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Abstract: Let K/K0 be a finite Galois extension of global fields. We prove that every

finite embedding problem with a solvable kernel H for K/K0 is solvable if it is locally

solvable and satisfies two conditions on char(K0) and the roots of unity in K.

Moreover, the solution can be chosen to coincide with finitely many (given in

advance) local solutions. Finally, and this is the main point of this work, the number of

primes of K0 that ramify in the solution field is bounded by the number of primes of K0

that ramify in K plus the number of prime divisors of |H|, counted with multiplicity.
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Introduction

A sharpened version of the inverse Galois problem is the so-called embedding prob-

lem. Given a Galois extension K/K0 of global fields, a finite group G, and an epimor-

phism α: G → Gal(K/K0), one looks for a Galois extension N of K0 that contains K

such that Gal(N/K0) ∼= G and the restriction map resN/K : Gal(N/K0) → Gal(K/K0)

coincides with α. Equivalently, with K0,sep being the separable algebraic closure of K0,

and Gal(K0) = Gal(K0,sep/K0), one looks for a continuous epimorphism ψ: Gal(K0)→

G such that α ◦ψ = resK0,sep/K . We refer to ψ as a proper solution of the embedding

problem (whereas, if ψ is only a homomorphism, as above, we say that ψ is a weak

solution of the embedding problem). The question about the proper solvability of finite

embedding problems over K0 is of course far from being settled. But, in those cases

where an embedding problem as above is solvable, one may ask whether a solution field

as above can be found with a bound on the ramification, i.e., with a bound on the

cardinality of the set Ram(N/K0) of the primes of K0 that are ramified in N .

Previous results. The combinatorial arguments of Shafarevich in [Sha54A] and

[Sha54B] (which was corrected in [Sha89]) lead for each finite solvable group G to a

Galois extension N of K with Galois group G such that the order of the set Ram(N/K)

of primes of K which are ramified in N has an exponential growth in |G|. See also

[NSW00, p. 476, Thm. 9.5.1].

The work [GeJ98] uses the method of Scholz [Sch37] and Reichardt [Rei37] in order

to realize for each prime number l every finite l-group G over K under the condition l 6=
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char(K) and ζl /∈ K. With |G| = ln, the work [GeJ98] constructs a Galois extension N

of K such that Gal(N/K) ∼= G and |Ram(N/K)| ≤ n+ r(K), where r(K) depends only

on arithmetical invariants of K. If K = Q or K = Fq(t), then r(K) = 0, so the result

of [GeJ98] reproduces in this case a result of Serre in [Ser92] that |Ram(N/K)| ≤ n.

The main result of [GeJ98] is generalized by Markin and Ullom in [MaU11]. The

latter work constructs for each number field K and every finite nilpotent group G a

Galois extension N of K with Galois group G. Moreover, if (Gi)i is a lower central

series of G and d(Gi/Gi+1) is the minimal number of generators of Gi/Gi+1, then

|Ram(N/K)| ≤
∑
i d(Gi/Gi+1) + r(K).

Going back to the case of a finite embedding problem α: G → Gal(K/K0) with

Ker(α) solvable for number fields, Neukirch observes in [Neu79] that for each prime

divisor p of K0, the completions K̂p/K̂0,p at p gives rise to a local embedding problem.

We denote the group of roots of unity in K by µ(K). In the spirit of Scholz-Reichardt,

[Neu79] proves that if the group Ker(α) is solvable, gcd(|Ker(α)|, |µ(K)|) = 1, and

each of the local embedding problems is weakly solvable, then the original embedding

problem is properly solvable. We denote the set of primes of the global field K0 by

P(K0). For each p ∈ P(K0) we identify Gal(K̂0,p) with a closed subgroup of Gal(K0).

Then, one may even find a proper solution that coincides on Gal(K̂0,p) with a given

local weak solution ϕp for finitely many p’s. However, [Neu79] gives no bound on the

ramification of the proper solution. The results of [Neu79] are generalized to the case

of global fields in [NSW15, p. 563, Thm. 9.5.5].

The main result. It is exactly the latter gap that our work intends to fill out. To

this end we recall that if n =
∏m
i=1 l

ri
i is a decomposition of a positive integer n into a

product of powers of distinct primes l1, . . . , lm, then Ω(n) =
∑m
i=1 ri. If K is a finite

extension of K0, then Ram(K/K0) denotes the set of p ∈ P(K0) that ramify in K. Our

main result is:

Theorem A: LetK/K0 be a finite Galois extension of global fields, set Γ = Gal(K/K0),
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and consider a finite embedding problem

(1) Gal(K0)

ρ

��
1 // H // G

α // Γ // 1,

with a solvable kernel H. Suppose that

(a1) char(K0) - |H|, gcd(|H|, |µ(K)|) = 1, and

(a2) for each p ∈ P(K0) there exists a homomorphism ψp: Gal(K̂0,p) → G such that

α ◦ ψp = ρ|Gal(K̂0,p) (we call ψp a local solution).

Let T be a finite subset of P(K0) that contains Ram(K/K0) and for each p ∈ T let ϕp

be a local solution.

Then, there exists an epimorphism ψ: Gal(K0)→ G such that α◦ψ = ρ, and there

exists a set R ⊆ P(K0)rT with |R| = Ω(|H|) that satisfies the following conditions:

(b1) For each p ∈ T there exists a ∈ H such that ψ(σ) = a−1ϕp(σ)a for all σ ∈

Gal(K̂0,p).

(b2) The fixed field N in K0,sep of Ker(ψ) satisfies Ram(N/K0) ⊆ T ∪ R, hence

|Ram(N/K0)| ≤ |T |+ Ω(|H|).

Special cases. Note that if the short exact sequence in (1) splits, then the condition

in Theorem A about the local solvability is automatically satisfied. Thus, in this case,

Theorem A holds under the mere conditions that H is solvable, char(K0) - |H|, and

gcd(|H|, |µ(K)|) = 1.

Also, let S be a finite subset of P(K0) and denote the maximal Galois extension

of K0 in which each p ∈ S totally splits by K0,tot,S . Suppose that K ⊆ K0,tot,S . Then,

we may assume that S ⊆ T and take ϕp for each p ∈ S as the trivial homomorphism.

We find that the solution field N of (1) is contained in K0,tot,S .

Finally, we note that if we take K = K0, T = ∅, and |G| = ln, where l is a

prime number such that l 6= char(K) and ζl /∈ K, in Theorem A, then we get a Galois

extension N of K with Galois group G such that |Ram(N/K)| ≤ n. This improves the

estimate |Ram(N/K)| ≤ n+ r(K) of the main result of [GeJ98] mentioned above.
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Remark. In a forthcoming paper, we plan to remove the condition char(K0) - |H|

from (a1) of Theorem A, keeping gcd(|H|, |µ(K)|) = 1 as the only condition on the

solvable group H in the theorem.

Simple Gal(K0)-module. An induction on the order of H reduces Theorem A to the

following result:

Proposition B: Let K/K0 be a finite Galois extension of global fields and l a prime

number. Set Γ = Gal(K/K0) and ρ = resK0,sep/K . Then, consider the diagram

(2) G

γ

��

Gal(K0)

ρ

��
1 // A // Ḡ

ᾱ // Γ // 1,

with a short exact sequence, where A ∼= Crl is a simple Gal(K0)-module (through ρ and

ᾱ; in particular Gal(K) acts trivially on A) and γ: G → Ḡ is an epimorphism of finite

groups with a non-trivial solvable kernel. Let n be a multiple of l · |Ker(γ)|. Suppose

that

(c1) char(K0) - n, gcd(n, |µ(K)|) = 1, and

(c2) for each p ∈ P(K0) there exists a homomorphism ψp: Gal(K̂0,p) → Ḡ such that

ᾱ ◦ ψp = ρ|Gal(K̂0,p).

Let T be a finite subset of P(K0) that contains Ram(K/K0) and for each p ∈ T

let ϕ̄p be a local solution. Then, there exists an epimorphism ψ̄: Gal(K0) → Ḡ such

that ᾱ ◦ ψ̄ = ρ and there exists a subset R̄ of P(K0)rT with |R̄| = Ω(|A|) = r that

satisfies the following conditions:

(d1) For each p ∈ T there exists a ∈ A such that ψ̄(σ) = a−1ϕ̄p(σ)a for all σ ∈

Gal(K̂0,p).

(d2) The fixed field K̄ in K0,sep of Ker(ψ̄) satisfies Ram(K̄/K0) ⊆ T ∪ R̄.

(d3) gcd(n, |µ(K̄)|) = 1.

(d4) For each p ∈ P(K0)rT there exists a homomorphism ψ′p: Gal(K̂0,p) → G such

that γ ◦ ψ′p = ψ̄|Gal(K̂0,p).
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The proof of Proposition B follows [Neu79] except for the control on the ramifica-

tion for which we prove and apply an improved version (Lemma 2.3) of [GeJ98, Lemma

7.1].

A comparison of estimates. We would like to stress that the vanishing of the

constant r(K) that appears both in [GeJ98] and [MaU11] is an essential ingredient

of our result and its proof. Indeed, take for simplicity T = ∅. Assume in the con-

text of Diagram (2) that we could only find an epimorphism ψ̄: Gal(K0) → Ḡ such

that ᾱ ◦ ψ̄ = ρ and the fixed field K̄ of Ker(ψ̄) in K0,sep satisfies |Ram(K̄/K0)| ≤

|Ram(K/K0)|+ Ω(|Ker(ᾱ)|) + r(K). Then, in the induction step, we would be able to

find an epimorphism ψ: Gal(K0) → G such that γ ◦ ψ = ψ̄ and the fixed field N of

Ker(ψ) would satisfy

(3) |Ram(N/K0)| ≤ |Ram(K/K0)|+ Ω(|Ker(ᾱ ◦ γ)|) + r(K) + r(K̄).

Unfortunately our proof gives no control on K̄, so we cannot bound r(K̄) in terms

of the initial data of the embedding problem. Thus, (3) would only say that Ram(N/K0)

is a finite set, so the whole point of our result would disappear.

Elimination of r(K). The rest of the introduction overviews the proof of Proposition

B with an emphasize on the bound on the ramification of the solution of embedding

problem (2). Among others, it explains how r(K) disappears from the bound on the

ramification.

A local-global principle. Since (2) is locally solvable (by (c2)), a local global

principle (Lemma 10.6), yields a weak solution ψ0 to embedding problem (2).

We adjust ψ0 to the desired proper solution by using two degrees of freedom.

First, for each a ∈ A, we may replace ψ0 by the homomorphism ψ′0: Gal(K0) → Ḡ

defined by ψ0(σ) = a−1ψ0(σ)a. We say that ψ′0 is A-equivalent to ψ0 and de-

note the equivalence class of ψ0 by [ψ0]. Then, we denote the set of all equivalence

classes by HomΓ,ρ,ᾱ(Gal(K0), Ḡ) and define a free transitive action of H1(Gal(K0), A)

on HomΓ,ρ,ᾱ(Gal(K0), Ḡ). Similarly, for each prime p of K0 we set ρp = ρ|Gal(K̂0,p).

Then, HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) is a principal homogeneous space under the action of

H1(Gal(K̂0,p), A) (Lemma 10.4). The actions involving the global and the local princi-
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pal homogeneous spaces are our second degree of freedom.

