An Analogue of Artin-Schreier Theorem

Moshe Jarden

Department of Mathematics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

Introduction

Let v be an absolute value of \mathbb{Q} , let $\hat{\mathbb{Q}}_v$ be the completion of \mathbb{Q} with respect to v and let $\mathbb{Q}_v = \tilde{\mathbb{Q}} \cap \hat{\mathbb{Q}}_v$ be the algebraic subfield of $\hat{\mathbb{Q}}_v$. Then \mathbb{Q}_v has the following two properties:

- (A) \mathbb{Q}_v has no non-trivial automorphisms, in particular \mathbb{Q}_v is a Galois extension of no proper subfield.
- (B) \mathbb{Q}_v has no proper subfield of a finite co-degree.

(The *co-degree* of a subfield E of F is simply the degree of F over E.) If v is archimedean, then $\mathbb{Q}_v = \tilde{\mathbb{Q}} \cap \mathbb{R}$, and (B) is a consequence of the famous (cf. Jacobson [5, p. 316]).

Artin-Schreier Theorem. If a proper subfield of an algebraically closed field has a finite co-degree, then this co-degree is equal to 2.

If v is non-archimedean, then $\mathbb{Q}_v = \tilde{\mathbb{Q}} \cap \hat{\mathbb{Q}}_v$, and (B) is a consequence of

F. K. Schmidt Theorem. A field F which is not separably closed can be Henselian with respect to at most one rank-1 valuation (see [14]).

Note that the Galois group $G(\mathbb{Q}_v) = \mathscr{G}(\tilde{\mathbb{Q}}_v/\mathbb{Q}_v)$ is finitely generated (cf. Jakovlev [6] and Zel'venskii [18]). Hence \mathbb{Q}_v is of the form $\tilde{\mathbb{Q}}(\sigma)$, where $(\sigma) = (\sigma_1, \ldots, \sigma_e) \in G(\mathbb{Q})^e$ and $\tilde{\mathbb{Q}}(\sigma)$ is the fixed field in $\tilde{\mathbb{Q}}$ of $\sigma_1, \ldots, \sigma_e$. The e-tuples that appear as generators of $G(\mathbb{Q}_v)$, for all v, are "special", because, as was shown in [7, Theorem 2.5 and Lemma 2.9], they form only a zero set in $G(\mathbb{Q})^e$ with respect to the Haar measure μ (see [8, Sect. 4] for more details on the Haar measure of $G(\mathbb{Q})^e$). If we replace those special (σ) 's with arbitrary ones, then (A) and (B) may become false. Indeed take $E = \tilde{\mathbb{Q}}(\tau_1, \ldots, \tau_d)$ for some $\tau_1, \ldots, \tau_d \in G(\mathbb{Q})$ and let F be a proper finite Galois extension of E. Then $F = \tilde{\mathbb{Q}}(\sigma_1, \ldots, \sigma_e)$ for some $\sigma_1, \ldots, \sigma_e \in G(\mathbb{Q})$ and F has certainly none of the properties (A) and (B). By choosing τ_1, \ldots, τ_d and F appropriately, one can actually achieve every e in this way.

In [8] it was however conjectured that those counter examples are exceptional. More precisely, the following conjecture was made.

If K is a Hilbertian field, then for almost all $(\sigma) \in G(K)^e$ we have:

- (C) $K_s(\sigma)$ is a Galois extension of no proper subfield that contains K.
- (D) $K_s(\sigma)$ has no proper subfield of finite co-degree that contains K.

In establishing this conjecture three weaker theorems were proved:

- (E) Let K be a global field. Then for almost all $(\sigma) \in G(K)^e$, the centralizer of $\langle \sigma \rangle$ in G(K) is equal to $\langle \sigma \rangle$ if e = 1, and is trivial if $e \ge 2$ [8, Theorem 14.1].
- (F) Let K be a Hilbertian field, then for almost all $(\sigma) \in G(K)^e$, the field $K_s(\sigma)$ contains no formally real subfield of finite co-degree that contains K [8, Theorem 12.2].
- (G) (D) is true for e = 1 [8, Theorem 13.1].

