On Čebotarev Sets

By Moshe Jarden*)

The aim of this note is to give a positive answer to a question raised by W. Jehne in a talk.

I am indebted to Professor Jehne for letting me use his notes from this talk.

Let P be the set of the rational primes. Let K be a finite normal extension of \mathbb{Q} . Then, the set $R(K) = \{p \in P \mid p \text{ is ramified in } K\}$ is finite. For every $p \in P - R(K)$ the Artin symbol $\left(\frac{K/\mathbb{Q}}{p}\right)$ is a conjugacy class in the Galois group $\mathscr{G}(K/\mathbb{Q})$.

Let now $\mathfrak C$ be a non empty conjugacy class in $\mathscr G(K/\mathbb Q)$. Put

$$A\left(\mathfrak{C}\right)=\left\{ p\in P-\left.R\left(K\right)\right|\left(\frac{K/\mathbb{Q}}{p}\right)=\mathfrak{C}\right\} .$$

A (\mathbb{C}) is called a $\check{C}ebotarev$ set. $\check{C}ebotarev$ density theorem assures us that A (\mathbb{C}) has a positive Dirichlet density and in particular that it is an infinite set.

If L is a finite normal extension of $\mathbb Q$ which contains K and

$$\mathfrak{C}' = \{ \sigma \in \mathscr{G}(L/\mathbb{Q}) \mid \sigma \mid K \in \mathfrak{C} \}$$

then \mathfrak{C}' can be decomposed into a disjoint union of conjugacy classes,

$$\mathfrak{C}' = \bigcup_{i=1}^{n} \mathfrak{C}'_{i}, \quad \text{and} \quad A\left(\mathfrak{C}\right) - R\left(L\right) = \bigcup_{i=1}^{n} A\left(\mathfrak{C}'_{i}\right).$$

Conversely, if J is a finite normal extension of $\mathbb Q$ which is contained in K and

$$\overline{\mathbb{G}} = \{ \sigma \, | \, J \, | \, \sigma \in \mathbb{G} \}$$

then $\mathfrak C$ is a conjugacy class in $\mathscr G(J/\mathbb Q)$ and $A(\mathfrak C)\subseteq A(\overline{\mathfrak C})$. The Theorem which we prove here shows that the lattice of all Čebotarev sets is small compared with the lattice of all subsets of P.

Theorem. There exists a subset A of P such that $A \cap C$ and $(P - A) \cap C$ are infinite sets for every Čebotarev set C.

^{*)} This paper was written while the author attended the University of Heidelberg.

Proof. Let $\mathbb{Q} = K_1 \subset K_2 \subset K_3 \subset ...$ be an increasing sequence of finite normal extensions of \mathbb{Q} such that $\widetilde{\mathbb{Q}} = \bigcup_{n=1}^{\infty} K_n$. For every $n \geq 1$ let

$$\mathscr{G}(K_n/\mathbb{Q}) = \bigcup_{i \in I(n)} \mathfrak{C}_{n,i}$$

be the disjoint decomposition of $\mathscr{G}(K_n/\mathbb{Q})$ into conjugacy classes and let $C_{n,i} = A(\mathfrak{C}_{n,i})$ be the corresponding Čebotarev sets. For every n and for every $i \in I(n)$ there exists a unique subset $J \subseteq I(n+1)$ such that

(1)
$$C_{n,i} - R(K_{n+1}) = \bigcup_{j \in J} C_{n+1,j}.$$

We define now for every n and for every $i \in I(n)$ finite subsets $A_{n,i}$, $B_{n,i}$ of P such that:

- a) $A_{n,i}$, $B_{n,i} \subseteq C_{n,i}$,
- b) $A_{n,i} \cap B_{n,i} = \emptyset$,
- c) $|A_{n,i}|, |B_{n,i}| \ge n$,
- d) If J is the subset of I(n+1) such that (1) holds then

$$A_{n,i} \cap C_{n+1,j} \subseteq A_{n+1,j}$$

and

$$B_{n,i} \cap C_{n+1,j} \subseteq B_{n+1,j}$$
 for every $j \in J$.

We proceed by induction on n. For n = 1 $I(1) = \{1\}$ and $C_{1,1} = P$. Define

$$A_{1,1} = \{2\}$$
 and $B_{1,1} = \{3\}$.