The set S0,l(K). The constant r(K) mentioned above is the cardinality of a finite

subset S0,l(K) of P(K) introduced in Subsection 1.6. Among others, S0,l(K) contains

all archimedean primes of K and all primes that lie over l (if K is a number field).

Let s1, . . . , sk be the elements of S0,l(K)|K0
rT . Since Ram(K/K0) ⊆ T , the primes

s1, . . . , sk are unramified in K.

Surjectivity and number of roots of unity. We take care of the surjectivity

and the number of roots of unity in the solution field by using the Chebotarev density

theorem. Let m be the smallest number of generators of Gal(K(ζn)/K). We use Lemma

11.2 in order to choose non-archimedean primes q, p1, . . . , pm of K0 away from T ∪

{s1, . . . , sk} that totally split in K and for each p ∈ {s1, . . . , sk} ∪ {q, p1, . . . , pm} an

unramified local solution ϕp: Gal(K̂0,p) → Ḡ such that if a weak solution ψ̄ of (2)

coincides with ϕp on Gal(K̂0,p), then ψ̄ is surjective and gcd(|H|, |µ(N̄)|) = 1, where

H is the group appearing in (1) and N̄ is the solution field associated with ψ̄. We set

T ∗ = T ∪ {s1, . . . , sk} ∪ {q, p1, . . . , pm}. We have to make sure that, among others,

{s1, . . . , sk} remain unramified in the solution field of (2) that we construct.

Elimination of extra ramification. Let r1, . . . , rs be the primes of K0 away from

T ∗ where ψ0 ramifies, and set T ∗∗ = T ∗ ·∪ {r1, . . . , rs}. Then, ψ0 is unramified at each

p ∈ P(K0)rT ∗∗. By Part C of the proof of Proposition 12.3, there exists an unramified

local solution ϕp: Gal(K̂0,p) → Ḡ of (2) for each p ∈ {r1, . . . , rs}. Unfortunately, we

have no control on s. However, we are able to change ψ0 in such away that it becomes

ramified, in addition to on Ram(K/K0), only on r new primes of K0 away from T ∗∗.

In order to do so, we choose for each p ∈ T ∗∗ an element yp ∈ H1(Gal(K̂0,p), A)

such that [ϕp] = [ψ0,p]yp . Then, Proposition 9.3, applied to T ∗∗ rather than to T ,

yields an x ∈ H1(Gal(K0), A) such that resp(x) = yp for each p ∈ T ∗∗ and a set

R̄ = {q1, . . . , qr} such that x is unramified away from T ∪ R̄. Then, ψ̄ with [ψ̄] = [ψ0]x

is a solution of (2) that satisfies [ψ̄p] = [ϕp] for each p ∈ T and Ram(N̄/K0) = T ∪ R̄.

Indeed, by its choice, [ϕp] is unramified if p ∈ T ∗∗rT , and [ψ̄p] = [ψ0,p]resp(x) is

unramified if both [ψ0,p] and resp(x) are unramified (Lemma 10.5).
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The construction of x. Let (yp)p∈T∗∗ be the local data given in the preceding

paragraph. Lemma 9.2 yields an element z ∈ H1(Gal(K0), A) such that resp(z) = yp

for each p ∈ T ∗∗. Moreover, p totally splits in K(ζl) if p ∈ P(K0)rT ∗∗ and resp(z) is

ramified. Then, we consider the set V = T ∗∗ ∪ {p ∈ P(K0) | resp(z) is ramified}. We

define an element ηp ∈ H1(Gal(K̂0,p), A) for each p ∈ V by ηp = 1 if p ∈ T ∗∗ and

ηp = resp(z)−1 if p ∈ V rT ∗∗. We prove, in the notation of commutative diagram (1)

of Section 5 for n = 1, that for each p ∈ V and every P in P(K) over p there exists an

element η̃P ∈ H1(Gal(K̂P), A) such that ηp =
∏

P|p corP(η̃P).

By Proposition 4.2, there exists a homomorphism h: Gal(K)→ A, primes q1, . . . , qr ∈

P(K0)rV , and primes Q1, . . . ,Qr ∈ P(K), respectively over q1, . . . , qr, such that

among others, resP(h) = η̃P for all P ∈ VK and h is unramified on P(K)r(VK ∪

{Q1, . . . ,Qr}).

Let u be the image of h under the map cor: H1(Gal(K), A) → H1(Gal(K0), A).

We prove that x = uz has the desired properties mentioned under heading “Elimination

of extra ramification”.

On the construction of h. The construction proceeds by induction on r (where

we recall that A = Crl ). The main case, where r = 1 is carried out in Corollary 3.3.

That corollary is a translation of Lemma 2.3 via the reciprocity law of class field theory.

Finally, Lemma 2.3 is a generalization of [GeJ98, Lemma 7.1]. We consider a

tower K0 ⊆ K ⊆ L of finite Galois extensions of global fields such that ζl /∈ K and L/K

is an abelian l-extension (in particular l 6= char(K0)). Let n = qlm with char(K0) - q

and let S be a finite subset of P(K) that contains S0,l(K). For each P ∈ S let hP

be a homomorphism from K̂×P into Cl. Then, there exists a non-archimedean prime

q ∈ P(K0)rS|K0
and a homomorphism h of the idele class group CK into Cl such that

q totally splits in L(ζn) (here we use the Chebotarev density theorem), h|K̂×P = hP for

each P ∈ S, there exists Q ∈ P(K) over q with h(UQ) = Cl, and h(UP) = 1 for each

P ∈ P(K)r(S ·∪ {Q}). Here UQ (resp. UP) are the groups of units of K̂Q (resp. K̂P).

Note that the latter condition eventually translates into the desired non-ramification

condition in the solution field of most of the primes of K0.
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1. Preliminaries PREL
input, 15

A large part of this work is dominated by class field theory and cohomology theory of

global fields. In this section we provide the necessary notions connected to global fields,

their localizations and completions, and the corresponding groups of ideles.

1.1 Notation. For each field K we choose a separable algebraic closure Ksep and let NOT
input, 25

Gal(K) = Gal(Ksep/K) be the absolute Galois group of K.

If K is a global field, we let P(K) be the set of all primes of K. Then, Parch(K) is

the set of all archimedean primes of K and Pnonarch(K) is the set of all non-archimedean

primes of K. We also write µ(K) for the group of roots of unity that belong to K. For

each positive integer n with char(K) - n, we fix a root of unity ζn in Ksep of order n.

We use the letter l as a variable on the set of prime numbers and set Cl to be the

(multiplicative) cyclic group of order l. Also, we denote the trivial subgroup of each

multiplicative group A by 1A or by 1 if A is known from the context.

Finally, we write A ·∪B and
⋃
· ni=1Ai to signify that the unions are disjoint.

1.2 Topological Groups. We consider several types of topological groups: finite PREa
input, 54

groups (equipped with discrete topology), arbitrary discrete groups, profinite groups,

locally compact groups, and idele groups of global fields (that are also locally compact).

Whenever we speak about homomorphisms between topological groups, we tacitly as-

sume that they are continuous. On the rare occasion that a map ϕ: G → A between

topological groups is constructed from previously given (continuous) homomorphisms,

and we only know that ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G, then we refer to ϕ as

an “abstract homomorphism”.
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1.3 Global Fields and their Localizations and Completions. For the rest PREb
input, 73

of this work we fix a global field K0 of characteristic p. Thus, K0 is either a number

field and p = 0, or K0 is a function field of one variable over a finite field of a positive

characteristic p.

For each p ∈ P(K0) we fix a completion K̂0,p of K0 at p that contains K0 and let

K̂0,p,sep be a separable algebraic closure of K̂0,p that contains K0,sep, thereby extending

p to K0,sep. Let K0,p = K̂0,p ∩ K0,sep. If p is archimedean and real (resp. complex),

then K0,p is a real (resp. algebraic) closure of K0 at p. If p is non-archimedean, then

K0,p is a Henselian closure of K0 at p.

In the latter case we denote the residue field of K0 at p by K̄0,p. By Krasner’s

lemma, K0,sepK̂0,p = K̂0,p,sep. The same equality also holds for the archimedean primes.

It follows that in each case

resK̂0,p,sep/K0,sep
: Gal(K̂0,p)→ Gal(K0,p)

is an isomorphism. We identify Gal(K̂0,p) with Gal(K0,p) under this isomorphism.

For p ∈ P(K0) we write p - l,∞ if p is non-archimedean and char(K̄p) 6= l. In the

number field case this means that p lies neither over l nor over ∞. In the function field

case this simply means that l 6= char(K0).

For each p ∈ Pnonarch(K0), we denote the maximal unramified extension of K̂0,p

by K̂0,p,ur and let Îp = Gal(K̂0,p,ur) be the corresponding inertia group.

Next, we denote the normalized p-adic discrete valuation of K̂0,p by ordp and

extend it to K̂0,p,sep in the unique possible way. We fix an element πp of K̂0,p with

ordp(πp) = 1. Let Op = {z ∈ K̂0,p | ordp(z) ≥ 0} be the ring of integers of K̂0,p

and let Up = {z ∈ K̂0,p | ordp(z) = 0} be the group of units of Op. Note that

K̂×0,p = 〈πp〉×Up, where 〈πp〉 = {πmp | m ∈ Z} is the discrete subgroup of K̂×0,p generated

by πp. As such, 〈πp〉 is closed in K̂×0,p. By [Ser79, p. 66] Up = lim←−Up/(1 + πipOp) and

by [Ser79, p. 66, Prop. 6] Up/(1 +πipOp) is a finite group, hence Up is a profinite group.

If ψ is a homomorphism from Gal(K0) into a finite group G, we denote the restric-

tion of ψ to Gal(K̂0,p) (which is by our identification the restriction of ψ to Gal(K0,p))

by ψp.
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1.4 Extensions of Primes. Next we consider a finite Galois extension K of K0 and PREc
input, 152

a prime p ∈ P(K0). Let x be a primitive element of K/K0 and set f = irr(x,K0).

The polynomial f decomposes over K̂0,p into distinct irreducible factors, f(X) =∏
P|p fP(X), where P ranges over all primes of K that lie over p [Neu99, p. 163,

Prop. 8.2]. For each P over p we choose a root xP of fP in K̂0,p,sep (which actually lies

in K), write K̂P = K̂0,p(xP), and let λP: K → K̂P be the K0-embedding of K into K̂P

that maps x onto xP. Then, we extend λP to an embedding λP: K0,sep → K̂0,p,sep and

observe that KP = (K̂P)λ
−1
P is a Henselian (resp. real or separable algebraic) closure

of K at P and K̂P is a completion of K at P. By definition, K0,sep ∩ K̂P = K
λP

P and

K0,sepK̂P = K̂0,p,sep (because K0,sepK̂0,p = K̂0,p,sep). Hence, we may identify Gal(K̂P)

with Gal(K
λP

P ). Having done that, we have Gal(KP)λP = Gal(K̂P).

If in addition, P is non-archimedean, we write KP,ur (resp. K̂P,ur) for the max-

imal unramified extension of KP (resp. K̂P), and set IP = Gal(KP,ur) (resp. ÎP,ur =

Gal(K̂P,ur)) for the corresponding inertia group.

Note that the primitive element x of K/K0 mentioned in the preceding paragraph

is a root of fP for a unique P over p. In this case we choose xP to be x and conclude

that the embedding λP: K → K̂P is the inclusion map. In this case K0,p ⊆ KP.

