An analogue of Cebotarev density theorem
for fields of finite corank

By
Moshe JARDEN®

(Communicated by Prof. M, Nagata, Nov. 10, 1978)

Introduction.

Michel Fried and G. Sacerdate established in [5] a primitive recursive deci-
sion procedure for the elementary theory of finite fields. The crucial theorem
used in the proof was the “Non-regular analogue of the Cebotarev density
theorem” (see [5, Proposition 4.17 and also Fried [3, Proposition 2]). This
analogue is a certain combination of Cebotarev density theorem and Riemann
Hypothesis for curves over finite fields. Fried-Sacerdate procedure gives auto-
matically a primitive recursive procedure for the theory of all elementary
statements that are true in Q(U), for almost all o€ G(Q), since this theory is
equal to the theory of all elementary statements true in F,, for almost all
primes p (see [7, Thm. 3.17]). Moreover, as was already hinted in [5, p. 207],
it is very probable that Fried-Sacerdate procedure might be generalized to give
a primitive recursive procedure for the theory of all elementary statements
that are true in Q(o,, ---, a.) for almost all (¢)=(oy, -, 6o)EG(Q). In this
work we take the first step toward this goal and prove an appropriate analogue
of the Cebotarey density theorem for the fields Q(a):

Almost all (a)e GQ)® have the followig property: Let E be a finitely gene-
rated regular extension of M=0(s), let F be a finite Galois extension of L, let
€1, v, €, be elements of G(F/E), let u,, -, uy be elements of E and let N, be
the algebraic closure of M in F. Suppose that e;|Ny=0:|N, fori=1, -, e. Then
there exists an M-place ¢: F— @ such that a) p(E)y=M, b) ¢ is finite al u,, -,
Um, ©) H=<ey, =+, &> is the decomposition group of ¢, d) N=¢(F) is a Galots
extension of M and the map of H onto G(IN/M) induced by ¢ is an isomorphism
that maps ¢; onto o;|N, for i=1, -, e.

The Cebotarev Property of the (¢)’s implies that their fixed fields Q(g) are
e-free and PAC. Here a field M is said to be e-free, if its absolute Galois
group G(M) is isomorphic to the free profinite group F, on e generators. A
field M is said to be PAC if every non-void absolutely irreducible variety

* Partially supported by the United States-Israel Binational Science Foundation.
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defined over M has an M-rational point.
It is probable that the converse implication is also true, namely that e-free
and PAC implies the Cebotarev Property, but I do not have as yet a proof to

this statement.
As an application it is proved that every w-free zero characteristic PAC

field is Hilbertian. Here an w-free field is one over which every finite embed-
ding problem is solvable.

In [10] we have discussed the elementary theory of perfect w-free PAC
fields. In particular we proved that in any specific characteristic the theory is
decidable. This investigation was carried out in analogy to the investigation
of the elementary theory of perfect e-free PAC fields, However, although we
have been able to supply an abundance of algebraic models of the last theory,
no algebraic model was suggested for the first one. At the end of this work
we fill up this gap and construct an algebraic extension N of @ which is -
free and PAC, hence also Hilbertian.

Acknowledgement: The author is indebted to Michael Fried for inspiring
the writing of this paper.

1. The Cebotarev Property.

Let M/K be a Galois extension of fields, let N be an extension of M and
let e, -+, ¢, be automorphisms of N over K. We denote by M(¢) and N(g) the
fixed field in M and N respectively of e, -, &,. Obviously M(e)=M \ N(e).

Definitions: Let K be a field, let o,, -+, 6, be elements of G(K). Let
M=KJ{g) and let N,, E, F be fields such that:
I. E is a finitely generated regular extension of M
II. F is a finite Galois extension of FE.
II. N, is the algebraic closure of M in F.
The system (g, E, F) is said to have the Cebotarey Property if for every
m elements uy, -+, u, of E and e elements ¢, -, ¢, of G(F/E) that satisfy
gi|Ny=0,;|N, for i=1, -, ¢, there exists an M-place ¢: F'— M, such that
2) (E)=M,
b) ¢ is finite at wuy, -, U,
¢) H={ey, -, g is the decomposition group of o.
d) N=¢(F) is a Galois extension of M and the map of H onto G(N/M)
induced by ¢ is an isomorphism that maps e; onto o;|N for =1, -, e.

