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For finite field extensions of the field of Henselian p-adic rational numbers
necessary and sufficient conditions are given which state that the fields have iso-
morphic absolute Galois groups; it is thereby supposed that a p-th root of unity
(a 4-th when p = 2) belongs to the fields. Also examples are discussed.

This paper is mainly concerned with (infinite) Galois theory of p-adic
fields containing Q,({,), the cyclotomic field arising from adjoining a p-th
root of unity (4th if p = 2) to the Henselian field Q, of p-adic rational
numbers. Precisely, we determine all finite extensions E of Q,({,) that have
the same type of algebraic extensions, that is, those which have isomorphic
absolute Galois groups.

The result obtained reads somewhat more complicated than the analogous
one in the global case conjectured by Neukirch [11] and finally proved by
Uchida [14], Iwasawa [5], and Tkeda [3, 4]:

Let ky and k, be two algebraic number fields which have isomorphic absolute
Galois groups (i.e. isomorphic as topological groups). Then k, and k, are
isomorphic fields.

Recently Uchida [15] extended this theorem to the case, where k; and k,
are two algebraic function fields of one variable over finite constant fields.

The following question naturally arises: What are the common properties
of local fields that have isomorphic absolute Galois groups.t

! For a connection between the local and global case in this context we refer to the first
part of [8]; in case of characteristic 0 see also [12], in case of characteristic 7 0 [15].
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2 JARDEN AND RITTER

In characteristic == 0 it turns out quite easily that the two local fields have
to be isomorphic when considered as abstract fields [8]. In characteristic
zero, however, we [8] were able to give examples of non-isomorphic local
fields still having isomorphic Galois groups (see also Yamagata [16]).

To formulate precisely the result obtained in the latter case let us fix some
notation:

K, L are always finite extensions of Q,, ;

K° 19 are the maximal abelian subextensions in K and L, respectively,
over Q, ; ,

n=ny = | K:Q, | is the absolute field degree of K (correspondingly n;);

Gy is the absolute Galois group of K, that is, the group of all field
automorphisms of an algebraic closure of K which leave K elementwise
fixed. This group is to be considered as a topological group in the Krull
topology [1, Chapter 5]. G, is defined correspondingly.

Finally let {,: denote a primitive pi-th root of unity.

Now our Theorem reads as follows:

If{,e K (and {, € K if p = 2), then the field L has absolute Galois group Gy,
isomorphic to G if and only if ny, = ng and L° = K°.

For the proof we shall need some more notation:

f = f is the residue class degree of K over the prime field Z/pZ; g = p’;

r=ry=max{i: {,€K};

F+d=ry + dg = max{j: {,s € Ky}, here K,, is the maximal tamely
ramified algebraic extension of K;

n = Lprea -

In the following we will mostly restrict ourselves to the case where
r=re=1lifp#2andr=ry >22if p=2;

the other case will be dealt with in a subsequent paper.

Now £, being an element of K, the extension K(»)/K has to be unramified.
Hence there is an unique rational integer s between 1 and p™+¢ — 1, which is
determined by the equation

where @y denotes a Frobenius automorphism of K in Gy . This number
s == s, turns out to be an important parameter when Gy is described by
generators and relations [6, 7, 9]. ’
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1. PROOF OF THE THEOREM

Let us begin by stating a well-known fact based on local class field theory,
which gives information on K itself by knowing only G . At this time we do
not assume r > 1.

LemMma 1. Gy, as a topological group, determines the invariants n, f, r and
d of K.

For the sake of completeness we shall repeat a proof of the lemma (see
also [8]).

