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Introduction

Let v be an absolute value of @, let (D be the completion of @ with respect to v and
let @, = (Dm(D" be the algebraic subfield of (D Then @, has the following two
properties :

(A) @, has no non-trivial automorphisms, in particular ©, is a Galois extension of
no proper subfield.

(B) Q, has no proper subfield of a finite co-degree.

(The co-degree of a subfield E of F is simply the degree of F over E)
If v is archimedean, then @, =QnR, and (B) is a consequence of the famous (cf.
Jacobson [5, p. 316]).

Artin-Schreier Theorem. If a proper subfield of an algebraically closed field has a
Jinite co-degree, then this co-degree is equal to 2.

If v is non-archimedean, then (Dv:(Dm(Dp, and (B) is a consequence of

F. K. Schmidt Theorem. A field F which is not separably closed can be Henselian
with respect to at most one rank-1 valuation (see [14]).

Note that the Galois group G(Q,) :{5(@”/([)”) is finitely generated (cf. Jakovlev
[6] and Zel'venskii [18]). Hence @, is of the form @Q(s), where
(0)=(0,,...,6,)eG(Q)* and Q(o) is the fixed field in @ of 5, ...,5,. The e-tuples
that appear as generators of G(Q,), for all v, are “special”, because, as was shown in
[7, Theorem 2.5 and Lemma 2.97, they form only a zero set in G(0Q)° with respect to
the Haar measure u (see [8, Sect. 4] for more details on the Haar measure of
G(Q)). If we replace those special (o)’s with arbitrary ones, then (A) and (B) may
become false. Indeed take E = (1~)("c 1) for some 7, ..., 7,e G(Q) and let F be a
proper finite Galois extension of E. Then F= Q(O‘l, ....0,) for some
0y,....0,6G(Q) and F has certainly none of the properties (A) and (B). By
choosing Ty..-, Ty and F appropriately, one can actually achieve every e in this
way.
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In [8] it was however conjectured that those counter examples are exceptional.
More precisely, the followsing conjecture was made.

If K is a Hilbertian field, then for almost all (0)e G(K)* we have :
(C) K(o0) is a Galois extension of no proper subfield that contains K.
(D) K(0) has no proper subfield of finite co-degree that contains K.

In establishing this conjecture three weaker theorems were proved:

(E) Let K be a global field. Then for almost all (6)e G(K)*, the centralizer of {o)
in G(K) is equal to {o) if e=1, and is trivial if e=2 [8, Theorem 14.1].
(F) Let K be a Hilbertian field, then for almost all (6)e G(K), the field K (o)
contains no formally real subfield of finite co-degree that contains K [8, Theorem
12.2].
(G) (D) is true for e=1 [8, Theorem 13.1].

In this work we make a further major step in proving the conjecture and prove:

(H) Let K be a Hilbertian field. Then for almost all (6)e G(K)® the field K (o) is a
Galois extension of no proper subfield of a finite co-degree that contains K.

If K is a global field, then for almost all ()e G(K)® we have:
() K (o) is a Galois extension of no proper subfield that contains K.
(I) If E is a subfield of K (o) that contains K such that K (0)/E is a finite separable
extension, then [K (0):E] divides e —1.
(K) If 1=e<35, then K (o) is a separable extension of no proper subfield of a finite
co-degree that contains K.

Note that (J) is an analogue of Artin-Schreier theorem. As a consequence of (I)
we supply in Sect.9 a counter example to an infinite analogue of Iwasawa-
Uchida’s theorem.

Notation

O = the field of rational numbers.

R = the field of real numbers.

C = the field of complex numbers.

Q = the field of p-adic numbers.

K = the separable closure of a field K.
K = the algebraic closure of K.

K

b = the maximal abelian of K.
K® = the maximal p-extension of K.
N(o) = the fixed field of ¢ automorphisms a4, ....0, of a field N.

rank(G)<e = the pro-finite group G is generated by e elements.

e (K) = rank(%(KP/K)).