In this work we make a further major step in proving the conjecture and prove:

(H) Let K be a Hilbertian field. Then for almost all $(\sigma) \in G(K)^e$ the field $K_s(\sigma)$ is a Galois extension of no proper subfield of a finite co-degree that contains K.

If K is a global field, then for almost all $(\sigma) \in G(K)^e$ we have:

- (I) $K_s(\sigma)$ is a Galois extension of no proper subfield that contains K.
- (J) If E is a subfield of $K_s(\sigma)$ that contains K such that $K_s(\sigma)/E$ is a finite separable extension, then $[K_s(\sigma):E]$ divides e-1.
- (K) If $1 \le e \le 5$, then $K_s(\sigma)$ is a separable extension of no proper subfield of a finite co-degree that contains K.

Note that (J) is an analogue of Artin-Schreier theorem. As a consequence of (I) we supply in Sect. 9 a counter example to an infinite analogue of Iwasawa-Uchida's theorem.

Notation

= the field of rational numbers. 0 \mathbb{R} = the field of real numbers. = the field of complex numbers. $\hat{\mathbb{Q}}_p$ = the field of p-adic numbers. K_s = the separable closure of a field K. = the algebraic closure of K. = the maximal abelian of K. K_{ab} $K^{(p)}$ = the maximal p-extension of K. = the fixed field of e automorphisms $\sigma_1, \ldots, \sigma_e$ of a field N. $N(\sigma)$ $rank(G) \leq e$ = the pro-finite group G is generated by e elements. $= \operatorname{rank}(\mathscr{G}(K^{(p)}/K)).$ $e_{n}(K)$ $\langle \sigma_1, ..., \sigma_e \rangle$ = the closed subgroup generated by elements $\sigma_1, ..., \sigma_e$ of G. = the free pro-finite group generated by e elements. = a primitive n-th root of unity.

1. The Maximal p-Extension of a Field

For a field E and a prime p we denote by $E^{(p)}$ the maximal p-extension of E. The rank of $\mathcal{G}(E^{(p)}/E)$ is denoted by $e_p(E)$. If $E \subseteq F \subseteq E^{(p)}$ is an intermediate field, then

 $E^{(p)} = F^{(p)}$, since $E^{(p)}$ has no proper p-extensions. If E' is an algebraic extension of E which is linearly disjoint from $E^{(p)}$, then there is an epimorphism $\mathscr{G}(E'^{(p)}/E') \to \mathscr{G}(E^{(p)}/E)$ and hence $e_p(E') \geqq e_p(E)$.

Lemma 1.1. Let p be a prime and let E be a field, which is not formally real if p=2. Then $\mathcal{G}(E^{(p)}/E)$ is a torsion free group.

Proof. If $\mathcal{G}(E^{(p)}/E)$ contains an element of a finite order, then there exists a field $E \subseteq F \subset E^{(p)}$ such that $[E^{(p)}:F] = p$. This however contradicts Theorem 2 of Whaples¹ [17], which implies that $[F^{(p)}:F] = \infty$.

Lemma 1.1 will be used in order to satisfy one of the conditions of the following

Theorem of Serre. If a torsion free pro-p group G contains an open free pro-p subgroup, then G is free too (see [15, p. 413]).

A complement to Serre's theorem is:

Nielsen-Schreier Formula. Let C be either the category of pro-finite groups or the category of pro-p groups. Let G be a free C-group of a finite rank and let H be an open subgroup of G. Then H is also free and

$$rank(H) - 1 = (G:H)(rank(G) - 1)$$

(see [1, p. 108]).

2. Abelian Extensions of Hilbertian Fields

In [8, p. 286] it was proved that if K is a Hilbertian field, then $\langle \sigma_1, \ldots, \sigma_e \rangle \cong \hat{F}_e$ for almost all $(\sigma) \in G(K)^e$ (this is the "Free Generators Theorem"). In this section we prove the analogous result for the group $\mathcal{G}(K_{ab}/K)$.