Assume that $A_{m,i}$ and $B_{m,i}$ have already been defined for every $m \leq n$ and for every $i \in I(m)$ and that they satisfy (a)—(d). Let $i \in I(n)$ and let J be the subset of I(n+1) for which (1) holds.

For every $j \in J$ $A_{n,i} \cap C_{n+1,j}$ and $B_{n,i} \cap C_{n+1,j}$ are certainly finite sets, wheras $C_{n+1,j}$ is infinite, since it is a Čebotarev set. We can therefore choose 2(n+1) distinct primes $p_1, \ldots, p_{n+1}, q_1, \ldots, q_{n+1}$ in $C_{n+1,j}$ which do not belong neither to $A_{n,i} \cap C_{n+1,j}$ nor to $B_{n,i} \cap C_{n+1,j}$. Define

$$A_{n+1,j} = (A_{n,i} \cap C_{n+1,j}) \cup \{p_1, \dots, p_{n+1}\},$$

$$B_{n+1,j} = (B_{n,i} \cap C_{n+1,j}) \cup \{q_1, \dots, q_{n+1}\}.$$

It is clear that the conditions (a)—(d) are still satisfied. Put now

$$A = \bigcup_{n=1}^{\infty} \bigcup_{i \in I(n)} A_{n,i}, \quad B = \bigcup_{n=1}^{\infty} \bigcup_{i \in I(n)} B_{n,i}.$$

Then $A \cap B = \emptyset$. Indeed assume that there exists a $p \in A \cap B$. Then there exists an n, an $i \in I(n)$, an m and a $k \in I(m)$ such that $p \in A_{n,i} \cap B_{m,k}$. Without loss of generality assume that $n \leq m$. Then $p \notin R(K_m)$ since $B_{m,k} \subseteq C_{m,k}$.

If m > n, then $p \notin R(K_{n+1})$, since $K_{n+1} \subseteq K_m$. Let J be as in (1). Then there exists a $j \in J$ such that $p \in C_{n+1,j}$. It follows by (d) that $p \in A_{n+1,j}$. Proceeding in

this way we see that one can assume that m = n. It follows that $p \in C_{n,i} \cap C_{n,k}$. Hence i = k, since otherwise $C_{n,i} \cap C_{n,k} = \emptyset$. But this means that $A_{n,i} \cap B_{n,i} \neq \emptyset$ which contradicts (b).

Secondly we claim that $A \cap C_{n,i}$ and $B \cap C_{n,i}$ are infinite sets for every n and $i \in I(n)$. We prove it for example for $A \cap C_{n,i}$. Let $J \subseteq I(n+1)$ as in (1). Then $A_{n+1,j} \subseteq A \cap C_{n,i}$ for every $j \in J$. Proceeding inductively one can find for every $m \ge n$ a $k \in I(m)$ such that $A_{m,j} \subseteq A \cap C_{n,i}$. Hence, by (c), $|A \cap C_{n,i}| \ge m$ for every $m \ge n$, i.e. $A \cap C_{n,i}$ is an infinite set.

Let now C be an arbitrary Čebotarev set. Then there exists a finite normal extension K of $\mathbb Q$ and there exists a conjugacy class $\mathbb C$ in $\mathscr G(K/\mathbb Q)$ such that $C=A(\mathbb C)$. Take an n such that $K\subseteq K_n$, then there exists an $i\in I(n)$ such that $C_{n,i}\subseteq C$. Hence $A\cap C$ and $B\cap C$ are infinite sets. Since $B\subseteq P-A$, $(P-A)\cap C$ is also an infinite set.

Corollary. There exists a subset A of P such that for every filter base $\mathfrak B$ which consists of Čebotarev sets only (i.e. $\mathfrak B$ is a collection of Čebotarev sets such that $B_1 \cap B_2 \cap \cdots \cap B_n$ is an infinite set for every $B_1, B_2, \ldots, B_n \in \mathfrak B$) there exist two non principal ultra filter $\mathfrak D$, $\mathfrak D'$ of P which contain $\mathfrak B$ such that $A \in \mathfrak D$ and $P - A \in \mathfrak D'$.

Eingegangen am 8. 2. 1974

Anschrift des Autors:

M. Jarden Department of Mathematical Sciences Tel-Aviv University Ramat-Aviv, Tel-Aviv, Israel