For each homomorphism h: Gal(K)→ A we write resP(h): Gal(K̂P)→ A for the

homomorphism defined by resP(h)(σ) = h(σλ
−1
P ) for each σ ∈ Gal(K̂P).

Given a subset S of P(K0), we write SK for the set of all primes of K that lie

over S. Conversely, for each subset T of P(K), we denote the set of primes of K0 that

lie under T by T |K0 .

1.5 Total splitting and unramification. Let K0, K, and p be as in Subsection SPLT
input, 210

1.4. Then, p totally splits in K if the number of prime divisors P of K that lie over p

is equal to [K : K0]. If p ∈ Pnonarch(K), then the latter statement is equivalent to the

condition that the Frobenius automorphism
[K/K0

P

]
is the trivial element of Gal(K/K0).

Alternatively, K ⊆ K̂0,p. Alternatively, K̂P = K̂0,p, so Gal(K̂P) = Gal(K̂0,p) for all

(alternatively, for one) P|p.

A non-archimedean prime p of K0 is unramified in K if and only if for each P|p

the extension K̂P/K̂0,p is unramified, alternatively K ⊆ K̂0,p,ur. This is the case if and

11



only if ÎP = Îp.

Following the convention at [NSW15, p. 523, first paragraph], we say that an

archimedean prime p of K0 is unramified in K if p totally splits in K. This means

that K ⊆ K̂0,p.

We denote the set of all primes of K0 that ramify in K by Ram(K/K0).

1.6 Basic Set of Primes. Let K be a global field and consider P ∈ P(K). If P is PREi
input, 241

archimedean, then K̂P = R or K̂P = C. In this case we set UP to be the set of positive

elements of K̂p if P is real and K̂×P if P is complex. In each case we set πP = 1. If P

is non-archimedean, then we choose a prime element πP with ordP(πP) = 1, and set

UP = {x ∈ K̂P | ordP(x) = 0} to be the group of units of K̂P.

Recall that an idele of K is an element α = (αP)P ∈
∏

P∈P(K) K̂
×
P, where αP ∈

UP for all by finitely many P’s. The ideles of K form a multiplicative group denoted

by IK . The group IK becomes a topological group under the restricted topology. A

basis of neighborhoods of 1 in IK is the collection of sets
∏

P∈S VP×
∏

P/∈S UP, where S

ranges over the finite sets of primes of K and the VP’s run over a basis of neighborhoods

of 1 ∈ K̂×P. In particular, UK =
∏

P∈P(K) UP is an open subgroup of IK .

Another open subgroup of IK is obtained for each finite subset S of P(K). It is

the group IK,S =
∏

P∈S K̂
×
P ×

∏
P/∈S UP of the S-ideles of K.

The multiplicative groupK× is embedded diagonally in IK . As suchK× is discrete

and therefore closed in IK [Neu99, p. 361, Prop. VI.1.5]. The factor group CK = IK/K
×

is the idele class group of K. It is a Hausdorff locally compact group [Neu99, p. 361].

For each P ∈ P(K), the multiplicative group K̂×P naturally embeds into IK . The

image of an element x ∈ K̂×P under this embedding is the family (xP′)P′∈P(K), where

xP′ = 1 for P′ 6= P and xP = x. Note that if y is another element of K̂×P, a ∈ K×,

and a(xP′)P′∈P(K) = (yP′)P′∈P(K), then a = 1, so x = y. This gives an embedding of

K̂×P into CK = IK/K
×. Note that the image of K̂×P in IK is closed, hence so is the

image of K̂×P in CK . We identify K̂×P with its image in CK .

For a set S of primes of K that contains Parch(K), we define the group of S-units

of K as KS = {x ∈ K | ordP(x) = 0 for all P /∈ S}. Then, KS = IK,S ∩K×.

By [Neu99, p. 360, Prop. VI.1.4], there exists a finite subset S0(K) of P(K) that

12



contains Parch(K) such that

(1) IK = IK,SK
× and CK = IK,S/KS ,

for each finite subset S of P(K) that contains S0(K). If K is a number field and l is

a prime number, we enlarge S0(K) by adding the prime divisors of l and denote the

extended set by S0,l(K). If K is a function field, we set S0,l(K) = S0(K). In each case,

we call S0,l(K) a basic set of K.

Lemma 1.7: Let K be a global field, l 6= char(K) a prime number, and S0,l(K) a basic PREj

input, 330
set of K.

(a) Assume that an element a of K× is an l-power in K̂P for every P ∈ P(K). Then,

a is an l-power in K.

(b) Let S be a finite set of prime divisors of K that contains S0,l(K). We use a bar

to denote the reduction of elements and subgroups of IK,S modulo I lK,S . Then,

IK,S/KS is a quotient of CK .

Proof of (a): Statement (a) is a special case of [ArT52, p. 96, Thm. 1]. See also

[NSW15, p. 530, Thm. 9.1.11(ii)]. We offer here an alternative direct proof that uses

the Chebotarev density theorem.

Assume toward contradiction that a is not an l-power in K. Then, X l − a is

irreducible in K [Lan93, p. 297, Thm. 1]. We denote the splitting field of X l − a over

K by N and choose a root x of X l − a.

Observe that H = Gal(N/K(x)) is a proper subgroup of G = Gal(N/K). Hence,

Gr⋃
σ∈GH

σ is a proper subset of G [FrJ08, p. 238, Lemma 13.3.2]. We choose

τ ∈ Gr⋃
σ∈GH

σ. Then, we use the Chebotarev density theorem to choose a non-

archimedean prime divisor P of K which is unramified in N such that
[N/K

P

]
is conjugate

in G to τ . Hence, X l − a has no root in K̂P. This contradicts our assumption.

Proof of (b): By (a), KS ∩ I lK,S = Kl
S . Hence, KS = KS/K

l
S
∼= KSI

l
K,S/I

l
K,S .

Therefore,

IK,S/KS
∼= (IK,S/I

l
K,S)/(KSI

l
K,S/I

l
K,S) ∼= IK,S/KSI

l
K,S

is, by (1), a quotient of CK = IK,S/KS .

13



2. Homomorphism from CK to Cl HOM
input, 11

Let K/K0 be a finite Galois extension of global fields. For a finite subset S of P(K)

that contains Parch(K) we say that elements a1, . . . , as ∈ KS are multiplicatively

independent modulo Kl
S if for all k1, . . . , ks ∈ Z and b ∈ KS the equality ak11 · · · akss =

bl implies that l|ki for i = 1, . . . , s. Here and in the rest of this section, l denotes a

prime number with l 6= char(K).

The first step toward the proof of our main result is a construction of a homomor-

phism h: CK → Cl that satisfies several local conditions. This construction generalizes

an earlier construction given in [GeJ98, p. 33, Lemma 7.1].

Lemma 2.1 ([GeJ98, p. 27, Lemma 5.2]): Let S be a finite subset of P(K) that contains HOMa
input, 31

Parch(K), let m be a positive integer, and let L be a finite l-extension of K (i.e. [L : K]

is a power of l). Suppose that ζl /∈ K. If a1, . . . , as ∈ KS are multiplicatively indepen-

dent modulo Kl
S , then the fields L(ζlm , l

√
a1), . . . , L(ζlm , l

√
as) are linearly disjoint and

of degree l over L(ζlm).

Lemma 2.2: Let S be a finite set of primes ofK that contains Parch(K). Let a1, . . . , as ∈ HOMb
input, 44

KS be multiplicatively independent elements modulo Kl
S . Let L be a finite l-extension

of K, let m be a positive integer, and let M be a finite abelian extension of K. Suppose

that ζl /∈ K. Then, the fields LM(ζlm , l
√
a1), . . . , LM(ζlm , l

√
as) are linearly disjoint

extensions of LM(ζlm) of degree l.

Proof: We write M = M ′M ′′, where M ′ is an abelian l-extension of K and M ′′ is an

abelian extension of K whose degree is not divisible by l. Then, L′ = LM ′ is a finite

l-extension of K. Applying Lemma 2.1 to L′, we find that L′(ζlm , l
√
a1), . . . , L′(ζlm , l

√
as)

are linearly disjoint extensions of L′(ζlm) of degree l. In particular, N = L′(ζlm , l
√
a1, . . . , l

√
as)

is an l-extension of K. Since l - [M ′′ : K], the field M ′′ is linearly disjoint from N over

K. Hence, LM(ζlm , l
√
a1), . . . , LM(ζlm , l

√
as) are linearly disjoint extensions of LM(ζlm)

of degree l, as claimed.

Here is the promised generalization of [GeJ98, Lemma 7.1].

Lemma 2.3: Let K0 ⊆ K ⊆ L be a tower of finite Galois extensions of global fields HOMc
input, 84
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such that L/K is an abelian l-extension and L/K0 is Galois. Suppose ζl /∈ K. Let S

be a finite set of primes of K that contains the basic set S0,l(K) chosen in Subsection

1.6. Let q and m be positive integers with char(K0) - q and set n = qlm. For each

P ∈ S let hP: K̂×P → Cl be a homomorphism. Then, there exists a non-archimedean

prime q ∈ P(K0)rS|K0 and there exists a homomorphism h: CK → Cl such that the

following holds:

(a) q totally splits in L(ζn),

(b) h|K̂×P = hP for each P ∈ S,

(c) there exists Q ∈ P(K) over q with h(UQ) = Cl, and

(d) h(UP) = 1 for each P ∈ P(K)r(S ·∪ {Q}).

Proof: We break up the proof into several parts.

Part A: Continuity. We claim that every abstract homomorphism h: CK → Cl that

satisfies (b) and (d) is continuous, hence h is a homomorphism in the sense of Section

1.2.

Indeed, let S′ = S ·∪{Q}. Then, by Subsection 1.6, IK,S′ =
∏

P∈S′ K̂
×
P×
∏

P/∈S′ UP

and CK = IK,S′/KS′ . Let π: IK,S′ → CK be the quotient map and h′ = h ◦ π. Thus, it

suffices to prove that the abstract homomorphism h′: IK,S′ → Cl is continuous.

By (d), h′(UP) = h(UP) = 1 for each P ∈ P(K)r(S ·∪ {Q}). By (b), h′|K̂×P =

h|K̂×P is continuous for each P ∈ S. Hence, it suffices to prove that h|K̂×Q = h′|K̂×Q is

continuous.

Indeed, by Subsection 1.3, K̂×Q
∼= 〈πQ〉 × UQ. Since 〈πQ〉 is discrete, h|〈πQ〉 is

continuous. Next recall that UQ is a profinite group (Subsection 1.3). Since each prime

of K that divides l is in S0,l ⊆ S (Subsection 1.6), char(K̄Q) 6= l. It follows from

Hensel’s lemma that 1 + πlQOQ ≤ U lQ. Hence, by Subsection 1.3, U lQ is open in UQ.

Since U lQ ≤ Ker(h|UQ
), the group Ker(h|UQ

) is open in UQ. Hence, h|UQ
is continuous.

Therefore, h|K̂×Q is continuous, as desired.

Part B: Reduction of the lemma to constructing a homomorphism g: IK,S/KS →

Cl. By the Dirichlet unit theorem, KS is finitely generated [CaF67, p. 72], hence

(KS : Kl
S) = ls for some positive integer s. We choose multiplicatively independent
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generators a1, . . . , as of KS modulo Kl
S . For each Q ∈ P(K)rS we can decompose

IK,S as

IK,S =
∏
P∈S

K̂×P × UQ ×
∏

P/∈S∪{Q}

UP.