Lemma 2.1.

Let K be a field and let t be a transcendental element over K. Then every finite Abelian group can be realized over K(t).

Proof. If $char(K) = p \neq 0$, then, by a result of Lenstra, every finite abelian group A can be realized over a finitely generated, purely transcendental extension of K, since the field generated over K by a root of unity is a cyclic extension of K (see [12, p. 322, Corollary 7.5]). By Hilbert irreducibility theorem, which K(t) satisfies, we get that A can be realized also over K(t).

For char(K)=0, the lemma can be found in Frey [3].

Corollary 2.2. If K is a Hilbertian field, then every finite abelian group can be realized over K.

The corollary can be strengthened in the following way:

Theorem 2.3. Let K be a Hilbertian field and let A be a finite abelian group. Then there exists a linearly disjoint sequence K_1, K_2, K_3, \ldots of Galois extensions of K such that $\mathcal{G}(K_i/K) \cong A$ for every $i \geq 1$.

¹ The author is indebted to Wulf-Dieter Geyer for calling his attention to Whaples result

196 M. Jarden

Theorem 2.3 is a consequence of Corollary 1.2 and the following general

Lemma 2.4. Let K be a field and let G be a finite group. Suppose that the direct power G^n is realizable over K for every n. Then there exists a linearly disjoint sequence K_1, K_2, K_3, \ldots of Galois extensions of K such that $\mathcal{G}(K_i/K) \cong G$ for every $i \geq 1$.

Proof. Suppose, by induction, that m linearly disjoint Galois extensions K_1, \ldots, K_m of K have been constructed, such that $\mathcal{G}(K_i/K) \cong G$ for $i=1,\ldots,m$. The field $L=K_1\ldots K_m$ has only a finite number, say n, of subfields that contain K. By assumption, there exists a Galois extension M of K such that $\mathcal{G}(M/K) \cong G^{n+1}$. M is therefore the composition of n+1 linearly disjoint Galois extensions M_1,\ldots,M_{n+1} of K such that $\mathcal{G}(M_j/K) \cong G$. Among the M_j 's there must be one such that $M_j \cap L = K$, since otherwise $M_1 \cap L,\ldots,M_{n+1} \cap L$ are n+1 distinct subfields of L that contain K, which is a contradiction to the definition of n. Define therefore K_{m+1} to be one of the M_j 's for which $M_j \cap L = K$. Then K_1,\ldots,K_m,K_{m+1} are linearly disjoint over K.

The sequence K_1, K_2, K_3, \dots thus constructed satisfies the conclusion of the lemma.

3. The Normalizer of $\langle \sigma_1, \dots, \sigma_e \rangle$ in G(K), for K Hilbertian

Lemma 3.1. If K is a Hilbertian field, then for almost all $(\sigma) \in G(K)^e$, for all fields $K \subseteq E \subseteq K_s(\sigma)$ and for all primes p we have $e_p(E) \supseteq e$.

Proof. It suffices to prove that for a given prime p, for almost all $(\sigma) \in G(K)^e$ and for all fields $K \subseteq E \subseteq K_s(\sigma)$ we have $e_p(E) \supseteq e$.

Indeed, by Theorem 2.3, there exists a linearly disjoint sequence K_1, K_2, K_3, \ldots of Galois extensions of K such that $\mathscr{G}(K_i/K) \cong (\mathbb{Z}/p\mathbb{Z})^e$ for every $i \geq 1$. Let $\sigma_{i1}, \ldots, \sigma_{ie}$ be generators of $\mathscr{G}(K_i/K)$ and let

$$S = \bigcup_{i=1}^{\infty} \left\{ (\sigma) \in G(K)^e | \sigma_j | K_i = \sigma_{ij}, \text{ for } j = 1, ..., e \right\}.$$

Then $\mu(S) = 1$, by [8, Lemma 4.1].

