INTERSECTIONS OF CONJUGATE FIELDS OF FINITE CORANK OVER HILBERTIAN FIELDS

MOSHE JARDEN

Introduction

It was proved in [4] that if K is a Hilbertian field and e is a positive integer, then for almost all $(\sigma) = (\sigma_1, ..., \sigma_e) \in G(K)^e$, the closed subgroup $\langle \sigma \rangle = \langle \sigma_1, ..., \sigma_e \rangle$ generated by $\sigma_1, ..., \sigma_e$ is isomorphic to \hat{F}_e , the free pro-finite group on e generators. This is the Free Generators Theorem. Here G(K) is the absolute Galois group.

This is the Free Generators Theorem. Here G(K) is the absolute Galois group, $\mathfrak{G}(K_s/K)$, of K and "almost all" is meant in the sense of the Haar measure of G(K). It was also proved in [4] that given an e-tuple $(\sigma) \in G(K)^e$, the set

 $S(\sigma) = \{ (\sigma') \in G(K)^e | \exists \tau \in G(K) : \tau^{-1} \sigma_i \tau = \sigma_i' \text{ for } i = 1, ..., e \}$

has measure zero. Therefore the Free Generators Theorem implies nothing on the groups $\langle \sigma^{\tau_1}, ..., \sigma^{\tau_o} \rangle$. In this work we fill up this gap and prove

Theorem A. Let K be a Hilbertian field. Then $\langle \sigma^{\tau_1}, ..., \sigma^{\tau_e} \rangle \cong \hat{F}_e$ for almost all $\sigma \in G(K)$ and almost all $(\tau) \in G(K)^e$.

The proof of Theorem A uses methods developed by Geyer in [2] in order to prove that, for almost all $(\tau) \in G(\mathbb{Q})^e$, the group $\langle G(\mathbb{Q}_v)^{\tau_1}, ..., G(\mathbb{Q}_v)^{\tau_e} \rangle$ is isomorphic to the free product of e copies of $G(\mathbb{Q}_v)$. Here v is an absolute value of \mathbb{Q} , and \mathbb{Q}_v

is the Henselization of \mathbb{Q} with respect to ν .

The fixed field of $\sigma_1, ..., \sigma_e$ in K_s is denoted by $K_s(\sigma)$. It was proved in [3] that if K is a countable Hilbertian field, then the fields $K_s(\sigma)$ are PAC for almost all $(\sigma) \in G(K)^e$. This is the Nullstellensatz. Here a field F is said to be PAC if every absolutely irreducible variety defined over F has an F-rational point. Again, using the stability property of fields of characteristic zero, proved in [1], we strengthen the Nullstellensatz and prove

THEOREM B. Let K be a countable Hilbertian field of characteristic zero. Then for almost all $(\sigma) \in G(K)^e$, the maximal Galois extension of K contained in $\widetilde{K}(\sigma)$ is a PAC field. Here \widetilde{K} is the algebraic closure of K.

A perfect PAC field F such that $G(F) \cong \widehat{F}_e$ is said to be an e-free Ax field. It was proved in [6] that the elementary theory of e-free Ax fields is decidable. Recalling that a separable algebraic extension of a PAC field is again a PAC field, one can combine Theorems A and B to obtain new models for e-free Ax fields.

THEOREM C. Let K be a countable Hilbertian field of characteristic zero. Then $K(\sigma^{\tau_1}, ..., \sigma^{\tau_e})$ is an e-free Ax field for almost all $\sigma \in G(K)$ and almost all $(\tau) \in G(K)^e$.

1. Proof of Theorem A

Consider two sets A and B of n elements, let s be a permutation of A and let σ be a permutation of B. We say that σ is *similar* to s, if there exists a bijective map $\tau: A \to B$ such that $s = \tau^{-1} \sigma \tau$. If A = B, then σ and s are conjugate in S(A), the group of all permutations of A.

Let $s \in S_n$ and let $\sigma \in G(K)$. We say that σ satisfies the condition P(n, s) if there exists a sequence f_1, f_2, f_3, \ldots of polynomials in K[X] of degree n such that the following conditions hold:

- (a) The splitting field K_i of f_i over K is Galois and $\mathfrak{G}(K_i/K) \cong S_n$.
- (b) The representation of σ as a permutation of the roots of f_i is similar to s, for every $i \ge 1$.
- (c) The sequence $K_1, K_2, K_3, ...$ is linearly disjoint over K.