Then, we use a bar to denote the reduction of elements and subgroups of IK,S modulo

I lK,S . In particular

(1) IK,S =
∏
P∈S

K̂×P × UQ ×
∏

P/∈S∪{Q}

UP,

and

(2) KS = 〈ā1, . . . , ās〉.

Also, for each P ∈ S the homomorphism hP: K̂×P → Cl induces a homomorphism

h̄P: K̂×P → Cl. Since IK,S/KS is a quotient of CK = IK,S/KS (Lemma 1.7), it suffices

to find a prime q ∈ P(K0)rS|K0 that satisfies (a) and to construct a homomorphism

g: IK,S → Cl such that

(3a) g|
K̂×P

= h̄P for each P ∈ S,

(3b) there exists Q ∈ P(K) over q with g(UQ) = Cl,

(3c) g(UP) = 1 for each P ∈ P(K)r(S ·∪ {Q}), and

(3d) g(āi) = 1 for i = 1, . . . , s.

By (2) and (3d), g will induce a homomorphism ḡ: IK,S/KS → Cl that will

compose with the quotient map CK → IK,S/KS to the desired homomorphism h. By

Part A, we don’t have to care about the continuity of g.

Part C: Presentation of āi as an idele. For each i between 1 and s and every P ∈

P(K), let aiP be ai considered as an element of K̂×P and let

(4) δi =
∏
P∈S

h̄P(āiP).

If q ∈ P(K0)rS|K0 satisfies (a) and char(K̄0,q) 6= l, we choose Q ∈ P(K) over q. Then,

Q totally splits in L(ζl). Hence, a1, . . . , as, ζl ∈ UQ and UQ
∼= Cl [GeJ98, p. 24, Lemma
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4.1]. This allows us to choose a generator ūQ for UQ. Thus, for each i there exists an

integer 0 ≤ βi < l such that

(5) āiQ = ūβiQ .

The representation of āi therefore takes the form

(6) āi =
∏
P∈S

āiP · ūβiQ ·
∏

P/∈S∪{Q}

āiP.

By their choice in Part B, the ai’s belong to UP for each P ∈ P(K)rS. Hence,

Conditions (3a) and (3c) force that

(7) g(āiP) = h̄P(āiP) for P ∈ S and g(āiP) = 1 for P ∈ P(K)r(S ·∪ {Q}).

Condition (3b) is equivalent to g(ūQ) 6= 1. Therefore we have to choose q such that in

addition to (8), (a) will hold, and to define g(ūQ) as a non-unit element of Cl such that

(3d) will be satisfied.

Let N be the Galois closure of L(ζn, l
√
a1, . . . , l

√
as) over K0. If δi = 1 for i =

1, . . . , s, we use the Chebotarev density theorem to choose q ∈ P(K0)rS|K0
such that

(8) N ⊆ K̂0,q.

In particular, (a) holds. Then, we choose Q ∈ P(K) over q. By its choice, q totally

splits in K, so K̂Q = K̂0,q. It follows that aiQ ∈ U lQ, so βi = 0 for i = 1, . . . , s. We

therefore define g(ūQ) to be a non-unit element of Cl and derive from (6), (4), and (7)

that g(āi) = δi · g(ūQ)βi = 1 so that (3d) holds.

Part D: The main case. Having settled the case where δi = 1 for i = 1, . . . , s, we

may and we will from now on assume that

(9) δ1 6= 1.

Under this assumption there exists an integer 0 ≤ εi < l such that

(10) δεi1 = δi, i = 1, . . . , s.
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In particular, ε1 = 1. Then, we set

(11) b1 = a1 and bi = ai/a
εi
1 for i = 2, . . . , s.

Then, N is also the Galois closure of L(ζn,
l
√
b1, . . . ,

l
√
bs) over K0. Since a1, . . . , as

are multiplicatively independent modulo Kl
S , so are b1, . . . , bs. By Lemma 2.2 applied

to M = K(ζn) and to b1, . . . , bs rather than to a1, . . . , as (so that LM(ζlm ,
l
√
bi) =

L(ζn,
l
√
bi)), the fields L(ζn,

l
√
b1), . . . , L(ζn,

l
√
bs) are linearly disjoint of degree l over

L(ζn).

Part E: Choosing q. Part D allows us to choose σ ∈ Gal(N/L(ζn)) such that ( l
√
a1)σ =

ζl l
√
a1 and ( l

√
bi)

σ = l
√
bi for i = 2, . . . , s. The Chebotarev density theorem gives a prime

q ∈ P(K0)rS|K0 such that
(N/K0

q

)
is the conjugacy class of σ in Gal(N/K0). In par-

ticular, L(ζn) ⊆ K̂0,q, so (a) holds.

We choose Q ∈ P(K) over q. Since q is unramified in N , so is Q. Hence,

K̂Q( l
√
a1)/K̂Q is an unramified extension. It follows that the Frobenius element of

the latter extension acts on l
√
a1 as σ. In particular, that Frobenius does not fix l

√
a1.

This implies that [K̂Q( l
√
a1) : K̂Q] = l, so

(12) a1 ∈ UQ rU lQ.

On the other hand, bi ∈ U lQ, so by (11)

(13) āiQ = āεi1Q, i = 2, . . . , s.

Part F: Definition of g. By (5) and (12),

(14) ā1Q = ūβQ for some 0 < β < l.

This allows us to define g(ūQ) as the element of Cl that satisfies

(15) g(ūQ)β = δ−1
1 .

In particular, by (9), g(ūQ) 6= 1. By (13) and (14), āiQ = āεi1Q = ūβεiQ , i = 2, . . . , s. This

gives (6) the form

(16) āi =
∏
P∈S

āiP · ūβεiQ ·
∏

P/∈S∪{Q}

āiP.
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By (4) and (8),

(17)
∏
P∈S

g(āiP) = δi and
∏

P/∈S∪{Q}

g(āiP) = 1.

Finally, we apply g on (16) and use (17), (15), and (10) to get

g(āi) =
( ∏
P∈S

g(āiP)
)
· g(ūQ)βεi ·

∏
P/∈S∪{Q}

g(āiP) = δiδ
−εi
1 = 1.

Thus, (3d) holds and the proof is complete.

3. Homomorphism from Gal(K) to Cl GAL
input, 11

We use class field theory to translate Lemma 2.3 into a result about the existence

of a homomorphism from Gal(K) into Cl with local data and with a bound on the

ramification. Again, we assume for the whole section that l 6= char(K0).

We start with a presentation of the main result of class field theory.

Proposition 3.1: Let K be a finite Galois extension of K0, P a prime of K, and L a GALa
input, 21

finite abelian extension of K. Then, there exists a commutative diagram

1 // NL/KL
× // CK

( ,L/K) // Gal(L/K) // 1

1 // NL̂P/K̂P
L̂×P

//

OO

K̂×P
( ,L̂P/K̂P) //

OO

Gal(L̂P/K̂P) //

λP

OO

1,

with exact rows. In this diagram

(a) K̂P is the completion of K at P, λP is the embedding of Ksep into K̂P,sep chosen

in Subsection 1.4, and L̂P = λP(L)K̂P.

(b) NL/K and NL̂P/K̂P
are the norm maps.

(c) ( , L/K) and ( , L̂P/K̂P) are the global and local norm residue symbols. They

are obtained from the inverses of the Artin reciprocity maps rL/K : Gal(L/K) →

CK/NL/KL
× and

rL̂P/K̂P
: Gal(L̂P/K̂P)→ K̂×P/NL̂P/K̂P

L̂×P,
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respectively.

(d) If P is non-archimedean, then the map ( , L̂P/K̂P) maps the group of units UP of

K̂P onto the inertia group I(L̂P/K̂P) of L̂P/K̂P.

In addition,

(e) both the global and the local residue symbols are compatible with the restriction

maps and

(f) the map L 7→ NL/KCL maps the set of finite abelian extensions L of K (in Ksep)

onto the set of closed subgroups of CK of finite index.

References: The upper exact sequence is guaranteed by [Neu99, p. 391, Thm. 5.5] in

the number field case, and by [CaF67, p. 172, Thm. 5.1(B)] in the general case. In both

cases, the lower exact sequence is established by [Neu99, p. 320, Thm. 1.3]. Part (d) of

the theorem is established in [CaF67, p. 142, Cor.] and in [Neu99, p. 354, Thm. 6.2].

The commutativity of the diagram is proved in [Neu99, p. 391, Prop. 5.6] in the number

field case, and in [CaF67, pp. 174-176, Sec. VII.6] in the general case.

Statement (e) is established for global fields in [CaF67, p. 171, Prop. 4.3], and in

[Neu99, p. 302, Prop. 6.4] in the number field case.

Finally, the “existence theorem” (f) is proved in [Neu99, p. 395, Thm. 6.1] for

number fields, and [ArT52, p. 71, Thm. 3] in the general case.

Lemma 3.2: Let A be a finite abelian group and let P be a prime of K. Then, there HOMd
input, 105

is a commutative diagram

(1) Hom(Gal(K), A)
ψ //

resP

��

Hom(CK , A)

��
Hom(Gal(K̂P), A)

ψP // Hom(K̂×P, A),

where resP is the map introduced in Subsection 1.4 (thus, resP(h)(σ) = h(σλ
−1
P ) for

each

h ∈ Hom(Gal(K), A)

and σ ∈ Gal(K̂P)), the right vertical map is the natural restriction map, and the

horizontal maps are the isomorphisms induced by the global and local norm symbols
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cited in Proposition 3.1. Moreover, if P is non-archimedean and f ∈ Hom(Gal(K̂P), A),

then ψP(f)(UP) = f(ÎP).

Proof: Our lemma is a consequence of Proposition 3.1. Since A is finite, Diagram (1)

is the inverse limit of diagrams where Gal(K) is replaced by Gal(L/K) for finite abelian

extensions L/K, and Gal(K̂P) is replaced by the corresponding decomposition group in

Gal(L/K). The maps ψ and ψP are replaced in those diagrams by the corresponding

global (resp. local) norm residue symbols. The latter are compatible with each other.

Since both the global and the local reciprocity law are compatible under finite Galois

extensions (Proposition 3.1(e)), an inverse limit argument gives the desired diagram (1).

The injectivity of ψ follows from the surjectivity of the map ( , L/K): CK → Gal(L/K).

The surjectivity of ψ and ψP are consequences of the existence theorem 3.1(f).

Corollary 3.3: Let K0 ⊆ K ⊆ L be a tower of finite Galois extensions of global fields HOMe
input, 156

such that L/K is an abelian l-extension and L/K0 is Galois. Suppose ζl /∈ K. Let S be

a finite set of primes of K that contains the basic set S0,l(K) chosen in Subsection 1.6.

Let q and m be positive integers with char(K0) - q and set n = qlm. For each P ∈ S let

hP: Gal(K̂P)→ Cl be a homomorphism. Then, there exists a prime q ∈ P(K0)rS|K0

and there exists a homomorphism h: Gal(K)→ Cl such that the following holds:

(a) q totally splits in L(ζn),

(b) resP(h) = hP for each P ∈ S,

(c) there exists Q ∈ P(K) over q with resQ(h)(ÎQ) = Cl, and

(d) resP(h)(ÎP) = 1 for each P ∈ P(K)r(S ·∪ {Q}).