{c,,...,0,> = the closed subgroup generated by elements ¢, ...,q, of G.
F . = the free pro-finite group generated by e elements.

- = a primitive n-th root of unity.

1. The Maximal p-Extension of a Field

For a field E and a prime p we denote by E? the maximal p-extension of E. The
rank of ¥(EW/E) is denoted by e, (E). If ECFCE™ is an intermediate field, then




Analogue of Artin-Schreier Theorem 195

EP =F® since E™ has no proper p-extensions. If E’ is an algebraic extension of E
which is linearly disjoint from E®, then there is an epimorphism
Y(E'P/E")—>%(EW/E) and hence ¢, (E') Z e, (E).

Lemma 1.1. Let p be a prime and let E be a field, which is not formally real if p=2.
Then 9(EP/E) is a torsion free group.

Proof. If %(EW)/E) contains an element of a finite order, then there exists a field
ECFCE™ such that [E®:F]=p. This however contradicts Theorem2 of
Whaples! [17], which implies that [F®:F]=co.

Lemma 1.1 will be used in order to satisfy one of the conditions of the following

Theorem of Serre. If a torsion free pro-p group G contains an open free pro-p
subgroup, then G is free too (see [15, p. 413]).

A complement to Serre’s theorem is:

Nielsen-Schreier Formula. Let C be either the category of pro-finite groups or the
category of pro-p groups. Let G be a free C-group of a finite rank and let H be an
open subgroup of G. Then H is also free and

rank (H)—1=(G:H)(rank(G)— 1)
(see [1,p. 108]).

2. Abelian Extensions of Hilbertian Fields

In [, p. 286] it was proved that if K is a Hilbertian field, then {o,,...,0,> ;ﬁe for
almost all (¢)e G(K)¢ (this is the “Free Generators Theorem”). In this section we
prove the analogous result for the group 4(K ,/K).

Lemma 2.1.
Let K be a field and let t be a transcendental element over K. Then every finite
Abelian group can be realized over K(t).

Proof. 1f char(K)=p =0, then, by a result of Lenstra, every finite abelian group 4
can be realized over a finitely generated, purely transcendental extension of K,
since the field generated over K by a root of unity is a cyclic extension of K (see
[12, p. 322, Corollary 7.5]). By Hilbert irreducibility theorem, which K(t) satisfies,
we get that A can be realized also over K(t).

For char(K)=0, the lemma can be found in Frey [3].

Corollary 2.2. If K is a Hilbertian field, then every finite abelian group can be
realized over K.

The corollary can be strengthened in the following way:

Theorem 2.3. Let K be a Hilbertian field and let A be a finite abelian group. Then
there exists a linearly disjoint sequence K,,K,, K, ... of Galois extensions of K
such that 9(K,/K)x~ A for every i=1.

1 The author is indebted to Wulf-Dieter Geyer for calling his attention to Whaples result
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Theorem 2.3 is a consequence of Corollary 1.2 and the following general

Lemma 2.4. Let K be a field and let G be a finite group. Suppose that the direct
power G" is realizable over K for every n. Then there exists a linearly disjoint
sequence K, K,,K, ... of Galois extensions of K such that 9(K,/K)=G for every
izl

Proof. Suppose, by induction, that m linearly disjoint Galois extensions K, ..., K,
of K have been constructed, such that %(K,/K)=G for i=1,...,m. The field
L=K,...K,, has only a finite number, say n, of subfields that contam K. By
assumptlon there exists a Galois extension M of K such that 4(M/K)=G"*'. M is
therefore the composition of n+ 1 linearly disjoint Galois extensions M, ..., M, .,
of K such that ¥(M/K)=G. Among the M/s there must be one such that
M;,nL=K, since otherwise M,AL,...,M,, nL are n+1 distinct subfields of L
that contain K, which is a contradlctlon to the definition of n. Define therefore
K, ., to be one of the M/s for which M;nL=K. Then K,,....K,, K, are
linearly disjoint over K.