Fix some integer m > 1 and consider the maximal abelian extension E,, of
K of exponent m. Its Galois group G(m) = G(E,,/K) is the maximal abelian
factor group of Gy of exponent m; from local class field theory it is iso-
morphic with K*/K*", Now

KX 7 X Woy X Wy X 2,

where W,., W,_, denote the groups of roots of unity in K of order p™ and
q — 1, respectively, and Z," the n-fold direct product of the additive group
of p-adic integers [9, p. 78]. '

Now, if E denotes the maximal abelian algebraic extension of K and G its
Galois group over K, then FE is clearly the union of all fields E,, and hence G
is the projective limit of the groups G(m), that is,

G~ Z X Woy X Wy X 2,0 =[] 2, x Wiy X Wy x 20,
I#p
where (in the first term) Z is the completion of Z and where (in the second
term) the product is taken over all prime numbers [ 5 p. Since G is obviously
the maximal abelian factor group of Gx we see that G indeed determines £,
r, and n.

Finally we have to compute d from Gy . The field K({,+1) belongs to a
normal subgroup of Gy , which index is p or a divisor of p — 1, according to
r = 1 or r = 0. Obviously there are only finitely many such subgroups. Now,
by what we have seen just before, we can decide which one of these belongs to
K(L,r1) and, moreover, whether the extension K({,r+1)/K will be ramified or
not. If not, continue this procedure.

The next lemma turns out to be very useful when dealing with fields K and
L whose absolute Galois groups are isomorphic. It says, roughly speaking,
that the pure extensions of K and L mutually correspond under the given
isomorphism of their groups. As a corollary we shall get the fact that the
Frobenius number s, introduced above, is determined by Gy already (which
fact by itself could also be deduced more directly).
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LEMMA 2. Assume o : Gyx — G is an isomorphism. Let U be the subgroup
of Gy belonging to the pure extension K' = K(x) of degree m and with o™ ==
a € K. Then the fixed field L' of oU <X Gy is a pure extension of L, and it can
be generated by some m-th root 8 of an element b € L of the same value as a.

First of all o induces an isomorphism (which we denote again by o) of
G% with G$°, the maximal abelian factor groups of Gy and G, , respectively.
Also, we fix a Frobenius automorphism ¢ of K in Gy and do not change
notation when ¢y is considered as element of G.

Now, by local class field theory, there is a canonical injection of KX into
G% induced by the reciprocity map 6. Hence we can identify the elements
x € K* with the automorphisms 6(x), i.e. with the automorphisms ¢g® 7+, ,
where w(x) is the value of x, and where 7, runs through the inertia subgroup
T of G, the precise image of the unit group of K.

By doing the same with L instead of K and noting that because of the
preceeding lemma o(7T%) = T, , we shall get an isomorphism & from K* onto

LX once we have shown that
o(px) = ¢, mod T}, .

Moreover, from the properties of the reciprocity map 6 [1, p. 144] it follows
first that x € K and &(x) € L will have the same value, and second, that the
attaching of & to ¢ is compatible with extensions of fields in the sense that
the corresponding isomorphism &' : K% — L% continues our o : KX — LX
(K’ and L’ may here be quite arbitrary Galois-corresponding extensions of K
and L, respectively).

The fact o(py) = ¢, mod T, is due to Uchida [15]; for the moment we
take it for granted and pursue the proof of our lemma.

Let b = &(a)e L and B = ¢'(e) € L'. Then a and b have the same value
and B" = & («™) = &(a) = b. So, thanks to Uchida’s isomorphism &, it
remains only to check that L' = L(B). Call this latter field L"; then, working
with 6”1 instead of &, we get an extension K”/K, inside of K, in which some
root of the polynomial x™ — a will lie. Because of the irreducibility of this
polynomial over K, the field K” has to be equal to K’ and therefore L” = L'.

To finish the proof of our lemma we have to come back to the congruence
o(px) = ¢, mod T, . For this we will now, for the convenience of the reader,
reproduce Uchida’s argument. Let us state this as

LEMMA 3. Let o: Gy — Gy be an isomorphism. Then, if oy is a Frobenius
automorphism of K, o(py) is a Frobenius automorphism of L.

