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Introduciion

It was proved in [4] that if K is a Hilbertian field and e is a positive integer, then
for almost all (o) = (o, ..., 6,) € G(K)%, the closed subgroup <o) = <oy, ..., 0o
generated by oy, ..., 0, is isomorphic to F,, the free pro-finite group on e generators.
This is the Free Generators Theorem. Here G(K) is the absolute Galois group,
G(K,/K), of K and  almost all ” is meant in the sense of the Haar measure of G(K).
It was also proved in [4] that given an e-tuple (¢) € G(K)®, the set

S(6) ={(6)eGK)|IreGK):t "oyt =0/ fori=1,.., ¢

has measure zero. Therefore the Free Generators Theorem implies nothing on the
groups (%, ..., 6™>. In this work we fill up this gap and prove

TueoreM A. Let K be a Hilbertian field. Then {o%, ..., 0") = F, for almost
all o e G(K) and almost all () e G(K)".

The proof of Theorem A uses methods developed by Geyer in [2] in order to
prove that, for almost all () € G(Q)*, the group (G(Q,)", ..., G(Q,)*) is isomorphic
to the free product of e copies of G(Q,). Here v is an absolute value of @, and Q,
is the Henselization of @ with respect to v.

The fixed field of o4, ...,0, in K, is denoted by K,(0). It was proved in [3] that
if K is a countable Hilbertian field, then the fields K (¢) are PAC for almost all
(0) € G(K)®. This is the Nullstellensatz. Here a field F is said to be PAC if every
absolutely irreducible variety defined over F has an F-rational point. Again, using
the stability property of fields of characteristic zero, proved in [1], we strengthen
the Nullstellensatz and prove

THEOREM B. Let K be a countable Hilbertian field of characteristic zero. Then
for almost all (¢) € G(K)®, the maximal Galois extension of K contained in R(@)isa
PAC field. Here K is the algebraic closure of K.

A perfect PAC field F such that G(F) = F, is said to be an e-free Ax field. It
was proved in [6] that the elementary theory of e-free Ax fields is decidable. Re-
calling that a separable algebraic extension of a PAC field is again a PAC field, one
can combine Theorems A and B to obtain new models for e-free Ax fields.

TueoreM C. Let K be a countable Hilbertian field of characteristic zero. Then
K(c™, ..., 6%) is an e-free Ax field for almost all o€ G(K) and almost all (1) e G(K)".
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1. Proof of Theorem A

Consider two sets 4 and B of n elements, let s be a permutation of 4 and let ¢
be a permutation of B. We say that o is similar to s, if there exists a bijective map
7: A - B such that s = t "' gt. If 4 = B, then o and s are conjugate in S(4), the
group of all permutations of A.

Let se S, and let 0 e G(K). We say that ¢ satisfies the condition P(n, s) if there
exists a sequence fi, fs, f3, ... of polynomials in K[X] of degree n such that the
following conditions hold:

(a) The splitting field K; of f; over K is Galois and G(K,/K) == S,.

(b) The representation of ¢ as a permutation of the roots of f; is similar to s,
for everyi = 1.

(¢) The sequence Ky, K,, K3, ... is linearly disjoint over K.
Lemma 1.1, Almost all o € G(K) satisfy P(n, s) for every n and s.

Proof. 1t suffices to prove that, for a given n and s, almost all o e G(K) satisfy
the condition P(n, 5). Indeed, we can find polynomials f, /5, f3, ... in K[X] of degree
n, satisfying (a) and (c) (by [4; Section 3]). For every i = 1 we choose an element
s;€ ®(K,/K) which is similar to s. By the Borel-Cantelli Lemma, for almost all
o € G(K) there exist infinitely many numbers i such that ¢|K; = s, (see [5; Lemma
1.4]). Every such o satisfies the condition P(#, s).

LeMmMmA 1.2. For every finite group H, generated by e elements, there exists a finite
group G generated by e elements g4, ..., g, and an epimorphism 0 : G — H such that
every permutation s of gy, ..., g, can be extended to an automorphism of G.