The sequence K ,K,, K5, ... thus constructed satisfies the conclusion of the
lemma.

3. The Normalizer of {o, ...,6,> in G(K), for K Hilbertian

Lemma 3.1. If K is a Hilbertian field, then for almost all (6)e G(K)*, for all fields
KCECK (o) and for all primes p we have e (E)=e.

Proof. It suffices to prove that for a given prime p, for almost all (¢)e G(K)* and for
all fields KCEC K (o) we have e (E)ze.

Indeed, by Theorem 2.3, there exists a linearly disjoint sequence K, K’z, K, ...
of Galois extensions of K such that ¥(K,/K)=(Z/pZ)* for everyiz1. Let g,y 00
be generators of (K ,/K) and let

S= U{ K)lo,|K;=0;;, for j=1,... e}.

Then u(S)=1, by [8, Lemma 4.1].

Suppose that (¢)eS and let KSESK (o) be an intermediate field. Let i be a
positive integer such that ¢ K; =0, for j=1,...,e. Then K;nK(0)=K, hence
K,nE=K too. It follows that (Z/pZ)" is a homomorphlc image of %(E"™/E). Hence
ep(E)Ze

Theorem 3.2. Let K be a Hilbertian field. Then for almost all (c)e G{K)° the field
K (a) is a Galois extension of no proper subfield of a finite co-degree that contains
K.

Proof. Denote by S the set of all (0)e G(K)° that satisfy a) (o) ~F .
b) For all primes p and for all fields E between K and K (o) we have e (E)=e.
¢) K (o) contains no formally real subfield of a finite co-degree that contains K.
By the free generators theorem, by Lemma 3.1 and by (F) of the introduction, S
has the measure 1.
Let (0)eS and let F =K (o). Assume that there exists a field K C ECF such that
F/E is a finite non trivial Galois extension. Let p be a prime divisor of [F:E]. By

o
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Sylow’s theorem there exists a field EC E, CF such that F/E, is a Galois extension
of degree p. Without loss of generality we can assume that E, =E.

The group %(EW/E) is a torsion-free p-group, by Lemma 1.1. It contains the
free pro-p group 9(E®/F) of rank e and of index p as a closed subgroup. Hence, by
the theorem of Serre 4(E")/E) is a free pro-p group. The rank e,(E) satisfies the
Nielsen-Schreier Formula (e—1)=ple,(E)—1). Hence e>e,(E), which is a con-
tradiction to b).

4. The Maximal p-Extension of Fields Underneath K (o)

Having proved theorem (H) for arbitrary Hilbertian fields, we turn now to the
proofs of Theorems (I), (J), and (K) for global fields K. In this section we consider

fields KC EC K (o) and give sufficient conditions for 9(E®/E) to be free. We shall ,

use results from local class field theory. They are incorporated in the following
lemma, which is a combination of Theorem9.1, 9.3, and 9.7 of Koch [9].

Lemma 4.1. Let E be an algebraic extension of a global field K. Suppose that for
every non archimedean absolute value v of E and for every prime number I, the degree
[EKU:I%U] is divisible by 1°. Suppose further that E is not formally real. Then
Y(EW/E) is a free pro-p group for every prime p.

The condition “I°|[EK, :K,]” is certainly satisfied if E, is algebraically closed,
because then EK, contains the separable closure of K. We give here an additional
sufficient condition for the condition to be true.

Lemma 4.2. Let M be a non-archimedean local field and let te G(M). Then [*
divides [M (t):M] for every prime I.

Proof (Neukirch). Let | be a prime such that I° does not divide [M(t):M].
Without loss of generality we can assume that {,e M. Our assumption implies that
N=M(t)nM® is a finite extension of M. Further M®=N® and 4NV/N) is a
pro-cyclic group. This however contradicts Theorems 10.3 and 10.4 of Koch [9],
according to which the rank of 94(L®/L) is at least 2.