Proof: For each P ∈ S, let h′P: K̂×P → Cl be the image of hP under the map ψP of

Diagram (1), applied to Cl rather than to A. By Lemma 2.3, there exist a prime q of K0

and a homomorphism h′: CK → Cl that satisfy Conditions (a)–(d) of that lemma (with

h′ and h′P replacing h and hP). Let h: Gal(K) → Cl be the unique homomorphism

given by Lemma 3.2 such that ψ(h) = h′. Then, by Proposition 3.1, q and h satisfy

Conditions (a)–(d) of our corollary.
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4. Homomorphism from Gal(K) to Crl CLR
input, 12

For each positive integer r, a repeated application of Corollary 3.3 yields a homomor-

phism h from Gal(K) into Crl with local data and with a bound on the ramification.

Remark 4.1: The construction of h: Gal(K)→ Crl uses the following basic argument: CLRa
input, 18

Let K0 ⊆ K be a finite Galois extension and let L1, . . . , Lr be finite abelian l-

extensions ofK. LetM be the Galois closure of L1 · · ·Lr/K0. Then, M =
∏r
i=1

∏
σi
Lσii ,

where σi ranges over the finitely many K0-embeddings of Li into Ksep. Hence, the cor-

responding restriction map Gal(M/K)→
∏r
i=1

∏
σi

Gal(Lσii /K) is an embedding. Since

the right-hand side is an abelian l-extension, so is

Gal(M/K).

Proposition 4.2: Let K0 ⊆ K ⊆ L be a tower of finite Galois extensions of global CLRb
input, 36

fields such that L/K0 is a Galois extension, l 6= char(K0) is a prime number with ζl /∈ K,

L/K is an abelian l-extension, r is a positive integer, and A = Cl,1 × · · · × Cl,r, where

each Cl,i is an isomorphic copy of Cl. Let n = qlm for some positive integers q and m

with char(K0) - q. Let S be a finite set of primes of K which contains S0.l(K). For each

P ∈ S let hP: Gal(K̂P)→ A be a homomorphism.

Then, there exist distinct primes q1, . . . , qr ∈ P(K0)rS|K0
and there exists a

homomorphism h: Gal(K)→ A such that the following holds for each 1 ≤ i ≤ r:

(a) qi totally splits in L(ζn),

(b) resQ(h)(Gal(K̂Q)) ≤ 1× · · · × 1×Cl,i× 1× · · · × 1 for each Q ∈ P(K) over qi, and

(c) there exists Qi ∈ P(K) over qi such that resQi(h)(ÎQi) = 1×· · ·×1×Cl,i×1×· · ·×1.

(d) Moreover, resP(h) = hP for each P ∈ S, and

(e) resP(h)(ÎP) = 1A for each P ∈ P(K)r(S ∪ {Q1, . . . ,Qr}).

Proof: For each 1 ≤ i ≤ r let πi: A → Cl,i be the projection on the ith factor of A.

For each P ∈ S we set hP,i = πi ◦ hP: Gal(K̂P)→ Cl,i. Then,

(1) hP = (hP,1, . . . , hP,r).

We construct primes q1, . . . , qr ∈ P(K0), homomorphisms hi: Gal(K) → Cl,i for i =

1, . . . , r, and primes Q1, . . . ,Qr ∈ P(K) such that with Li being the fixed field of Ker(hi)
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in Ksep and Mi−1 being the Galois closure of LL1 · · ·Li−1/K0 (in particular, M0 = L)

the following conditions hold:

(2a) qi lies in P(K0)r(S|K0
∪ {q1, . . . , qi−1}) and totally splits in Mi−1(ζn).

(2b) resQ(hi) = 1 for each Q ∈ P(K) that lies over one of the primes q1, . . . , qi−1.

(2c) resQi(hi)(ÎQi) = Cl,i.

(2d) resQ(he)(Gal(K̂Q)) = 1 for each 1 ≤ e ≤ i − 1 and for each Q ∈ P(K) that lies

over qi.

(2e) resP(hi) = hP,i for each P ∈ S.

(2f) resP(hi)(ÎP) = 1 for each P ∈ P(K)r(S ∪ {Qi}).

The rest of the proof breaks up into two parts.

Part A: Induction. Let 1 ≤ i ≤ r and inductively assume that q1, . . . , qi−1, h1, . . . , hi−1,

and

Q1, . . . ,Qi−1 have been constructed such that they satisfy Condition (2). In partic-

ular, for each 1 ≤ e ≤ i − 1, the prime qe totally splits in K. Let Qe be the set of

primes of K that lie over qe. For each Q ∈ Qe let gQ: Gal(K̂Q) → Cl,i be the trivial

homomorphism.

Note that L/K,L1/K, . . . , Li−1/K are abelian l-extensions. Hence, by Remark

4.1, Mi−1/K is also an abelian l-extension. Thus, by Corollary 3.3 applied to K0 ⊆

K ⊆Mi−1, S ∪ Q1 ∪ · · · ∪ Qi−1, and the hP,i, gQ’s rather than to K0 ⊆ K ⊆ L, S and

the hP’s, there exists a prime qi ∈ P(K0)r(S|K0
∪ {q1, . . . , qi−1}) and there exists a

homomorphism hi: Gal(K)→ Cl,i such that

(3a) qi totally splits in Mi−1(ζn),

(3b) resP(hi) = hP,i for each P ∈ S and resQ(hi) = gQ = 1 for each Q ∈ P(K) that

lies over one of the primes q1, . . . , qi−1,

(3c) there exists Qi ∈ P(K) over qi such that resQi(hi)(ÎQi) = Cl,i, and

(3d) resP(hi)(ÎP) = 1 for each P ∈ P(K)r(S ∪Q1 ∪ · · · ∪ Qi−1 ∪ {Qi}).

In particular, Conditions (2a), (2b), (2c), and (2e) hold.

Next, we prove Condition (2d). Indeed, let 1 ≤ e ≤ i−1. Since Ker(he) = Gal(Le)

and Le ≤ Mi−1, we have he(Gal(Mi−1)) = 1. Since qi totally splits in Mi−1, each
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Q ∈ P(K) over qi totally splits in Mi−1. Hence, by Subsection 1.5, Mi−1 ⊆ KQ, so

he(Gal(KQ)) = 1. Finally, for each σ ∈ Gal(K̂Q) we have σλ
−1
P ∈ Gal(KQ), so by the

notation of Lemma 3.2, resQ(he)(σ) = he(σ
λ−1
P ) = 1, as claimed.

Finally, by (3b) and (3d), resP(hi)(ÎP) = 1 for each P ∈ P(K)r(S ∪ {Qi}), so

(2f) holds. This concludes the induction.

Part B: Conclusion of the proof. We prove that the homomorphism

(4) h = (h1, . . . , hr): Gal(K)→ Cl,1 × · · · × Cl,r,

the primes q1, . . . , qr of K0, and their corresponding extensions Q1, . . . ,Qr to the primes

of K chosen in Part A satisfy Conditions (a)–(e) of the proposition.

Indeed, let i be an integer between 1 and r. Then, (a) follows from (2a).

Next, let Q be a prime of K over qi. By (2d), resQ(he)(Gal(K̂Q)) = 1 for each

1 ≤ e ≤ i − 1. If i + 1 ≤ e′ ≤ r, then by (2b), with (e′, i) replacing (i, e), we have

resQ(he′)(Gal(K̂Q)) = 1. Therefore, by (4), resQ(h)(Gal(K̂Q)) ≤ 1×· · ·×1×Cl,i×1×

· · · × 1, as (b) states. If Q = Qi, then by (2c), resQi(hi)(Gal(K̂Qi)) = Cl,i. Therefore,

resQi(h)(Gal(K̂Qi)) = 1× · · · × 1× Cl,i × 1× · · · × 1, as stated by (c).

By (4), (2e), and (1), resP(h) = (resP(h1), . . . , resP(hr)) = (hP,1, . . . , hP,r) = hP

for each P ∈ S, as (d) states.

Finally, for each P ∈ P(K)r(S ∪ {Q1, . . . ,Qr}), Condition (2f) implies that

resP(h)(ÎP) = (resP(h1)(ÎP), . . . , resP(hr)(ÎP)) = 1 × · · · × 1, as (e) claims. This

completes the proof of the proposition.

5. A Commutative Diagram DGRM
input, 10

Let K/K0 be a finite Galois extension of global fields, and let A be a finite multiplicative

Gal(K0)-module. Our goal in this section is to prove that for every non-negative integer

n, and every p ∈ P(K0), the following diagram commutes.

(1) Hn(Gal(K), A)
Res //

cor

��

∏
P|pH

n(Gal(K̂P), A)

Cor

��
Hn(Gal(K0), A)

resp // Hn(Gal(K̂0,p), A).
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In this diagram

(2a) we identify Gal(K̂0,p) with the subgroup Gal(K0,p) of Gal(K0) (as in Subsection

1.3), making A also a Gal(K̂0,p)-module,

(2b) for each prime P of K over p, we let Gal(K̂P) act on A by the rule aτ = aλ
−1
P (τ) for

a ∈ A and τ ∈ Gal(K̂P), and where λP: Gal(KP)→ Gal(K̂P) is the isomorphism

introduced in Subsection 1.4; in particular, if Gal(K) acts trivially on A, then so

does Gal(KP) and therefore also Gal(K̂P),

(2c) the map cor: Hn(Gal(K), A) → Hn(Gal(K0), A) is the corestriction map for the

open subgroup Gal(K) of Gal(K0),

(2d) the map resp: Hn(Gal(K0), A)→ Hn(Gal(K̂0,p), A) is the restriction map for the

closed subgroup Gal(K̂0,p) of Gal(K0),

(2e) the map Res is an abbreviation for the system of maps (resP)P|p, where for each

P|p the map resP: Hn(Gal(K), A) → Hn(Gal(K̂P), A) is defined for each homo-

geneous cochain h: Gal(K)n+1 → A by resP(h) = hP, where hP(σ0, . . . , σn) =

h(σ
λ−1
P

0 , . . . , σ
λ−1
P
n ) for σ1, . . . , σn ∈ Gal(K̂P),

(2f) the map Cor is defined for each tuple (hP)P|p ∈
∏

P|pH
n(Gal(K̂P), A) by

Cor((hP)P|p) =
∏
P|p

corP(hP),

where for each P|p the map corP: Hn(Gal(K̂P), A) → Hn(Gal(K̂0,p), A) is the

corestriction map for the open subgroup Gal(K̂P) of Gal(K̂0,p).

Diagram (1) is used in the proof of Theorem 1 on page 145 of [Neu79] without a

proof in the case where K is a number field.

5.1 Explicit definition of the corestriction map. We set d = [K : K0] DGRb
input, 86

and dP = [K̂P : K̂0,p] for each P|p. Then, we choose ε1, . . . , εd ∈ Gal(K0) and

εP,1, . . . , εP,dP ∈ Gal(K̂0,p) such that

(3) Gal(K0) =

d⋃
·
j=1

Gal(K)ε−1
j and Gal(K̂0,p) =

dP⋃
·
k=1

Gal(K̂p)ε−1
P,k.