Suppose that $(\sigma) \in S$ and let $K \subseteq E \subseteq K_s(\sigma)$ be an intermediate field. Let i be a positive integer such that $\sigma_j | K_i = \sigma_{ij}$, for j = 1, ..., e. Then $K_i \cap K_s(\sigma) = K$, hence $K_i \cap E = K$ too. It follows that $(\mathbb{Z}/p\mathbb{Z})^e$ is a homomorphic image of $\mathscr{G}(E^{(p)}/E)$. Hence $e_p(E) \ge e$.

Theorem 3.2. Let K be a Hilbertian field. Then for almost all $(\sigma) \in G(K)^e$ the field $K_s(\sigma)$ is a Galois extension of no proper subfield of a finite co-degree that contains K.

Proof. Denote by S the set of all $(\sigma) \in G(K)^e$ that satisfy a) $\langle \sigma \rangle \cong \hat{F}_e$.

- b) For all primes p and for all fields E between K and $K_s(\sigma)$ we have $e_p(E) \ge e$.
- c) $K_s(\sigma)$ contains no formally real subfield of a finite co-degree that contains K. By the free generators theorem, by Lemma 3.1 and by (F) of the introduction, S has the measure 1.

Let $(\sigma) \in S$ and let $F = K_s(\sigma)$. Assume that there exists a field $K \subseteq E \subseteq F$ such that F/E is a finite non trivial Galois extension. Let p be a prime divisor of [F:E]. By

Sylow's theorem there exists a field $E \subseteq E_1 \subset F$ such that F/E_1 is a Galois extension of degree p. Without loss of generality we can assume that $E_1 = E$.

The group $\mathcal{G}(E^{(p)}/E)$ is a torsion-free p-group, by Lemma 1.1. It contains the free pro-p group $\mathcal{G}(E^{(p)}/F)$ of rank e and of index p as a closed subgroup. Hence, by the theorem of Serre $\mathcal{G}(E^{(p)}/E)$ is a free pro-p group. The rank $e_p(E)$ satisfies the Nielsen-Schreier Formula $(e-1)=p(e_p(E)-1)$. Hence $e>e_p(E)$, which is a contradiction to b).

4. The Maximal p-Extension of Fields Underneath $K_s(\sigma)$

Having proved theorem (H) for arbitrary Hilbertian fields, we turn now to the proofs of Theorems (I), (J), and (K) for global fields K. In this section we consider fields $K \subseteq E \subseteq K_s(\sigma)$ and give sufficient conditions for $\mathcal{G}(E^{(p)}/E)$ to be free. We shall use results from local class field theory. They are incorporated in the following lemma, which is a combination of Theorem 9.1, 9.3, and 9.7 of Koch [9].

Lemma 4.1. Let E be an algebraic extension of a global field K. Suppose that for every non archimedean absolute value v of E and for every prime number l, the degree $[E\hat{K}_v:\hat{K}_v]$ is divisible by l^∞ . Suppose further that E is not formally real. Then $\mathscr{G}(E^{(p)}/E)$ is a free pro-p group for every prime p.

The condition " $l^{\infty}|[E\hat{K}_v:\hat{K}_v]$ " is certainly satisfied if \hat{E}_v is algebraically closed, because then $E\hat{K}_v$ contains the separable closure of \hat{K}_v . We give here an additional sufficient condition for the condition to be true.

Lemma 4.2. Let M be a non-archimedean local field and let $\tau \in G(M)$. Then l^{∞} divides $[M_s(\tau):M]$ for every prime l.

Proof (Neukirch). Let l be a prime such that l^{∞} does not divide $[M_s(\tau):M]$. Without loss of generality we can assume that $\zeta_l \in M$. Our assumption implies that $N = M_s(\tau) \cap M^{(l)}$ is a finite extension of M. Further $M^{(l)} = N^{(l)}$ and $\mathcal{G}(N^{(l)}/N)$ is a pro-cyclic group. This however contradicts Theorems 10.3 and 10.4 of Koch [9], according to which the rank of $\mathcal{G}(L^{(l)}/L)$ is at least 2.