Proof. Consider the free group F, generated by the letters zy, ..., z,. This group
has only finitely many normal subgroups, say, Ny, ..., N,, such that F,/N; = H.
The intersection N = Ny ... N, is a characteristic subgroup of F, of a finite
index. Indeed, every aeAut(F,) induces a permutation of {N,,...,N,}, hence
N*= N. Let G = F,/N and let g; =2zN for i =1, ...,n. Then G is an extension
of H and it is generated by gy, ..., g,. Let s be a permutation of g, ..., g,. Then s
induces an automorpbism « of F, by

a(z;) = Zj¢>s(gi) =g

Hence o induces an automorphism & of G that extends s.
Theorem A will follow now from Lemma 1.1 and from

Lemma 1.3, Let o€ G(K) be an element that satisfies the conditions P(n,s) for
every n and s, Then
{o™, .., 0> F,

Jor almost all (x) e G(K)".
Proof. It was proved in [4; p. 284] that if a profinite group G of rank < e has

every finite group H of rank < e as a homomorphic image, then G = F,. Tt follows
therefore, by Lemma 1.2, that in order to prove our Lemma it suffices to prove:
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IfH="hy, .. h,is a finite group such that every permutation of {hy, ..., h,} can
be extended to an automorphism of H, then for almost all (t) ¢ G(K)® there exists a
continuous epimorphism of {d*, ..., 6> onto H.

Indeed, the symmetric group S, operates on such an H in an obvious way. Let
H:S, be the semi-direct product of H and S,. This is a finite group and therefore it
can be considered as a subgroup of a symmetric group S,. All the elements Ay, ..., &,
are conjugate in H-S,, hence also in S,. Hence they are all similar to s = h,. By
assumption, ¢ satisfies the condition P(n, s). Let i = 1 and let s, ..., §;, be the ele-
ments of (K ;/K) that correspond to A4, ..., &, under the isomorphism G(K/K) = S,
All these elements are similar to S. By assumption, ¢]K; is similar to s as well. Hence
there exist #;4, ..., t;, in G(K,/K) such that #;;7! (¢|K) #;; = s;; for j=1,.., e

By [5; Lemma 4. 1] and by (c) we have that for almost all (t) in G(K)° there exists
an i such that v;|K; = t; for j =1, ..., e. In this case we have (7;”! o1))|K; = S
forj =1, ..., e. Hence there exists a continuous epimorphism of {¢™, ..., ¢"> onto H,
since H 22 {Si15 +.vs Sio0-

Theorem A and the Theorem of Geyer cited in the introduction give rise to

ProBLEM 1. Let K be a Hilbertian field and let o e G(K). Is it true that for almost
all (v)e G(K)®, the group {o™, ..., %) is isomorphic to the free product of e copies

of {o>?
We note that the method of proof of Theroem A actually gives also

Tacorem A*, If K is a Hilbertian field, then {c™, ..., c""> = Fe,» for almost all
(0) € G(K)® and almost all (1) e G(K).

2. Proof of Theorem B

Let K be a countable Hilbertian field of characteristic zero. For a (¢) ¢ G(K)*
we denote by N, the maximal Galois extension of K which is contained in K(o).
It is the intersection of all the fields K(a%", ..., 6%¢) for € G(K).

Recall that an absolutely irreducible polynomial fe K[T, ..., T,, X] is said to
be stable with respect to Ty, ..., T,, if deg, f > 0 and if the Galois group of f over
L(T) is isomorphic to the Galois group G of f over K(T) for every algebraic
extension L of K.

Let f be such a polynomial and let 4 be a non-void K-open set in the affine space
S". As in the proof of Theorem 4.4 of [1], one can inductively construct a linearly
disjoint sequence K4, K,, K3, ..., of Galois groups of K, with Galois groups isomor-
phic to G, such that for every i > 1 there exists a point (a5, ..., @,, b)) e K;** such
that (a)e 4 and f(a, b) = 0. If (¢) e G(K}), then K; S N,. Further, the set

S A) = U 6Ky

has measure one in G(K)°, by Lemma 4.1 of [4]. Since there are only countably many
possible pairs (f, A) the intersection S = n S(f, 4) is also a set of measure one. If
(0) € S then for every pair (f; 4) as above there exists
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(a, b)eN."™t such that (@)e A and f(a, b) = 0. It follows that N, is a PAC field,
by Lemma 4.1 of [1].

PROBLEM 2. 5 it true that for almost all 6 € G(Q) there exists a sequence Ty, Ta, T3, ...
in G(Q) such that {&™, 6%, 6™, ...> is isomorphic to F,, the free pro-finite group on
N generators?
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