Then, in the notation of Subsection 1.4, the polynomial f(X) =
∏d
j=1(X − xε

−1
j ) is
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irreducible over K0, the polynomial fP(X) =
∏dP
k=1(X−x

ε−1
P,k

P ) is irreducible over K̂0,p,

and f(X) =
∏

P|p fP(X). Therefore,

(4) there exists a bijection of sets β:
⋃
· P|p{(P, 1), . . . , (P, dP)} → {1, . . . , d} such that

ε−1
P,k|K = ε−1

β(P,k)|K , hence

(5) there exists ηP,k ∈ Gal(K) such that ε−1
P,k|K0,sep

= ηP,kε
−1
β(P,k) for P|p and k =

1, . . . , d.

For each σ ∈ Gal(K0), let σ̃ be the unique element of {ε1, . . . , εd} with Gal(K)σ−1 =

Gal(K)σ̃−1. Then, cor: Hn(Gal(K), A)→ Hn(Gal(K0), A) is defined for each homoge-

neous cochain h: Gal(K)n+1 → A, and for all (σ0, . . . , σn) ∈ Gal(K0)n+1 by

(6) cor(h)(σ0, . . . , σn) =
d∏
j=1

h(σ̃0εj
−1
σ0εj , . . . , σ̃nεj

−1
σnεj)

ε−1
j .

(Compare with the formula given on page 46 of [NSW00, Subsection 1.4], where the

groups act on the additive modules from the left.) Similarly, for each P ∈ P(K)

over p, and every σ ∈ Gal(K̂0,p), there is a unique σ̃ ∈ {εP,1, . . . , εP,dP} such that

Gal(K̂P)σ−1 = Gal(K̂P)σ̃−1. Again, we have for each homogeneous cochain h: Gal(K̂P)n+1 →

A and every tuple (σ0, . . . , σn) ∈ Gal(K̂0,p)n+1 that

(7) corP(h)(σ0, . . . , σn) =

dP∏
k=1

h(σ̃0εP,k
−1
σ0εP,k, . . . , σ̃nεP,k

−1
σnεP,k)ε

−1
P,k .

In particular,

(8) if K̂P = K̂0,p, then dP = 1, and we may choose εP,1 = 1. Hence, by (7), corP(h) =

h.

The following lemma generalizes the well-known fact that the norm of an algebraic

number is the product of its local norms [CaF67, p. 55, Cor.].

Lemma 5.2: Diagram (1) commutes for n = 0. DGRc
input, 177

Proof: We know that H0(Gal(K), A) = AGal(K) = {a ∈ A | aσ = a for all σ ∈

Gal(K)}. By (6), the map cor: H0(Gal(K), A) → H0(Gal(K0), A) is defined (in terms

of inhomogeneous 0-cochains) for each a ∈ AGal(K) by cor(a) =
∏d
j=1 a

ε−1
j . Simi-

larly, for each P|p we have H0(Gal(K̂P), A) = AGal(K̂P) and corP: H0(Gal(K̂P), A)→
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H0(Gal(K̂0,p), A) is defined for each a ∈ AGal(K̂P) by corP(a) =
∏dP
k=1 a

ε−1
P,k . Moreover,

for each a ∈ AGal(K) and σ ∈ Gal(K̂P) we have aσ = aσ
λ
−1
P

= a, so resP(a) = a.

Similarly, if a ∈ AGal(K0) and σ ∈ Gal(K̂0,p), we have aσ = aσ|K0,sep = a, so resp(a) = a.

Now, let a ∈ AGal(K). Then, by (2e), (2f), (7), and (5),

Cor
(
Res(a)

)
= Cor(a, . . . , a) =

∏
P|p

corP(a)

=
∏
P|p

dP∏
k=1

aε
−1
P,k|K0,sep =

∏
P|p

dP∏
k=1

a
ηP,kε

−1
β(P,k) .

Since ηP,k ∈ Gal(K) and a ∈ AGal(K), we have aηP,k = a. Therefore, by (4) and (6),

Cor(Res(a)) =
∏

P|p
∏dP
k=1 a

ε−1
β(P,k) =

∏d
j=1 a

ε−1
j = cor(a) = resp(cor(a)), as claimed.

Lemma 5.3: Diagram (1) commutes for each n ≥ 0. DGRd
input, 233

Proof: Each of the four vertices in Diagram (1) can be considered as a cohomological

functor in the sense of [Rib70, p. 120, Def. 5.1]. Moreover, res: Hn(G,A)→ Hn(H,A)

commutes with the connecting homomorphism of the cohomology groups for every profi-

nite group G, every closed subgroup H, and every finite G-module A [Rib70, p. 135].

The same holds for the maps induced by the conjugations with the λP’s [NSW00, p. 48,

Prop. 1.5.4 and p. 58, Prop. 1.6.2]. Hence, both horizontal maps in Diagram (1) are

morphisms of cohomological functors in the sense of [Rib70, p. 121, Def. 5.2]. The same

holds for the corestriction maps in (1), with H now open in G [Rib70, p. 136]. By

Lemma 5.2, Diagram (1) commutes for n = 0. Therefore, by the method of dimension

shifting of cohomology theory (in particular, [Rib70, p. 124, Cor. 5.6]), Diagram (1)

commutes for each n ≥ 0.

6. On the First Cohomology Group IMAGE
input, 12

As in Section 5, we consider a finite Galois extension K of K0, and a finite multiplicative

Gal(K0)-module A. We apply commutative diagram (1) of Section 5 to the case n = 1.
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6.1 Crossed homomorphisms. Recall that if G is a profinite group that acts on A CRSs
input, 22

(from the right), then each element x of H1(G,A) can be represented by an inhomoge-

neous chain of dimension 1. The latter is a multiplicative crossed homomorphism

χ: G → A, i.e., a map that satisfies the rule χ(στ) = χ(σ)τχ(τ) for all σ, τ ∈ G. If

χ′: G → A is another crossed homomorphism that represents x, then χ′ differs from

χ by a coboundary. Thus, there exists a ∈ A such that χ′(σ) = χ(σ)aσa−1 for all

σ ∈ G.

In particular, if the action of G on A is trivial, then χ′ = χ and χ(στ) = χ(σ)χ(τ)

for all σ, τ ∈ G, so χ is just a homomorphism. Thus, in this case, we may consider x as

a homomorphism from G to A.

Lemma 6.2: If a prime p of K0 totally splits in K, then the map IMAa
input, 47

Cor:
∏
P|p

H1(Gal(K̂P), A)→ H1(Gal(K̂0,p), A)

is surjective.

Proof: Indeed, for each P we have K̂P = K̂0,p (Subsection 1.5). Hence, by (8) in

Subsection 5.1, corP: H1(Gal(K̂P), A) → H1(Gal(K̂0,p), A) is the identity map. Now,

consider h ∈ H1(Gal(K̂0,p), A), and choose a prime P of K over p. Then, set hP = h

and hP′ = 1 for each P′ ∈ P(K) over p with P′ 6= P. Then, by (2f) of Section 5,

Cor((hP′)P′|p) =
∏

P′|p corP′(hP′) = h · 1 · · · 1 = h, as desired.

If H is a closed subgroup of a profinite group G, A is a finite G-module, and h ∈

Hn(G,A), then we write h|H for the image of h under the restriction map res: Hn(G,A)→

Hn(H,A).

Lemma 6.3: Let p be a prime of K0 which is unramified in K. For each P ∈ P(K) IMAb
input, 82

that lies over p, consider hP ∈ H1(Gal(K̂P), A) such that hP(ÎP) = 1. Let up =∏
P|p corP(hP). Then, up|Îp = 1.

Proof: For each P|p we consider hP also as a homogeneous cochain hP: Gal(K̂P) ×

Gal(K̂P)→ A. By assumption we then have

(1) hP(ÎP × ÎP) = 1.
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Similarly, we consider up as a homogeneous cochain up: Gal(K̂0,p) × Gal(K̂0,p) → A.

Since p is unramified in K, we have ÎP = Îp for each P|p (Subsection 1.5). Hence, since

Îp is normal in Gal(K̂0,p), so is ÎP.

We write Gal(K̂0,p) =
⋃
· τ∈TP

Gal(K̂P)τ−1 =
⋃
· τ∈TP

τGal(K̂P) for an appropriate

subset TP of Gal(K̂0,p). By the preceding paragraph,

(2) τ−1στ ∈ ÎP ≤ Gal(K̂P) for all P|p, τ ∈ TP, and σ ∈ ÎP.

Moreover, in the notation of Subsection 5.1, we have by (2)

σ̃τGal(K̂P) = στGal(K̂P) = τ(τ−1στ)Gal(K̂P) = τGal(K̂P).

Hence, by the definition of TP, we have σ̃τ = τ , so, by (2), σ̃τ
−1
στ = τ−1στ ∈ ÎP.

Thus, by (7) in Subsection 5.1, we have for all σ0, σ1 ∈ Îp that

(3)

corP(hP)(σ0, σ1) =
∏
τ∈TP

hP(σ̃0τ
−1
σ0τ, σ̃1τ

−1
σ1τ)τ

−1

=
∏
τ∈TP

hP(τ−1σ0τ, τ
−1σ1τ)τ

−1

.

By (2) and (1), we have hP(τ−1σ0τ, τ
−1σ1τ) = 1 for each P|p. Hence, by (3), corP(hP)(σ0, σ1) =

1. It follows that up(σ0, σ1) =
∏

P|p corP(hP)(σ0, σ1) = 1, as claimed.

7. Classes of Homomorphisms CLAS
input, 13

It turns out that many of the properties of homomorphisms we consider are preserved

under a natural equivalence relation that we explain in this section.

7.1 Embedding problems. An embedding problem for a profinite group Ĝ is a PREd
input, 21

pair

(1) (ρ: Ĝ→ Γ, α: G→ Γ),

where G and Γ are profinite groups and ρ and α are epimorphisms. A weak solution

of (1) is a homomorphism ψ: Ĝ → G such that α ◦ ψ = ρ. We say that ψ is a proper

solution if, in addition, ψ is surjective.
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7.2 Conjugate Homomorphisms. Let Γ, G, Ĝ be profinite groups, and consider the PREe
input, 38

homomorphisms ρ: Ĝ → Γ and α: G → Γ. We write HomΓ,ρ,α(Ĝ,G) for the set of

all homomorphisms ψ: Ĝ → G that satisfy α ◦ ψ = ρ. Note that if both ρ and α are

epimorphisms, then ψ is a weak solution of Embedding problem (1).

Two elements ψ,ψ′ of HomΓ,ρ,α(Ĝ,G) are said to be Ker(α)-conjugate if there

exists a ∈ Ker(α) such that ψ′(ĝ) = a−1ψ(ĝ)a for each ĝ ∈ Ĝ. A quick check confirms

that Ker(α)-conjugacy is an equivalent relation on HomΓ,ρ,α(Ĝ,G). We denote the

quotient set of HomΓ,ρ,α(Ĝ,G) under Ker(α)-conjugacy by HomΓ,ρ,α(Ĝ,G). We denote

the Ker(α)-conjugacy class of ψ by [ψ]. In general, when we consider an element [ψ] of

HΓ,ρ,α(Ĝ,G), we tacitly assume that ψ ∈ HomΓ,ρ,α(Ĝ,G).

We denote the subset of HomΓ,ρ,α(Ĝ,G) that consists of all elements [ψ] that are

surjective by HomΓ,ρ,α(Ĝ,G)sur.