Lemma 4.3. Let K be a global field. Then for almost all $(\sigma) \in G(K)^e$, the field $K_s(\sigma)$ has the following property: Suppose that $K_s(\sigma)$ is an algebraic separable extension of a field E that contains K such that $K_s(\sigma)/E$ is either finite or a pro-cyclic extension. Then for every algebraic extension E' of E and every prime P, the group $\mathcal{G}(E'^{(P)}/E')$ is pro-P free.

Proof. Denote by S the set of all $(\sigma) \in G(K)^e$ with the following properties:

- a) The completion of $K_s(\sigma)$ under every absolute value is algebraically closed.
- b) There does not exist a field $K \subseteq E \subseteq K_s(\sigma)$ of finite co-degree which is formally real.

By [2, Lemma 5.3] and by (F), S has measure 1.

Let $(\sigma) \in S$ and let $F = K_s(\sigma)$. Let E, E' be fields such that $K \subseteq E \subseteq F$, such that F/E is either finite or a pro-cyclic extension and such that E' is an algebraic extension of E. Then E and hence E' satisfies the conditions of Lemma 4.1 by a), b), by Artin-Schreier theorem and by Lemma 4.2. It follows that $\mathcal{G}(E'^{(p)}/E')$ is free for every prime p.

5. The Trivial Normalizer Theorem, for K global

We recall that a non trivial pro-p group G is free if and only if cd(G) = 1 (cf. Ribes [13, p. 235]).

Lemma 5.1. Let G be a pro-p group and let H be a normal closed subgroup of G. Suppose that both H and G/H are non trivial free pro-p groups and H is finitely generated. Then G is not free.

Proof. Our assumptions imply that cd(H) = cd(G/H) = 1. Further $H^1(H, F_p)$ is finite. It follows that

$$\operatorname{cd}(G) = \operatorname{cd}(H) + \operatorname{cd}(G/H) = 2$$

(cf. Ribes [13, p. 221]). Hence G is not free.

Theorem 5.2. If K is a global field, then for almost all $(\sigma) \in G(K)^e$ the field $K_s(\sigma)$ is a Galois extension of no proper subfield that contains K, i.e. $\langle \sigma \rangle$ is its own normalizer in G(K).

Proof. Denote by S the set of all $(\sigma) \in G(K)^e$ such that: a) $\langle \sigma \rangle \cong \hat{F}_e$.

b) If $E_1 \subseteq K_s(\sigma)$ and $K_s(\sigma)/E_1$ is a pro-cyclic extension, then $\mathscr{G}(E_1^{(p)}/E_1)$ is a free pro-p group for every prime p.

c) $K_s(\sigma)$ is a Galois extension of no proper subfield of a finite co-degree that contains K.

By the free generators theorem, by Lemma 4.3 and by Theorem 3.2, S is of measure 1.

Let $(\sigma) \in S$ and let $F = K_s(\sigma)$. Assume that there exists a proper subfield E of F such that $\mathcal{G}(F/E)$ is Galois. By c) the group $\mathcal{G}(F/E)$ is torsion free. Hence, by Sylow theorem for pro-finite groups there exists a field $E \subseteq E_1 \subset F$ such that $\mathcal{G}(F/E_1) \cong \hat{\mathbb{Z}}_p$ for some prime p. By a), $\mathcal{G}(F^{(p)}/F)$ is a non trivial free pro-p group. Hence $\mathcal{G}(E_1^{(p)}/E_1)$ cannot be free, by Lemma 5.1. This is however a contradiction to b).

6. On the Bottom Conjecture

We come now to the analogue of Artin-Schreier theorem.

Theorem 6.1. Let K be a global field and let $e \ge 2$. Then for almost all $(\sigma) \in G(K)^e$, the field $F = K_s(\sigma)$ has the following property:

If F is a finite separable extension of a field E that contains K, then [F:E] divides e-1.

Moreover, let F' be the Galois closure of F/E, let p be a prime and let q be the largest power of p that divides [F':E]. Then $q \leq [F':F]$.