Proof [15]. Fix some integer m prime to p and let { be a root of unity of
order m. Then, by lemma 1, o induces an isomorphism of the groups
belonging to K({) and L({). Choose further some prime element = of K. Then
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K(™\/m) is a totally tamely ramified extension of X belonging to, say, U, a
subgroup of G . On account of lemma 1 the fixed field of ¢(U) < G, has to
be a totally tamely ramified extension of Z, and hence can be generated by
some m-th root of #, # a suitable prime element of L [9, p. 78].

Now ¢ , being a Frobenius automorphism of K, maps { to {2 We shall
compute what the effect of the conjugation of 7 with @g will be, where we

choose for 7 some representative in Gy of a generating automorphism of
K(Z, ™/m)]K(L). To that end put

T(m\/;;j s m\/”,,;“ gg' and @}l(m\/vr—) _ m\/;r— Ck :
PrrgR (V) = gr(m/a [ 1) = o — /),

that is pgreg' = 79, considered here as elements in Gal(K(¢, ™/7)/K).
After applying o we get: o(py) o(7) o(px)™ = o(r)? (to be read in Gal
(L(L, m+/7)/L)), and consequently also o(¢px) maps  to {? (observe that from
what we have seen above, o(r) represents a generating automorphism of
L(L, ™vm)L(D)).

Because g = ¢ , it follows, by varying m over all positive integers prime
to p, that o(¢g) is a Frobenius automorphism of L.

Now we are in a good position to prove that the group Gy determines also
the natural number s = s of X when r > 1.

COROLLARY. Suppose {, e K. Then the type of isomorphism of the group
Gy , considered as a topological group, determines s.

For this, let o : Gy — G, be an isomorphism. Thanks to lemma 1 we know
already that ri = r, and dy = d , so it remains to show that

nK = ™ = "k = 9’k

where we remind the reader of our convention that nisar + d— throot of
unity.

Let 7 be a prime element of K and let « be an r - d — th root of . Then,
as lemma 2 tells us, the fixed field L' of oU, U being the subgroup in Gy
belonging to K(w), is of the form L' = L(B) with ™% = 7, where # is a
prime element of L. Therefore we can proceed as in the last proof: we compute
the action of g on some representative = of a generating automorphism of
K(n, ®)/K(n), and get purey' = 7°¢ (in Gal(K(n, «)/K)). Applying o to this,
equation gives (opg)(a7)(opg)™ = (o7)*¢ (in Gal(L(n, B)/L)). If we compute
(opx)(o7)(opg)™ directly, keeping in mind that opx = @, and or is some
respresentative of a generating automorphism of L(v, 8)/L(x), we get @, (c7)
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ert = (o)L (in Gal(L(n, B)/L)), that is, s = s, mod p"+9, and this finally
means S = S .

Lemmas 1 and 4 state that the numbers n, f, r + d, and s are invariants not
only of K, but also of Gy, if {, € K. Results of Jakovlev (p 5 2) [7] and
Zel’venskii (p = 2) [17] show that the converse is also true: Gy, as a topo-
logical group, is fully determined by the parameters n, f, r - d, and s, when
again {, € K is assumed and, when p = 2, {, € K. We do not need here the
precise relations which hold between suitable chosen n -+ 3 generators of the
profinite group Gy as given in [7] and [17], but only the fact that the cited
four natural numbers are a complete system of parameters to describe Gy , cf.
also [6], [9].2

So, for the proof of our theorem, we are left with the description of all fields
L having the same invariants n, f, r, d, and s as K—where, from now on, we
assume that {, € K and, for p = 2, {, € K.

As a first step we look for common subfields of all such L. From the
invariance of fand r we get at once that 4,, C L, where 4, , is defined to be
the cyclotomic field Q ,({,rp—1))-

Now let us begin considering abelian extensions E of Q, which contain
Ay . of index p. This is done by using the local version of Kronecker-Weber’s
theorem which says that the abelian extensions of Q,, are just the subfields of
the cyclotomic field extensions of QQ,, .