Given a closed subgroup Ĝ0 of Ĝ, we set ρ0 = ρ|Ĝ0
. Then, the map ψ 7→ ψ|Ĝ0

induces a natural map HomΓ,ρ,α(Ĝ,G) into HomΓ,ρ0,α(Ĝ0, G). Moreover, we also set

ψ0 = ψ|Ĝ0
, Γ0 = ρ0(Ĝ0), G0 = α−1(Γ0), α0 = α|G0

, and consider ρ0 also as a homo-

morphism from Ĝ0 into Γ0. Then, Ker(α0) = Ker(α) and Im(ψ0) ≤ G0. Hence, we may

identify HomΓ,ρ0,α(Ĝ0, G) with HomΓ0,ρ0,α0(Ĝ0, G0).

Ĝ

ρ

��

ψ

��


















AAAAAAAA

Ĝ0

ρ0

��

ψ0

�����������������

1 // Ker(α) //

KKKKKKKKK

KKKKKKKKK
G

α //

GGGGGGGGGG Γ AA

AAAAA

1 // Ker(α0) // G0
α0 // Γ0.

By construction, both ρ0: Ĝ0 → Γ0 and α0: G0 → Γ0 are surjective.

7.3 Finite embedding problems over K0. A finite embedding problem for a GLOa
input, 116

finite Galois extension K of K0 is a pair

(2) (ρ: Gal(K0)→ Γ, α: G→ Γ),
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where G is a finite group, Γ = Gal(K/K0), α: G → Γ is an epimorphism, and ρ is

the restriction map resK0,sep/K . Thus, Gal(K) = Ker(ρ). If ψ: Gal(K0)→ G is a weak

solution of Embedding problem (2), then the fixed field of Ker(ψ) in Ksep is said to be

a solution field of (2).

For each p ∈ P(K0), (global) embedding problem (2) gives rise to a local em-

bedding problem

(3) (ρp: Gal(K̂0,p)→ Γp, αp: Gp → Γp),

where Γp = ρ(Gal(K̂0,p)), ρp = ρ|Gal(K̂0,p), Gp = α−1(Γp), and αp = α|Gp
. Note that

Ker(αp) = Ker(α).

As in Subsection 7.2, we consider ρp also as a homomorphism from Gal(K̂0,p)

into Γ, and identifyHomΓp,ρp,αp
(Gal(K̂0,p), Gp) withHomΓ,ρp,α(Gal(K̂0,p), G), thereby

somewhat simplifying the notation.

Again, as in Subsection 7.2, if ψ is a weak solution of Embedding problem (2), then

ψp = ψ|Gal(K̂0,p) is a weak solution of Embedding problem (3). When ψ,ψ′: Gal(K0)→

G are Ker(α)-conjugate weak solutions of (2), then for each p ∈ P(K0), the Gp-

homomorphisms ψp, ψ
′
p are also Ker(α)-conjugate. This gives a canonical map

HomΓ,ρ,α(Gal(K0), G)→
∏
p

HomΓ,ρp,α(Gal(K̂0,p), G),

that maps each [ψ] to the family ([ψp])p.

7.4 Properties of homomorphisms. Let ψ be a homomorphism of Gal(K0) into a PREf
input, 177

finite group G, let L be the fixed field of Ker(ψ) in K0,sep, and let p ∈ P(K0).

We say that ψ totally splits at p, if ψ(Gal(K̂0,p)) = 1, that is ψ(Gal(K0,p)) = 1,

which means that L ⊆ K0,p. In this case p totally splits in L, which means that L has

[L : K0] primes that lie over p. Conversely, if p totally splits in L, then L ⊆ K0,p

(Subsection 1.5), so ψ(Gal(K̂0,p)) = ψ(Gal(K0,p)) = 1.

We say that ψ is unramified at p, if p is unramified in L. If p is non-archimedean,

this means that ψ(Îp) = 1. When p is archimedean, this means that ψ(Gal(K̂0,p)) = 1,

alternatively p totally splits in L (Subsection 1.5).
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We denote the set of primes at which ψ ramifies, by Ram(ψ), and observe that

Ram(ψ) = Ram(L/K0) is the set of primes of K0 that ramify in L.

Note that if ψ,ψ′: Gal(K0)→ G are Ker(α)-conjugate weak solutions of (2), and ψ

has one of the above-mentioned properties, then ψ′ also has that property. In addition,

Im(ψ′) = Im(ψ), so if ψ is surjective, then so is ψ′. Finally, if ψ is trivial, then so is ψ′.

We therefore say that a conjugate class in HomΓ,ρ,α(Gal(K0), G) totally splits,

is unramified at p, surjective, or trivial if one (alternatively, each) representative of

that class has the corresponding property.

Similar observations and definitions (except for total splitting) apply to conjugate

classes in

HomΓ,ρp,α(Gal(K̂0,p), G),

for each p in P(K0).

8. Two Embedding Problems EMBEDD
input, 11

The results we prove in this section ensure the weak solvability of local embedding

problems in each of the cases that occur in the induction step of the solution of our

global embedding problem.

Lemma 8.1: Let λ: G→ Ḡ be an epimorphism of profinite groups, p ∈ P(K0), and PREg

input, 17

ψ̄p: Gal(K̂0,p)→ Ḡ

an unramified homomorphism. Then, there exists an unramified homomorphism ψp: Gal(K̂0,p)→

G such that λ ◦ ψp = ψ̄p. If ψ̄p is the trivial homomorphism and Ker(λ) 6= 1, we can

choose ψp such that in addition Ker(λ) ∩ Im(ψp) 6= 1.

Proof: If p is archimedean, then ψ̄p(Gal(K̂0,p)) = 1 (Subsection 7.4). Then, the trivial

homomorphism ψp: Gal(K̂0,p)→ G is unramified and satisfies λ ◦ ψp = ψ̄p.

Now assume that p is non-archimedean. Let π: Gal(K̂0,p)→ Gal(K̂0,p,ur/K̂0,p) be

the restriction map. By assumption, ψ̄p(Gal(K̂0,p,ur)) = ψ̄p(Îp) = 1. Hence, there exists

a homomorphism κ̄: Gal(K̂0,p,ur/K̂0,p) → Ḡ such that ψ̄p = κ̄ ◦ π. By [CaF67, p. 28],

Gal(K̂0,p,ur/K̂0,p) ∼= Ẑ. Let z be a generator of Gal(K̂0,p,ur/K̂0,p), and choose a ∈ G
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such that λ(a) = κ̄(z). Let κ: Gal(K̂0,p,ur/K̂0,p) → G be the unique homomorphism

with κ(z) = a, so λ◦κ = κ̄, and consider the homomorphism ψp = κ◦π: Gal(K̂0,p)→ G.

It satisfies λ ◦ ψp = ψ̄p and ψp(Îp) = 1, so ψp is an unramified homomorphism.

If ψ̄p is the trivial homomorphism and Ker(λ) 6= 1, then we choose z̃ ∈ Gal(K̂0,p)

with z = π(z̃). Then, κ̄(z) = κ̄(π(z̃)) = ψ̄p(z̃) = 1. Hence, we may choose a above to

be a non-unit element of Ker(λ). In particular, the unramified homomorphism ψp now

satisfies ψp(z̃) = a, so Ker(λ) ∩ Im(ψp) 6= 1, as desired.

Definition 8.2: A homomorphism λ: G → Ḡ of profinite groups is said to be a Cl- CLIs
input, 81

homomorphism, for a prime number l, if Im(λ) is contained in a subgroup of Ḡ which

is isomorphic to Cl.

Lemma 8.3: Let λ: G → Ḡ be an epimorphism of finite groups. Let l be a prime PREh
input, 89

number, and suppose that Cl ≤ Ḡ, set e = |Ker(λ)|, and let n be a multiple of el

with char(K0) - n. Also, consider p ∈ P(K0) such that p - l,∞ and ζn ∈ K̂0,p. Let

ψ̄p: Gal(K̂0,p) → Ḡ be a ramified Cl-homomorphism (thus, ψ̄p(Îp) 6= 1). Then, there

exists a homomorphism ψp: Gal(K̂0,p)→ G such that λ ◦ ψp = ψ̄p.

Proof: Let Np be the fixed field of Ker(ψ̄p) in K̂0,p,sep. Since Im(ψ̄p) ≤ Cl and

ψ̄p(Îp) 6= 1, we have Im(ψ̄p) = Cl. Hence, Np/K̂0,p is a cyclic ramified extension of

degree l, and we identify Gal(Np/K̂0,p) with Im(ψ̄p). Since p - l, the ramification of

Np/K̂0,p is tame. Since ζn ∈ K̂0,p, we have ζl ∈ K̂0,p. By [CaF67, p. 32, Prop. 1(i)],

there exists a prime element π of K̂0,p with Np = K̂0,p( l
√
π). Let σ̄ be a generator of

Gal(Np/K̂0,p) and choose σ ∈ G with λ(σ) = σ̄.

We denote the order of σ by d, let λ′ = λ|〈σ〉, and set e′ = |Ker(λ′)|. Since

Ker(λ′) is a subgroup of Ker(λ), we have e′|e. Since d = e′l, e′|e, and el|n, we have

d|n. Since ζn ∈ K̂0,p, we have ζd ∈ K̂0,p. Thus, N ′p = K̂0,p( d
√
π) is a (tamely ramified)

cyclic extension of K̂0,p of degree d that contains Np. Since Np is the fixed field of

Ker(ψ̄p), there exists an epimorphism ϕ̄p: Gal(N ′p/K̂0,p) → Gal(Np/K̂0,p) such that

ψ̄p = ϕ̄p ◦ resK̂0,p,sep/N ′p
.

Finally we choose a generator τ of Gal(N ′p/K̂0,p) such that ϕ̄p(τ) = σ̄, and define a

homomorphism h: Gal(N ′p/K̂0,p)→ G, by setting h(τ) = σ. Then, the homomorphism
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ψp = h ◦ resK̂0,p,sep/N ′p
satisfies λ ◦ ψp = ψ̄p, as desired.

Gal(K̂0,p)

res

��

res

wwnnnnnnnnnnnn

ψ̄p

xx

Gal(N ′p/K̂0,p)
ϕ̄p //

h

��

Gal(Np/K̂0,p)

��
G

λ // Ḡ

9. An Element of H1(Gal(K0), A) that Satisfies Local Conditions NEUK
input, 12

For a simple Gal(K0)-module A ∼= Crl , we establish the existence of an element of

H1(Gal(K0), A) that satisfies finitely many local conditions, and is otherwise unramified

except at most r additional primes of K0.

9.1 Ramification of cohomology classes. Let A be a finite Gal(K0)-module NEUa
input, 21

and consider p ∈ Pnonarch(K0). By [NSW00, p. 64, Prop. 1.6.6], the inflation-restriction

sequence for the inertia subgroup Îp of Gal(K̂0,p)

(1) 1 // H1(Gal(K̂0,p)/Îp, A
Îp)

inf // H1(Gal(K̂0,p), A)
res //// H1(Îp, A),

is exact. An element x ∈ H1(Gal(K̂0,p), A) is unramified if x ∈ Im(inf), alternatively,

if res(x) = 1.