Lemma 4.3. Let K be a global field. Then for almost all (5)e G(K)®, the field K (0)
has the following property : Suppose that K (o) is an algebraic separable extension
of a field E that contains K such that K o)/E is either finite or a pro-cyclic
extension. Then for every algebraic extension E' of E and every prime p, the group
G(E'P/E') is pro-p free.

Proof. Denote by S the set of all (s)e G(K)® with the following properties :

a) The completion of K (o) under every absolute value is algebraically closed.

b) There does not exist a field KCECK (o) of finite co-degree which is
formally real.

By [2, Lemma 5.3] and by (F), § has measure 1.

Let (6)eS and let F=K (o). Let E, E' be fields such that K< ECF, such that
F/E is cither finite or a pro-cyclic extension and such that E’ is an algebraic
extension of E. Then E and hence E’ satisfies the conditions of Lemma 4.1 by a), b),
by Artin-Schreier theorem and by Lemma 4.2. It follows that 9(E"®/E') is free for
every prime p.
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5. The Trivial Normalizer Theorem, for K global

We recall that a non trivial pro-p group G is free if and only if cd(G)=1 (cf. Ribes
[13, p. 235]).

Lemma 5.1. Let G be a pro-p group and let H be a normal closed subgroup of G.
Suppose that both H and G/H are non trivial free pro-p groups and H is finitely
generated. Then G is not free.

Proof. Our assumptions imply that cd(H)=cd(G/H)=1. Further H'(H,F,) is
finite. It follows that

cd(G)=cd(H)+cd(G/H)=2
(cf. Ribes [13, p. 2217]). Hence G is not free.

Theorem 5.2. If K is a global field, then for almost all (c)e G(K)* the field K (o) is a
Galois extension of no proper subfield that contains K, i.e. (o is its own normalizer
in G(K).

Proof. Denote by S the set of all (6)e G(K)® such that: a) <a>gﬁe.

b) If E,CK (o) and K (6)/E, is a pro-cyclic extension, then 9(EY/E,) is a free
pro-p group for every prime p.

¢) K (o) is a Galois extension of no proper subfield of a finite co-degree that
contains K.

By the free generators theorem, by Lemma 4.3 and by Theorem 3.2, S is of
measure 1.

Let (0)eS and let F =K (o). Assume that there exists a proper subfield E of F
such that %(F/E) is Galois. By c) the group %(F/E) is torsion free. Hence, by Sylow
theorem for pro-finite groups there exists a field ECE, CF such that 4(F/E,)=Z,
for some prime p. By a), 4(F"/F) is a non trivial free pro-p group. Hence
%(EP/E,) cannot be free, by Lemma 5.1. This is however a contradiction to b).

6. On the Bottom Conjecture
We come now to the analogue of Artin-Schreier theorem.

Theorem 6.1. Let K be a global field and let e22. Then for almost all (o) G(K)°,
the field F =K (o) has the following property:

If F is a finite separable extension of a field E that contains K, then [F . E]
divides e — 1.

Moreover, let F' be the Galois closure of F/E, let p be a prime and let q be the
largest power of p that divides [F':E]. Then q<[F':F].

Proof. Denote by S the set of all (¢)e G(K)* such that:

a) {od=F,

b) For every prime p and for every field ECK (o) such that K(¢)/E is
separable algebraic, e (E)=e.

¢) For every prime p and fields ECE’ such that K (o) is a finite separable
extension of E and E' is an algebraic extension of E, the group 4(E""/E) is free.

e
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Then S has measure 1, by the free generators theorem, by Lemma 3.1, and by
Lemma4.3.