In this definition M, is the separable closure of M. If 6= H and & is its
image in G(N/M), then & (p(x))=¢(3(x)) for every x=F such that o(x)# oo,
Also, ¢(E) is the residue field of E under ¢.

We say that (¢) has the Cebotarev Property if (g, E, F) has the Cebotarev

Property for every £, F that satisfy I, II, IIL
A field M is said to be of corank<e if its absolute Galois group G(M) is
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generated by e elements.
An algebro-geometric consequence of the Cebotarev Property is

Lemma 1.1. Let K be a field and let (o, -+, 0,) be an e-tuple of elements
of G(K) that has the Cebotarev Properly. Let M=KJag), let V be an absolutely
irreducible variety defined over M and let n,, -, 7. be birational transformations
of V into itself, defined over M. If the group H=<n,, -, ne is finile, then
there exists a point Q& V(M) such that ptQ=0c}Q for every integer k and i=
1, -, e

Proof. Without loss of generality we can assume that V is affine and let
(x) be a generic point of V over M. Every element n&H defines an automor-
phism ¢ of F=M(x) over M such that e(f(x))=/(5(x)) for every f& M(x). The
map 7 — ¢ is an anti-isomorphism of /7 on a finite subgroup G of Aut{(F/M).
Thus F is a finite Galois extension of the fixed field of G and it is a regular
extension of M. It follows that there exists an M-place ¢: F— M, which is
defined at #(x) for every np<H and such that si=0,|N, where N=¢([). Let
(@)=¢(x). Then (¢)= V(N) and nf(a)=0cf(a) for all k and .

Another consequence of the Cebotarev Property is:

Lemma 1.2. If (¢) is as in Lemma 1.1 then K,(o) and hence also K(o) are
e-free PAC fields. Here 1?’@ is the maximal purely inseparable extension of K(g).

Proof. In order to prove that M is e-free it suffices to prove that every
finite group H of rank =<e can be realized over M=K (¢) (see [8, Thm. 2.47).

Indeed, embed H in a symmetric group S,. Choose n algebraically inde-
pendent elements t,, - f, over M, let F=M(}), let S, operate on ¢, =+, t, in
the obvious way and let E be the fixed field of H in F. Then H appears as
a decomposition group of some M-rational place ¢: F— M, with trivial intertia
group. It follows that H can be realized over M.

In order to prove that M is PAC take 7, -+, %, in Lemma 1.1 as the iden-
tity maps.

2. The main theorem

Consider the following situation: i is a field, ¢, -, t, are algebraically
independent elements over K, I’ is a finite Galois extension of K(t) and L is
the algebraic closure of K in F. Suppose that &, -+, ¢, are elements of G(F/K(Y)
and ¢y, -+, o, are elements of G(K) such that ¢;| L=0,;|L for i=1, -, e. Then
€, ~, & can be extended to automorphisms of /¥ which will be again denoted
by &, -, ¢, and such that ;| K,=a; for i=1, -, e. Then ¢, -, ¢ fix every
element of M(#), where M=Kg). Denote therefore by H, the subgroup of
G(MF/M(1)) generated by e,| MF, -+, e,| MF. Then H,, is canonically isomorphic
to H=<e,|F, -, .| F>. Also ML is the algebraic closure of M in MF. In this
situation we have the following.
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Lemma 2.1. If K is Hilbertian and if u,, -, u, ave elements of K1), then
Sor almost all (¢)€ G(K)* that satisfy o,;| L==¢,|L for j=1,--, e, and denoting
M=KJ{0), there exists an M-place ¢: MF — K such that

a) oMu)=M and ¢ is finite at uy, -, Un

b) He, is the decomposition group of ¢

¢) N=@(MF) is a Galois extension of M, the map & — &' of H, onto 2(N/M)
induced by ¢ is an isomorphism, and ¢i=o;|N for j=1, -, e.