LEMMA 1.1. Almost all $\sigma \in G(K)$ satisfy P(n, s) for every n and s.

Proof. It suffices to prove that, for a given n and s, almost all $\sigma \in G(K)$ satisfy the condition P(n, s). Indeed, we can find polynomials f_1, f_2, f_3, \ldots in K[X] of degree n, satisfying (a) and (c) (by [4; Section 3]). For every $i \ge 1$ we choose an element $s_i \in \mathfrak{G}(K_i/K)$ which is similar to s. By the Borel-Cantelli Lemma, for almost all $\sigma \in G(K)$ there exist infinitely many numbers s such that s (see [5; Lemma 1.4]). Every such s satisfies the condition s s.

LEMMA 1.2. For every finite group H, generated by e elements, there exists a finite group G generated by e elements $g_1, ..., g_e$ and an epimorphism $\theta: G \to H$ such that every permutation s of $g_1, ..., g_e$ can be extended to an automorphism of G.

Proof. Consider the free group F_e generated by the letters $z_1, ..., z_e$. This group has only finitely many normal subgroups, say, $N_1, ..., N_r$, such that $F_e/N_i \cong H$. The intersection $N = N_1 \cap ... \cap N_r$ is a characteristic subgroup of F_e of a finite index. Indeed, every $\alpha \in \operatorname{Aut}(F_e)$ induces a permutation of $\{N_1, ..., N_r\}$, hence $N^\alpha = N$. Let $G = F_e/N$ and let $g_i = z_i N$ for i = 1, ..., n. Then G is an extension of H and it is generated by $g_1, ..., g_e$. Let s be a permutation of $g_1, ..., g_e$. Then s induces an automorphism α of F_e by

$$\alpha(z_i) = z_j \Leftrightarrow s(g_i) = g_j.$$

Hence α induces an automorphism $\tilde{\alpha}$ of G that extends s. Theorem A will follow now from Lemma 1.1 and from

Lemma 1.3. Let $\sigma \in G(K)$ be an element that satisfies the conditions P(n, s) for every n and s. Then

$$\langle \sigma^{\tau_1}, ..., \sigma^{\tau_e} \rangle \cong \hat{F}_e$$

for almost all $(\tau) \in G(K)^e$.

Proof. It was proved in [4; p. 284] that if a profinite group G of rank $\leq e$ has every finite group H of rank $\leq e$ as a homomorphic image, then $G \cong \hat{F}_e$. It follows therefore, by Lemma 1.2, that in order to prove our Lemma it suffices to prove:

If $H = h_1, ..., h_e$ is a finite group such that every permutation of $\{h_1, ..., h_e\}$ can be extended to an automorphism of H, then for almost all $(\tau) \in G(K)^e$ there exists a continuous epimorphism of $(\sigma^{\tau_1}, ..., \sigma^{\tau_e})$ onto H.

Indeed, the symmetric group S_e operates on such an H in an obvious way. Let $H \cdot S_e$ be the semi-direct product of H and S_e . This is a finite group and therefore it can be considered as a subgroup of a symmetric group S_n . All the elements h_1, \ldots, h_e are conjugate in $H \cdot S_e$, hence also in S_n . Hence they are all similar to $s = h_1$. By assumption, σ satisfies the condition P(n, s). Let $i \ge 1$ and let s_{i1}, \ldots, s_{ie} be the elements of $\mathfrak{G}(K_i/K)$ that correspond to h_1, \ldots, h_e under the isomorphism $\mathfrak{G}(K_i/K) \cong S_n$. All these elements are similar to S. By assumption, $\sigma | K_i$ is similar to S as well. Hence there exist t_{i1}, \ldots, t_{ie} in $\mathfrak{G}(K_i/K)$ such that $t_{ii}^{-1}(\sigma | K_i) t_{ii} = s_{ii}$ for $i = 1, \ldots, e$.