Let (0)eS and let F, E, and F’ be as in the theorem. Let further p be a prime and
let B, =FnE®. Then e, (E,)<e, since 9(E?/E,) is a homomorphic image of
%(F®/F). On the other hand we have, by b), that E(E;)ze Hence e (E,)=e. Now
Y(EP/E,) is a closed subgroup of the free pro-p group %(E®/E), hence e— 1
=[E, :E](e,(E)—1), by Nielsen-Schreier formula. An additional use of b) implies
e,(E)ze. It follows that e (E)=e¢ and that [E,:E]=1, ie. FNEW =E.

Denote by p’ and p’ the largest powers of p that divide [F:E] and [F':F],
respectively, and let g=p**/. By Sylow’s theorem there exists a field EC E'C F’ such
that [F":E']=gq. The degree [E': E] is prime to p, hence E' is linearly disjoint from
E® over E, hence

e(E)ze. (1)
Also F'/E' is a p-extension and %(E'"W/E’) is a free pro-p group, by ¢). Hence
e,(F)—1=qle,(E)—1). 2

Another application of Nielsen-Schreier formula gives
rank(G(F'))—1=[F":F](e—1),
and since e, (F')=rank (G(F')) we obtain
e (F)—1=[F":F](e—1). 3)
Using (1)-(3) we get that g <[F":F] and that p* divides e~ 1. Since this is true for
every p we have that [F:E] divides e — 1.
Our last main result is the proof of the bottom conjecture in some cases.

Corollary 6.2. Let K be a global field and let 1<e<5. Then Jor almost all
(0)e G(K)* the field K (o) is a separable extension of no proper subfield E of a finite
co-degree that contains K.

Proof. The corollary is true for e=1, by (G) and suppose therefore that e =2, Use
the notation of Theorem 6.1, let (¢)e S and F =K (g). Assume that there exists a
field ECF such that F/E is a finite proper separable extension.

If e=2, then [F:E] divides 1, which is a contradiction.

If e=3, then [F:E]=2. Hence F/E is Galois, hence F'=F, g=2 and 122, a
contradiction,

If e=4, then [F:E]=3 and [F':F] divides 2. Hence g=3 and 223, a
contradiction.

Suppose that e=5. Then [F:E] equals 2 or 4. The case [F:E]=2 gives a
contradiction as in the case e=3. Suppose therefore that [F:E]=4. Then [F':F]
divides 6. If 2 divides [F':F] then for p=2 we have that q=38, hence 628, a
contradiction. Otherwise g=4, hence 3>4, again a contradiction.

7. Infinite Counter Examples to Iwasawa-Uchida’s Theorem

Iwasawa and Uchida independently proved in [4] and [16] the following

Theorem. Let K and L be two number fields and let o:G(K)~G(L) be an
isomorphism of their Galois groups. Then o is induced by an inner automorphism of
G(Q). In particular K is isomorphic to L.
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Our first counter example shows that the theorem does not remain true if the
condition “K and L are number fields” is replaced by “K and L are algebraic
extensions of ©”. Indeed, by Corollary 7.2 of [8] there exists a subset S of G(Q)* of
cardinality 2%¢ such that (o) ~F , for every (0)eS, but Q(0) 2 Q(o") for every two
distinct e-tuples (o) and (') in S.

A consequence of Iwasawa-Uchida’s theorem is the following

Corollary. Let K be a number field. Then G(K) is a complete group if and only if
AutK is a trivial group.

Now, Theorem 5.2 can be rephrased for @ as:

Theorem 7.1. The group Aut@Q(o) is trivial for almost all (0)e G(Q)°.

Consider therefore, for e=2, a (0)e G(Q)° such that <a>gﬁe and such that
Aut®(o) is trivial. It is known that F , has a trivial center (cf. [8, Theorem 16.17),
but F , is not a complete group, since it has automorphisms which are not inner.
For example, if z,, ..., z, are generators of F,, then the automorphism induced by
the map (z,, ..., 2,)~(z; '...,z; !) is not inner. It follows that the corollary is false
if K is replaced by Qo).
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