Proof. Let x be an element of P which is integral over K[t] and such
that F=K(¢, x). Let fe K[T, X7J be an irreducible polynomial which is monic
and separable with respect to X such that f(#, x)=0. Let g be an irreducible
factor of f over L such that g(Z, x)=0. Then g(T, X) is absolutely irreducible.
We can therefore construct by induction a sequence of points (g, b;), i=1, 2,
3, -+ such that

D agy, o, aneK.

2) uy, -+, Uy belong to the local ring of K[¢7] in the point (g),

3) glay, b;)=0, hence also f(ay, b;)=0.

9 L, byr0.
5) [K(b): K1=[F: K(t)] and [L(b;): L7=[F: L()], hence
K(b)y=L(b)=1L;.

6) The sequence of fields L,, L,, L, -+ are linearly disjoint over L.
(Compare similar construction in [7, Lemma 2.2] or in [6, Lemma 17). The
specialization (Z, x} — (a4, b;) can he extended to an L-place ¢: F— L, such
that @(F)=L;, (K(t)=K and ¢ is finite at u,, -, u,. Further the map §— &’
of ¢(F/K(t)) onto ¢(L;/K) induced by ¢ is an isomorphism (c.f. Lang [13, p.
2487). In particular, &j| L=¢;| L for j=1, -, ¢ and @o(F(e))=L(e').

Using (6) and Lemma 4.1 of [8] we get that almost all (¢)e G(K)¢ for which
;| L=¢;| L, j=1, -, ¢, belong to one of the sets

%) {(0)eCGK) || Li=ef  for j=1, -, ¢}

Let therefore (¢) be in the set (7). Let M=K o), extend &, -, & to auto-
morphisms of K,F, as in the discussion above, and extend ¢ to an M-place,
also called ¢, of MF into K, Then condition (a) is satisfied. Also N=¢(MF)
=ML, is a Galois extension of M (c.f. Deuring [2], p. 178). Denote by E the
decomposition field of ¢. It is the maximal subfield of MF that contains M(t)
and (E)=M. Obviously the map § — &' of @(MF/E) onto ¢(N/M) induced by
¢ is an isomorphism. In particular

@® [MF: E]1=[N: M)
Claim : M- Fle)=(MF)(e).

Indeed the ¢; fix the elements of M. Hence the left hand side is included
in the right hand side. In order to prove the inverse inclusion note that F is
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linearly disjoint from M over L(s)=L M. Let {m,} be a linear base for M
over L(¢). Then {m,} is a base of MF over F, since M/L{(¢) is an algebraic
extension. Any element z of (MF)(¢) can therefore be written as

© 2= 3 MaXa s

where x,&[F and almost all of them are zero. Applying e; on (9) we obtain
z= Y, mule;x,) and ex,=F. Hence ¢;x,=x, for j=I, -, ¢, l.e. x,€F(g), as
desired.

The claim implies that o((MF)(¢))=M. Hence (MF)(g)CE. It follows by
(8) that

[F: FleY]=[Li: Li(e)]=[N: MI=[MF: E]J=[MF: (MF)(e)]=LF: F(g)].

Hence (MF)(e)=F is the decomposition fleld of ¢ and {e|MF, -, e, MF) is
the decomposition group of ¢ in MF. Conditions (b) and (c) are thus also
satisfied.

Theorem 2.2. If K is a conlable Hilbertian field, then almost all (g)= GUK)°
have the Cebotarev Property.

Proof. 1t is easy to see that in the notation of section 1, it suffices to
consider only flelds E that are purely transcendental over M. Our Theorem
follows therefore from Lemma 2.2, using arguments as in the proofs of Theorem
25 of [7] or Theorem 6.2 of [6].

3. An application to w-free PAC fields.

Theorem 3.1*. Every w-free field L of characteristic zero is Hilbertian.

Proof. First note tha L contains some countable Hilbertian field K. In
order to prove that L is Hilbertian it surffices to prove that the following
statements are true in L: (+) For all absolutely irreducible polynomials
STy -, Ty X) of degree d which are separable normal in X and have a
Galois group G of rank =e, and for all non-zero polynomials g(T, -+, T,) of
degree =d there exist ay, -, ¢, such that f(a, -+, a,, X) is separable and
normal with Galois group isomorphic to G and g(a,, -, a,)#0.

