomorphic to Z//Z.
Hence € contains every /-group. This implies that the pro-C-completion of Z is

[liea?

Return now to the case of Theorem 3, where G is a discrete group presented
by e generators x,, ..., x, and d relations ry, ..., r, in these generators. We
abuse our language by using x,, ..., X, as elements of G(C) instead of their
images by r. Then é(@) is the pro-C-group presented by the e generators
Xyy...,x, and the d word-relations r, ..., r,. This means that if G is a
pro-C-group generated by e elements X,,..., X‘e satisfying the relations
rp=-++=r,=1, then the map x,—X, i=1,...,e can be extended to a

continuous homomorphism of G(@) onto G.

Return also to the subgroups N and T of T of formulas (13) and (14) of
Section 3 and assume that I’ belongs to C. It follows from the above discussion
that N/T = [],cr 2/ Letz,, . .. » be elements of N that generate N modulo
T. Consider them also as elements of N. Choose a prime number p in A and
let o be the element of Z with components o;=0if /7 p and a, = 1. Denote

z] =z for i =1, ,m and let P be the closed subgroup of N generated by
z{y ..., 2z, and T Then P is normal in G(€) and P/T = Z,". 1t follows that
both Q, ®, P/ T and Q, ® N/T are m-dimensional Q, -vector spaces with bases
Zis ey z,’n and Zyy ..., Z,, respectively. Moreover, the action of I'on N/ T is

determined by the action of I' on the z; modulo 7, which is the same as the
action of T on the z; modulo 7. 1t follows that Q,®; P/T and Q,® N/T
are even isomorphic as Q,I'-modules. Thus, if we subsmute Q for K 1 1n (13) of
Section 3 we arrive at the following Q T-isomorphism

Q,®,pP/T=C®Qq,®(Q,) " (1)

Note that all the summands on the right hand side of (1) are finitely generated
O -vector spaces and therefore they are closed under the p-adic topology

If e>d+2, then QI appears as a direct summand of Q,®, P/T After
multiplying a O -basis of Q,I' by an appropriate power of p we mcly conclude
that N/T contams Z,T" as a closed Z,T'-submodule.

We summarize our results in the following theorem.

THEOREM 4. Let C be a full class of finite groups and let G be a pro-C-group
presented by e generators and d word-relations with e > d + 2. If a prime p divides
the order of a group belonging to C, then G is a pseudo-p-free profinite group.

With this Theorem, the proof of Theorem B is completed.
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