Therefore we can imbed the field E in some cyclotomic field 4,, ;; observe
here that for reasons of ramification each cyclotomic field extension of Q,, is
in fact of the type A,, . Since 4;, C A, ; we must have f'|m and r < £. By
the way, as there are only finitely many possibilities for E [10, p. 54] we can
assume that both m and ¢ do not vary with the E. Now, the Galois group G
of A,, +/A, . is the direct product of two cyclic subgroups of orders m/f and
pt=", which correspond to the unramified extension A4,, /4, , and to the p-
extension A, ,/A,,., respectively, the last one being cyclic, too, since we
assumed that » > 1 and, if p = 2, r > 2. Therefore G contains at most p + 1
subgroups of order p and hence, as follows from the duality theory of finite
abelian groups, also at most p + 1 subgroups of index p, that is, there are at
most p 4 1 possibilities for the fields E. Since all the p - 1 subextensions of
Aty ri1/Ay., of index p are indeed abelian extensions of Q, which lie over
A, of degree p, these are exactly the possible fields E.

We have proved:

(

2 From a recent paper “On the Galois group of p-closed extensions of a local field”
by Helmut Koch (to be published) we noticed that the system of generators and relations
given by Jakovlev is in fact no such system for Gx. Koch proves, however, that Gk is
determined (up to isomorphism) by our parameters.
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LEmMMA 4, jet E be an extension of degree p of the cyclomotic field A, , .
Then E is abelidn over Q,, if and only if E is contained in A Fouril -

In the same way we can prove that the degree | L° : 4, | is a power of p.In
fact, if | L%: A;,| = p* u, p+u, then, because of the Sylow subgroup
theorem applied to the abelian extension L°/A s, there is an intermediate
field M between L° and A, having relative degree u = | M : Ay, | over A, .
Now, as M is an abelian extension of Q,, , it is contained in some field At
Since the relative Galois group G of 4,, , over A s 18 of the type Z/(m/f) x
Z/p*~" and since u is prime to p, the subgroup of G belonging to M must
contain the factor Z/p*~". If u + 1 this would imply that the residue degree
of M is bigger than /' which is impossible, however, since M C L2,

Now we shall take the invariant d into account and prove

Lemma 5. | LY: A, , | = p%

We prove this by induction on d, keeping in mind that the degree is a power
of p. v
Suppose first d = 0. Then L(,-1)/L is a ramified extension of degree p.
If p|| L°: 45, |, then some abelian extension E of Q,,, containing A, , of
index p, will lie in L. This E has to have the same r— and f-invariant, that is
rg = r and f; = f, because it lies between A, , and L. Considering Fig. 13 we

Afp,r+1

Af,r*i

FIGURE 2

* 4+ means: unramified extension; == means: totally ramified extension.
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conclude from Lemma 5 that E({,~)/E is an unramified extension of degree
p. But this leads (see Fig. 2) to the contradiction that, on the one hand, as we
have seen just before, L({,.:)/L is a totally ramified extension but, on the
other hand, it shall-contain the unramified subextension E({,+1)/E.

Now suppose d = 1. Then L({,~1)/L is an unramified extension of degree
p, and it will therefore contain 4,, ,,,. Now L intersects 4, ,.; in a subfield
E of degree p over A4,,, and consequently p || L%: A, ,|. Note that F is
obviously different from 4, ,,, and 4,, .

We haVC.fL(Ca,rH) = fpand Fr o = F + 1.2 Also, dL(Cer) =d— 1.