Proof. Denote by S the set of all $(\sigma) \in G(K)^e$ such that:

- a) $\langle \sigma \rangle \cong \hat{F}_a$.
- b) For every prime p and for every field $E \subseteq K_s(\sigma)$ such that $K_s(\sigma)/E$ is separable algebraic, $e_p(E) \ge e$.
- c) For every prime p and fields $E \subseteq E'$ such that $K_s(\sigma)$ is a finite separable extension of E and E' is an algebraic extension of E, the group $\mathscr{G}(E'^{(p)}/E')$ is free.

Then S has measure 1, by the free generators theorem, by Lemma 3.1, and by Lemma 4.3.

Let $(\sigma) \in S$ and let F, E, and F' be as in the theorem. Let further P be a prime and let $E_1 = F \cap E^{(p)}$. Then $e_p(E_1) \leq e$, since $\mathscr{G}(E^{(p)}/E_1)$ is a homomorphic image of $\mathscr{G}(F^{(p)}/F)$. On the other hand we have, by b), that $E_p(E_1) \geq e$. Hence $e_p(E_1) = e$. Now $\mathscr{G}(E^{(p)}/E_1)$ is a closed subgroup of the free pro-P group $\mathscr{G}(E^{(p)}/E)$, hence $e-1 = [E_1:E](e_p(E)-1)$, by Nielsen-Schreier formula. An additional use of b) implies $e_p(E) \geq e$. It follows that $e_p(E) = e$ and that $[E_1:E] = 1$, i.e. $F \cap E^{(p)} = E$.

Denote by p^i and p^j the largest powers of p that divide [F:E] and [F':F], respectively, and let $q = p^{i+j}$. By Sylow's theorem there exists a field $E \subseteq E' \subseteq F'$ such that [F':E'] = q. The degree [E':E] is prime to p, hence E' is linearly disjoint from $E^{(p)}$ over E, hence

$$e_p(E') \ge e. \tag{1}$$

Also F'/E' is a p-extension and $\mathscr{G}(E'^{(p)}/E')$ is a free pro-p group, by c). Hence

$$e_p(F') - 1 = q(e_p(E') - 1)$$
. (2)

Another application of Nielsen-Schreier formula gives

$$rank(G(F')) - 1 = [F':F](e-1),$$

and since $e_p(F') = \operatorname{rank}(G(F'))$ we obtain

$$e_p(F') - 1 = [F':F](e-1).$$
 (3)

Using (1)–(3) we get that $q \le [F':F]$ and that p^i divides e-1. Since this is true for every p we have that [F:E] divides e-1.

Our last main result is the proof of the bottom conjecture in some cases.

Corollary 6.2. Let K be a global field and let $1 \le e \le 5$. Then for almost all $(\sigma) \in G(K)^e$ the field $K_s(\sigma)$ is a separable extension of no proper subfield E of a finite co-degree that contains K.

Proof. The corollary is true for e=1, by (G) and suppose therefore that $e \ge 2$. Use the notation of Theorem 6.1, let $(\sigma) \in S$ and $F=K_s(\sigma)$. Assume that there exists a field $E \subseteq F$ such that F/E is a finite proper separable extension.

If e=2, then [F:E] divides 1, which is a contradiction.

If e=3, then [F:E]=2. Hence F/E is Galois, hence F'=F, q=2 and $1 \ge 2$, a contradiction.

If e=4, then [F:E]=3 and [F':F] divides 2. Hence q=3 and $2 \ge 3$, a contradiction.

Suppose that e=5. Then [F:E] equals 2 or 4. The case [F:E]=2 gives a contradiction as in the case e=3. Suppose therefore that [F:E]=4. Then [F':F] divides 6. If 2 divides [F':F] then for p=2 we have that q=8, hence $6 \ge 8$, a contradiction. Otherwise q=4, hence $3 \ge 4$, again a contradiction.

7. Infinite Counter Examples to Iwasawa-Uchida's Theorem

Iwasawa and Uchida independently proved in [4] and [16] the following

Theorem. Let K and L be two number fields and let $\alpha: G(K) \to G(L)$ be an isomorphism of their Galois groups. Then α is induced by an inner automorphism of $G(\mathbb{Q})$. In particular K is isomorphic to L.