If e=e, and (g)e G(K)® has the Cebotarev Property, then (+) is true in the
field ]%(g), since Ty, ---, T, can be specialized such that G is the decomposition
group. It follows by Theorem 2.2 that () is true for ]?(g), for almost all
(e)eg(K). Also it is not difficult to see that () is equivalent to a sentence
in the language of the theory of flelds. Theorem 7.1 of [107 implies therefore
that (+) is true in L.

Note that the above proof shows that statement (4+) remains true for every
w-free perfect PAC field, without any restriction on the characteristic.

* The author has learned about the validity of this Theorem from Peter Roquette.
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We recall that if M is a countable field, then M is w-free if and only if
G(M) is isomorphic to the free profinite group, F,, on ¥, generators that con-
verge to 1.

Lemma 3.2%. Let G be a profinite separable froup. If F, isa homomorphic
image of G, then F, is isomorphic to a closed subgroup of G.

Proof. By assumption there exists an epimorphism 6: G — F,. Let zi, z,
z;, - be a sequence of free generators of F', that converges to 1. We have to
find a sequence ¥, Vs, Vs --- in G that converges to 1 such that 0(y;)=z; for
i=1, 2, ---. Having found such a sequence we can extend the map z; — ¥; to
a homomorphism ¢ of F, into G such that & <f=1Id. Thus ¢’ is a monomor-
phism.

In order to construct the desired sequence comsider a countable basis of
open normal subgroups of G

C=6=26,26,=2Gy= -

Further choose a sequence (x)=(xi, x4, ¥4, ~--) in G such that 0(x;)=z; for 1=1.
If H is an open subgroup of G that contains N=Ker §, then almost all the x;
belong to H. Further, N;=NnG; is closed in G and Ny=N,=N,= - isa basis
of open normal subgroups of N. Let (x®)=(x). Assume inductively that we
have already found a sequence (x™)=(x{®, x{®, x{¥, ---) such that

a) xW=x{""YmodN,., for every i=1

b) Every open subgroup H of G that contains N, contains almost all the
elements of (x™).

Construct a sequence (x*!) in the following way. The subgroup NG
is open in G. Hence there exists a positive integer £ such that x{& N, G,
for every i=k. The map aN,,,— aN, is an isomorphism of Gny1/Nass onto
N,Gni1/N,. Hence for every i=% there exists an x{"*’&G,,, such that Kty
=x™ mod N,. For i<k define x®=x®. The sequence (x""¥) thus defined
satisfies condition (a). One can check that it also satisfies condition (D).

Condition (a) implies that for every i=1 there exists a y;&G such that
Y= ng x™,  Certainly y;=x;modN. If H is an open subgroup of G, then
there exists an m such that G,CH. By (b) there exists a k such that x{V G,
for every i=k. By (a), x{?eG,, for every n=m. Hence y,=H for every izk.

The sequence v,, Vs, Vs, --- i8 the desired one.

Thorem 3.3. Let K be a countable Hilbertian field of characteristic zero.
Then there exists an algebraic extension M of K which is w-free and PAC, hence
also Hilbertian. In particular @ has such an extension.

Proof. By Theorem 4.4 of [4], K has an algebraic extension K’ which is
PAC and Hilbertian. By Theorem 4 of Kuyk [12], K’ has algebraic extensions
Lc L' such that L’/L is Galois and @(L’/L)=F,. The restriction map gives
therefore an epimorphism of G(L) onto F,. By Lemma 3.2, G(L) contains a

* The author is indebted to Jurgen Neukirch for calling his attention to this Lemma.
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closed subgroup H which is isomorphic to #,. Let M be the fixed field of H.
Then M is w-free. Being a separable algebraic extension of a PAC field, M is
also PAC (see Ax [1, p. 2617 or [6, Lemma 4.17). By Theorem 3.1, M is also

Hilbertian.
The field Q is also Hilbertian. Hence @ has also an algebraic extension M

with the above properties.
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