P '\“'hr»., 17
8]

FIGURE 3

Clearly in Fig. 3 L%{,1) is the maximal abelian subfield over Q, of
L({ 1) — for otherwise, if L({,~+1)° were a bigger field, the intersection
L({,~1)° N L would have to be bigger than L°, too, since L * Ay 1 = L(Lper1)
and since L is linearly disjoint from 4, ,,, over A, , . But this contradicts the
maximality of L° in L. By the induction hypothesis we can therefore assume
that L%({ 1) has degree p?—t over A, ,,; . Hence the degree of L° over 4, ,
is p?.

COROLLARY. Let A/Q, be an abelian extension of absolute residue degree
fu=f,withr, = r,and with | A : A, | = p® Then
(@) d=d,
(b) A/A; ., is cyclic
(©) A(Lprva) = Aspi,pra -
First of all, (a)follows at once from the preceding lemma. Using the proof of
that lemma (especially figure (1)) one shows by induction, first, that
A(L yr4a) = Aypariq> second, that A4 is linearly disjoint fromwd; , ; over 4, ,,

and, finally, that A({,r+4)/As.,.q is an unramified extension, hence cyclic. It
follows that Gal(4/A4; ,) ~ Gal(A({,ra)/Ay.r.q) IS also cyclic.

4 Notice that this is also true if p == 2, since in this case we assume that r >

s g
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Next we take the invariant s into consideration and prove

LemMMA 6. s50 = .

It follows from the corollary and from lemma 5 that rp = r and that
d;o == d, hence also 7,0 = 7. So let ¢, be the Frobenius automorphism of
L(n)/L, so that n°c = n°, The restriction of ¢, onto L%x) trivially coincides
with the Frobenius automorphism of L%(n)/L® since L and L° have the same
absolute residue degree f. From this the lemma follows.

Now to distinguish L° from all the possible abelian field extension 4/Q,
with £, = f. ry = r,and | A : A;, | = p% we still have to make sure of the
following

Lemma 7. Let A, , A, be two abelian field extensions of Q, that contain
Ay and suppose fa = [, r4, =1, and | A;: Ay, | = p? for i=1,2. If
SAI —— SA2 th(anl = Az.

For the proof look at the following fields diagram, which is based on the
corollary to lemma 5 (Fig. 4)

4 heg fyn) = Ay

FIGURE 4

Let ¢, and ¢, be the Frobenius automorphism of A,(n)/4, and Ay(n)/4,,
respectively. Then clearly the restrictions of @;, i = 1, 2, to A, coincide
with the Frobenius automorphism of 4;,.,/A4; . . If we now think of ¢, and
@, as automorphisms of Ay, .a/A;.», having fixed fields 4; and 4, , respec-
tively, we see that the ¢, are fully determined by their restrictions to 4, , and
A .ra > thatis, by the corresponding s; .

Now we are ready for our announced theorem.
THEOREM. Suppose K has the invariants f, r = 1 (r = 2, if p = 2), d, and s.

Then L will have the same invariants if and only if L° = K°. In particular,
G, ~ Gy is equivalent to n; = ng & L® = K°.

Proof. The necessity of the condition L° = K°was proved in the lemmas 5
to 7. We still have to show that the condition is sufficient, too.
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Now, Lhasto be totally ramified over L°, otherwise L would not be maximal
abelian in L. Also, r; = r;e. This allows us to apply lemma 5 to get p? =
| L% : A, | . Finally, from lemma 6 we get the desired s.

2. EXAMPLES

Define the Galois class of K to consists of all fields L having absolute Galois
group G isomorphic to Gy . If {, € K and, for p = 2, also {, € K, we shall
denote, in view of our theorem, this class by (n, K°), . Now let us get some
impression how large the Galois class of Kis. To that end we shall look at two
classes and see what can happen here.?

(1) There are three distinct fields Ly, Ly, Ly in ((p — 1) p, Q.({,)»
such that:

(1a) L, and L, are both normal over Q, and have isomorphic
relative Galois groups;
(1b) L is not normal over Q,, .

(2) There are two distinct normal extensions L, , L, over Q, belonging
to ((p — 1 p®, Q,(L,2)), which have non-isomorphic relative Galois groups
overQ, .