Our first counter example shows that the theorem does not remain true if the condition "K and L are number fields" is replaced by "K and L are algebraic extensions of \mathbb{Q} ". Indeed, by Corollary 7.2 of [8] there exists a subset S of $G(\mathbb{Q})^e$ of cardinality 2^{\aleph_0} such that $\langle \sigma \rangle \cong \hat{F}_e$ for every $(\sigma) \in S$, but $\tilde{\mathbb{Q}}(\sigma) \not\cong \tilde{\mathbb{Q}}(\sigma')$ for every two distinct e-tuples (σ) and (σ') in S.

A consequence of Iwasawa-Uchida's theorem is the following

Corollary. Let K be a number field. Then G(K) is a complete group if and only if Aut K is a trivial group.

Now, Theorem 5.2 can be rephrased for Q as:

Theorem 7.1. The group $\operatorname{Aut} \tilde{\mathbb{Q}}(\sigma)$ is trivial for almost all $(\sigma) \in G(\mathbb{Q})^e$.

Consider therefore, for $e \ge 2$, a $(\sigma) \in G(\mathbb{Q})^e$ such that $\langle \sigma \rangle \cong \hat{F}_e$ and such that $\operatorname{Aut} \tilde{\mathbb{Q}}(\sigma)$ is trivial. It is known that \hat{F}_e has a trivial center (cf. [8, Theorem 16.1]), but \hat{F}_e is not a complete group, since it has automorphisms which are not inner. For example, if z_1, \ldots, z_e are generators of \hat{F}_e , then the automorphism induced by the map $(z_1, \ldots, z_e) \mapsto (z_1^{-1}, \ldots, z_e^{-1})$ is not inner. It follows that the corollary is false if K is replaced by $\tilde{\mathbb{Q}}(\sigma)$.

References

- 1. Binz, E., Neukirch, J., Wenzel, G.H.: A subgroup theorem for free products of pro-finite groups. J. Algebra 19, 104-109 (1971)
- 2. Fried, M., Jarden, M.: Stable extensions and fields with the global density property. Canad. J. Math. 28, 774-787 (1976)
- 3. Frey, G.: Maximal abelsche Erweiterung von Funktionenkörpern über lokalen Körpern. (to appear)
- 4. Iwasawa, K.: Automorphisms of Galois groups of number fields (manuscript)
- 5. Jacobson, N.: Lectures in abstract algebra. III. Princeton: Van Nostrand 1964
- Jakovlev, A.V.: The Galois group of the algebraic closure of a local field. Math. USSR Izv. 2, 1231– 1269 (1968)
- 7. Jarden, M.: Elementary statements over large algebraic fields. Trans. AMS 164, 67–91 (1972)
- 8. Jarden, M.: Algebraic extensions of finite corank of Hilbertian fields. Israel J. Math. 18, 279–307 (1974)
- Koch, H.: Galoissche Theorie der p-Erweiterungen. Berlin: VEB Deutscher Verlag der Wissenschaften 1970
- 10. Lang, S.: Introduction to algebraic geometry. New York: Wiley 1964
- 11. Lang, S.: Algebra. Reading: Addison-Wesley 1967
- 12. Lenstra, H.W., Jr.: Rational functions invariant under a finite abelian group. Invent. Math. 25, 299–325 (1974)
- 13. Ribes, L.: Introduction to profinite groups and Galois cohomology. Kingston: Queen's University 1970
- 14. Schmidt, F.K.: Mehrfach perfekte Körper. Math. Ann. 108, 1-25 (1933)
- 15. Serre, J.-P.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413-420 (1965)
- 16. Uchida, K.: Isomorphisms of Galois groups. J. Math. Soc. Japan 28, 617-620 (1976)
- 17. Whaples, G.: Algebraic extensions of arbitrary fields. Duke Math. J. 24, 201-204 (1957)
- Zelvenskii, I.G.: On the algebraic closure of a local field for p=2. Math. USSR Izv. 6, 925–937 (1972)