By [5; Lemma 4.1] and by (c) we have that for almost all (τ) in $G(K)^e$ there exists an i such that $\tau_j|K_i=t_{ij}$ for $j=1,\ldots,e$. In this case we have $(\tau_j^{-1}\ \sigma\tau_j)|K_i=s_{ij}$ for $j=1,\ldots,e$. Hence there exists a continuous epimorphism of $\langle \sigma^{\tau_i},\ldots,\sigma^{\tau_e}\rangle$ onto H, since $H\cong\langle s_{ij},\ldots,s_{ie}\rangle$.

Theorem A and the Theorem of Geyer cited in the introduction give rise to

PROBLEM 1. Let K be a Hilbertian field and let $\sigma \in G(K)$. Is it true that for almost all $(\tau) \in G(K)^e$, the group $\langle \sigma^{\tau_1}, ..., \sigma^{\tau_e} \rangle$ is isomorphic to the free product of e copies of $\langle \sigma \rangle$?

We note that the method of proof of Theroem A actually gives also

THEOREM A*. If K is a Hilbertian field, then $\langle \sigma^{\tau_1}, ..., \sigma^{\tau_1} \rangle \cong \hat{F}_{ef}$ for almost all $(\sigma) \in G(K)^e$ and almost all $(\tau) \in G(K)^f$.

2. Proof of Theorem B

Let K be a countable Hilbertian field of characteristic zero. For a $(\sigma) \in G(K)^e$ we denote by N_{σ} the maximal Galois extension of K which is contained in $\tilde{K}(\sigma)$. It is the intersection of all the fields $\tilde{K}(\sigma_1^{\tau_1}, ..., \sigma_e^{\tau_e})$ for $\tau \in G(K)$.

Recall that an absolutely irreducible polynomial $f \in K[T_1, ..., T_r, X]$ is said to be stable with respect to $T_1, ..., T_r$, if $\deg_x f > 0$ and if the Galois group of f over L(T) is isomorphic to the Galois group G of f over K(T) for every algebraic extension L of K.

Let f be such a polynomial and let A be a non-void K-open set in the affine space S^r . As in the proof of Theorem 4.4 of [1], one can inductively construct a linearly disjoint sequence $K_1, K_2, K_3, ...$, of Galois groups of K, with Galois groups isomorphic to G, such that for every $i \ge 1$ there exists a point $(a_1, ..., a_r, b) \in K_i^{r+1}$ such that $(a) \in A$ and f(a, b) = 0. If $(\sigma) \in G(K_i)^e$, then $K_i \subseteq N_\sigma$. Further, the set

$$S(f, A) = \bigcup_{i=1}^{\infty} G(K_i)^c$$

has measure one in $G(K)^e$, by Lemma 4.1 of [4]. Since there are only countably many possible pairs (f, A) the intersection $S = \bigcap S(f, A)$ is also a set of measure one. If $(\sigma) \in S$ then for every pair (f, A) as above there exists

 $(a,b) \in N_{\sigma}^{r+1}$ such that $(a) \in A$ and f(a,b) = 0. It follows that N_{σ} is a PAC field, by Lemma 4.1 of [1].

PROBLEM 2. Is it true that for almost all $\sigma \in G(\mathbb{Q})$ there exists a sequence $\tau_1, \tau_2, \tau_3, \ldots$ in $G(\mathbb{Q})$ such that $\langle \sigma^{\tau_1}, \sigma^{\tau_2}, \sigma^{\tau_3}, ... \rangle$ is isomorphic to \hat{F}_{ω} , the free pro-finite group on \aleph_0 generators?

References

- 1. M. Fried and M. Jarden, "Diophantine properties of subfields of $\widetilde{\mathbb{Q}}$ ", Amer. J. Math. to appear
- W.-D. Geyer, "Galois groups of intersections of local fields", Israel J. Math., to appear.
 M. Jarden, "Elementary statements over large algebraic fields", Trans. Amer. Math. Soc., 164 (1972), 67-91.
- 4. M. Jarden, "Algebraic extensions of finite corank of Hilbertian fields", Israel J. Math., 18 (1974), 279-307.
- 5. M. Jarden, "Roots of unity over large algebraic fields", Math. Ann., 213 (1975), 109-127.
 6. M. Jarden and U. Kiehne, "The elementary theory of algebraic fields of finite corank", Invent. Math. 30 (1975), 275-294.

Department of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.