The cases (1) and (2) work only for primes p # 2; if the reader is also
interested in similar examples of classes (n, K®),% we refer him to the some-
what troublesome computations of the last sections of [§].

To (1) Define Ll = Qp(gp > p\/p)’ L2 = Qp(Z;p > p\//p -+ 1): Ly = QZ)(Z.;;D >
' {, — 1). Then obviously L,/Q, and L,/Q, are normal extensions having
relative Galois groups both isomorphic to the semi-direct product Z/pZ. -
Z/(p — 1) Z. In particular, L,° = L,° = Q,({,).

It remains to show that the Eisenstein extension L,/Q,({,) is not normal
over Q, , for then clearly L,° = Q,({,), too. Now, if L;/Q, were normal,

then surely 74/{,2 — 1 would have to belong to L;, and from this and
Kummer theory we should be able to deduce an equation (> — 1 =
(L, — 1Y - a?, where 1 <{j <<p — 1l and a € Q,({,). Assuming this equation

5 The examples given are taken from our paper [8].
& Using the theorem of the preceeding section one can actually simplify these computa-

tions. We have the following examples: (1) To (8, Q.({s). belong: Qu(Ls, Vi — 1),
Q.(Ls, *v2), QuLs, VT — 1). The first two fields are normal extensions of Q, with Galois
groups both isomorphic to the diehedral group D, ; the third is not normal over Q, .
(2) In (32, Qy(Ly0))s there are two normal field extensions of Q, : Qy(lis , Vi — 1, VP —1)
and Q.({6 , YV &, — 1). Their relative Galois groups, having different numbers of elements
of order two, are not isomorphic.
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to be true we proceed as follows. We divide it by {, — 1 and apply the
valuation of Q,({,) to get

0=j— 1+ p- w(a), w(a) denoting the Q,({,)-value of a.

It follows j = 1 and consequently {, + 1 = g¢?. Now reducing modulo
{, — 1, which is a prime element in Q,({,), we obtain a” = 2mod {, — 1
and, on account of the fact that the residue field of Q,({,) contains only p
elements, we have a = 2 mod ({, — 1). This forces {, + 1 = a? = 2 mod
(¢, — 1)% because of p = 0 mod (¢, — 1)% Hence {, — 1 = Omod ({, — 1)%
which is a contradiction.

To (2): Define L; = Q,({pe, *"Vp) and Ly = Qu(Lpe, *Vp, ?V'p + 1).

Then it is easily seen that both extensions are indeed normal ever Q, of
degree (p — 1) p?. Since L,/Q,({,2) is a cyclic extension, Z 1= Q,({,z, ?A/P)
is the only subfield of L, of degree p over Q,({,2), and consequently L,° =
Q,(L,2), as Z contains the non-normal subextension Q,(*V/ 2/Q, .

We leave it as an exercise to examine that the p 4 1 fields

Q;,(C;,% 5 p\/5)> Qu(Lp, 7V pj(pq:ﬂT)) O<j<p—1

are just the intermediate fields between Q,({,2) and L, . Obviously, no one of
these turns out to be abelian over Q,,, so that also L, = Q,({,z).

Now look at the p-Sylow-subgroups of Gal(L,/Q,) and Gal(L,/Q,). These
are already for reasons of order the groups Gal(L,/Q,({,)) and
Gal(L,/Q,(L,)), respectively. The first one contains the cyclic subgroup
Gal(L,/Q,({,»)) of order p?, but the second one is elementary abelian. This
proves that L,/Q, and L,/Q, have nonisomorphic relative Galois groups.

Observe that something more can be learned from this example, namely,
that there is no possibility of continuing some given isomorphism between the
absolute Galois groups of Ly and L, to an automorphism of the absolute Galois
group of the common maximal abelian subfield L,\° = L,° = Q,({,). For
otherwise the relative groups Gal(L,/L,°%) and Gal(L,/L,%) would have to be
isomorphic, but this is surely wrong, as these groups are up to isomorphism
the groups Z/p*Z and Z/pZ x Z[pZ, respectively.

Finally we would like to consider the class of a normal tamely ramified
extension K/Q, . In a certain sense these classes are rather small: If p = 2, it
turns out that X is the only normal extension over Q,, in its class. For odd
primes, however, we do have to make some further assumption to be sure of
an analogous result.

Let K* be the maximal tamely ramified subextension of some K/Q, and
let ¢’ be the quotient | K# : Q, |/f. Then the following is true:

PROPOSITION.  Suppose the normal extensions K and L over Q, have iso-
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morphic absolute Galois groups. Suppose further that e’ is relatively prime to
p — 1. Then K* = L*

Proof. K?#, being a tamely ramified extension of (¢, , can be written as
- K* = Q,({, “v pl?), where ¢ is a root of unity of order p/ — 1 and 0 << d <
ged(e', p* — 1), cf. [2, p. 242]. As K/Q, is normal K?/Q, must be normal,
too. Hence ¢’ | pf — 1 and {a@'-1/e e Q.

If d s 0 then the order of {¢'-D¢’ is ¢'/gcd(d, e'), and consequently this
number must divide p — 1, contrary to the assumption. Hence d = 0, i.e.

K* = Q,(L, “v/p). In the same way one proves that L* = Q(, *'v/p); note
that because of our first lemma ey = ¢} .

Let us add here two remarks. First of all, as the last proof shows, we can
drop the assumption that K and L are normal over Q,, , if instead of ged(e’,
p — 1) = 1 we require that ged(e’, p* — 1) = 1.

Secondly, if p # 2, the condition of ¢’ being relatively prime to p — 1
implies r = 0.

In this connection consider the Galois class of the normal tamely ramified
field extension K = Q,((,, ¢y/p) over Q,, where p is an odd prime and
e = pP1 — 1. We contend that this is just the class (e(p — 1), Q,({,,)), , and,
moreover, that this class indeed contains a second normal tamely ramified
extension L/Q, . Now Q,({,) is obviously the maximal unramified subfield
of K; it is of degree p — 1 over Q, because the residue field of the unramified
extension of degree p — 1 over Q, has to have exactly p?~1 — 1 elements = 0.
Furthermore {, € K since

Iy Tp = V), where d =efp — 1,
and
Q,(" W —=p) = QL) [2,p. 214].

It follows that K° contains Q,({,,) = A,_1.1. As the degree | K': A4, 4]

divides | K :Q, 1/l QL) 1 Qpl=(p—Def(p —1)*=4d, and as d is
relatively prime to p, we conclude in view of lemma 5 that K° = Q,({,,).

We now take L to be the field Q,(¢,, ev/pl,9). Then L is also a normal
tamely ramified extension over Q, of degree e(p — 1) [2, p. 242], but L 4 K
since 1 < d << e [2,p.242]). This L turns out to be a second normal field
within the class (e(p — 1), Q,({,,)), because of the relation

2)~1\/:‘E _ Zéd/2)~—(d/p~1) e\/ﬁ?:

note here that p?~! = 1 mod (p — 1)

We finish with an example in case p = 2, which shows that the proposition
will no longer be valid if we drop the assumption that L/Q, has to be normal.
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Let K be the normal field Qy({y,, 3v'2) and L the field Qy(Ly, , 3V/2,).

Then clearly both fields belong to the class (12, Qu({;,)), , owing to the fact
that the degrees | K: Qy({y)] = | L : Qy({1n) = 3 are odd. Furthermore,

= Qu({y,3V2) # L* = Q2(§3 , 3/ 2(3) since L#Q, is not normal (see

the proof for L, in (1)).

10.
11.

12.
13.
14.
15.
16.

17.
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