If Gal(K̂0,p) acts trivially on A, then x: Gal(K̂0,p) → A is a homomorphism

(Subsection 6.1). In this case, x is unramified as an element of H1(Gal(K̂0,p), A), if and

only if x is unramified as a homomorphism, that is x(Îp) = 1 (Subsection 7.4).

Lemma 9.2: Let K be a finite Galois extension of K0 and l 6= char(K0) a prime NEUc
input, 53

number with ζl /∈ K. Let A = Crl be a simple Gal(K0)-module on which Gal(K) acts

trivially. Let T be a finite set of primes of K0, and for each p ∈ T consider an element

yp ∈ H1(Gal(K̂0,p), A). Then, there exists an element z ∈ H1(Gal(K0), A) such that

(a) resp(z) = yp for each p ∈ T , and
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(b) if p ∈ P(K0)rT and resp(z) is ramified, then p totally splits in K(ζl).

On the proof: Our result appears as Lemma 3 on page 143 of [Neu79] for the case

where K0 is a number field. The proof of that lemma relies on [Neu79, p. 142, Lemma

2]. Both proofs generalize mutatis mutandis to the case where K0 is a global field. We

supply more detailed proofs of both lemmas in the appendix of this work.

Proposition 9.3: Let K0 ⊆ K ⊆ L be a tower of finite Galois extensions of global NEUe
input, 80

fields such that L/K is an abelian l-extension for which l 6= char(K0) and ζl /∈ K.

Let A = Crl be a simple Gal(K0)-module on which Gal(K) acts trivially. Let n be a

positive integer such that l|n and char(K0) - n and let T be a finite subset of P(K0)

that contains Ram(K/K0). We suppose that S0,l(K) ⊆ TK (Subsection 1.6). For each

p ∈ T , let yp ∈ H1(Gal(K̂0,p), A).

Then, there exist distinct primes q1, . . . , qr ∈ P(K0)rT , and there exists x ∈

H1(Gal(K0), A) such that

(a) for each p ∈ T we have resp(x) = yp,

(b) for each p ∈ P(K0)r(T ∪ {q1, . . . , qr}), the element resp(x) of H1(Gal(K̂0,p), A) is

unramified, and

(c) for i = 1, . . . , r, the prime qi totally splits in L(ζn) and resqi(x): Gal(K̂0,qi)→ A is

a Cl-homomorphism (Definition 8.2).

(d) Moreover, let G and Ḡ be finite groups such that A ≤ Ḡ and let λ: G → Ḡ be an

epimorphism. Suppose that |Ker(λ)| · l divides n. Then, for each 1 ≤ i ≤ r there

exists a homomorphism x′qi : Gal(K̂0,qi)→ G such that λ ◦ x′qi = resqi(x).

Proof: We choose an element z ∈ H1(Gal(K0), A) that satisfies Conditions (a) and (b)

of Lemma 9.2, and we break up the rest of the proof into three parts.

Part A: Definition of ηp. Let V = T ∪ {p ∈ P(K0) | resp(z) is ramified}. For each

p ∈ V we define an element ηp ∈ H1(Gal(K̂0,p), A) as follows:

(2) ηp = 1 for p ∈ T and ηp = resp(z)−1 for p ∈ V rT.

Claim: For each p ∈ V , the element ηp lies in the image of the map

(3) Cor:
∏
P|p

H1(Gal(K̂P), A)→ H1(Gal(K̂0,p), A).
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Indeed, the claim holds for p ∈ T , because by (2), ηp = 1 for p ∈ T and Cor =
∏

P|p corP

is a homomorphism of groups. If p ∈ V rT , then by the definition of V , resp(z) is

ramified. Hence, by (b) of Lemma 9.2, p totally splits in K(ζl), so p totally splits in K.

Therefore, by Lemma 6.2, Cor is surjective. In particular, ηp belongs to the image of

Cor, as claimed.

Part B: Shifting the ηp’s. By Part A, we choose for each p ∈ V and each P ∈ P(K)

over p, an element η̃P ∈ H1(Gal(K̂P), A) such that

(4) ηp =
∏
P|p

corP(η̃P).

Since Gal(K) acts trivially on A, the group Gal(K̂P) acts trivially on A (by (2b) of

Section 5), hence η̃P: Gal(K̂P)→ A is a homomorphism for each P|p (Subsection 6.1).

Likewise

(5) z′ = z|Gal(K): Gal(K)→ A is a homomorphism.

Let L′ be the fixed field of Ker(z′) in Ksep. Then, L′ is a finite abelian l-extension

of K, hence so is LL′. Hence, by Remark 4.1, the Galois closure L′′ of LL′ over K0

is also a finite abelian l-extension of K. Then, Proposition 4.2 applied to the tower

of global fields K0 ⊆ K ⊆ L′′, the set of primes VK (Subsection 1.4), and the sys-

tem of homomorphisms (ηP)P∈VK give distinct primes q1, . . . , qr ∈ P(K0)rV , primes

Q1, . . . ,Qr ∈ P(K) over q1, . . . , qr, respectively, and a homomorphism h: Gal(K) → A

such that

(6a) qi totally splits in L′′(ζn) for i = 1, . . . , r,

(6b) resQ(h)(Gal(K̂Q)) ≤ 1× · · · × 1× Cl,i × 1× · · · × 1 for each Q ∈ P(K) over qi.

(6c) resP(h) = η̃P for each P ∈ VK , and

(6d) resP(h)(ÎP) = 1A for each P ∈ P(K)r(VK ∪ {Q1, . . . ,Qr}).

We consider u = cor(h) ∈ H1(Gal(K0), A), where cor is the corestriction map that

appears in Diagram (1) of Section 5 for n = 1. By the commutativity of that diagram

(Lemma 5.3), by (6c), and by (4), we have for each p ∈ V

(7)

resp(u) = resp(cor(h)) = Cor(Res(h)) = Cor
(
(resP(h))P|p

)
=
∏
P|p

corP(resP(h)) =
∏
P|p

corP(η̃P) = ηp.
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Part B’: A Cl-homomorphism. We prove for i = 1, . . . , r that

(8) resqi(u) =
∏

Q|qi corQ(resQ(h)): Gal(K̂0,qi)→ A is a Cl-homomorphism.

Indeed, let Q be a prime of K over qi. Since qi totally splits in K (by (6a)),

Gal(K̂0,qi) = Gal(K̂Q) (Subsection 1.5). For each σ̂ ∈ Gal(K̂0,qi) we observe that

σ = σ̂λ
−1
Q ∈ Gal(KQ) ≤ Gal(K) (Subsection 1.4). Since Gal(K) acts trivially on A, we

have, by Convention (2a) of Section 5, that aσ̂ = aσ = a for each a ∈ A. Hence, by

Subsection 6.1, resqi(u): Gal(K̂0,qi)→ A is a homomorphism.

Since qi totally splits in K, we have corQ(resQ(h)) = resQ(h) for each Q|qi (State-

ment (8) of Section 5). By (6b), resQ(h)(Gal(K̂Q)) ≤ 1 × · · · × 1 × Cl,i × 1 × · · · × 1,

so resqi(u)(Gal(K̂0,qi)) ≤ 1× · · · × 1× Cl,i × 1× · · · × 1, as claimed.

Part C: The element x. We prove that the element x = uz ∈ H1(Gal(K0), A) satisfies

Conditions (a)–(d) of the proposition.

Proof of (a): For each p ∈ T we have by (7), (a) of Lemma 9.2, and (2) that resp(x) =

resp(u)resp(z) = ηpyp = yp, as Condition (a) claims.

Proof of (b): Let p ∈ P(K0)r(T ∪ {q1, . . . , qr}). If p ∈ V , then by (7) and (2), we

have resp(x) = resp(u)resp(z) = ηp · resp(z) = resp(z)−1 · resp(z) = 1. In particular,

resp(x) is unramified (Subsection 9.1). If p /∈ V , then by the definition of V in Part A,

resp(z) is unramified, thus resp(z)|Îp = 1. Since Ram(K/K0) ⊆ T ⊆ V , we have that

p is unramified in K. By (6d), resP(h)(ÎP) = 1A for each P|p and by (7), resp(u) =∏
P|p corP(resP(h)). Hence, by Lemma 6.3, resp(x)|Îp = resp(u)|Îpresp(z)|Îp = 1, so

resp(x) is unramified, as asserted by (b).

Proof of (c): Consider an i between 1 and r. By (8), resqi(u) ∈ H1(Gal(K̂0,qi), A) is

a Cl-homomorphism.

By (6a), qi totally splits in K. Hence, Gal(K̂0,qi) = Gal(K̂Q) for each prime Q of

K over qi. In particular, this is the case for the prime Q of K that lies over qi such that

λQ is the inclusion map (Subsection 1.4). Since Gal(K) acts trivially on A, the group

Gal(K̂0,qi) acts trivially on A. Hence, resqi(z) ∈ H1(Gal(K̂0,qi), A) is a homomorphism

(Subsection 9.1). Moreover, with z′ = z|Gal(K) being the homomorphism introduced in

(5), we have by the choice of Q, that resqi(z) = resQ(z′). Again, by (6a), Q totally splits
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in L′. Since Gal(L′) = Ker(z′) (Part B), the homomorphism resqi(z): Gal(K̂0,qi) → A

is trivial. Hence, L′ ⊆ K̂Q. Then, resqi(x) = resqi(u), so by the preceding paragraph,

resqi(x) is a Cl-homomorphism as (c) claims.

Proof of (d): We fix an i between 1 and r. By (c), resqi(x): Gal(K̂0,qi) → A is

a Cl-homomorphism. If resqi(x) is unramified, then by Lemma 8.1, there exists a

homomorphism x′qi : Gal(K̂0,qi)→ G such that λ◦x′qi = resqi(x). Otherwise, resqi(x) is

ramified. By (c), ζn ∈ K̂0,qi . Since qi ∈ P(K0)rT , qi - l,∞. Hence, the result follows

from Lemma 8.3.

10. Principal Homogeneous Spaces PHSP
input, 12

We describe how to shift a weak solution of our global embedding problem by an element

of the first cohomology group.

10.1 An embedding problem. Let K be a finite Galois extension of K0. We set MODa
input, 20

Γ = Gal(K/K0), ρ = resK0,sep/K : Gal(K0)→ Γ (so Gal(K) = Ker(ρ)), and consider an

embedding problem

(1) (ρ: Gal(K0)→ Γ, ᾱ: Ḡ→ Γ),

where Ḡ is a finite group, ᾱ is an epimorphism, and A = Ker(ᾱ) is abelian. The latter

assumption implies that the action of Ḡ on A by conjugation induces an action of Γ

on A (from the right). Thus, for all a ∈ A, γ ∈ Γ, and ḡ ∈ Ḡ with ᾱ(ḡ) = γ, we

have aγ = ḡ−1aḡ. We lift that action to an action of Gal(K0) on A via ρ, making A

a multiplicative Gal(K0)-module. In other words, for each a ∈ A, σ ∈ Gal(K0), and

ḡ ∈ Ḡ with ᾱ(ḡ) = ρ(σ), we have aσ = ḡ−1aḡ. Under this action Gal(K) acts trivially

on A. In particular,

(2) if ψ is a weak solution of embedding problem (1), then aσ = ψ(σ)−1aψ(σ) for all

a ∈ A and σ ∈ Gal(K0).

As usual, one says that A is a simple Gal(K0)-module if A has no submodule

except itself and 1.
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Lemma 10.2: Under the above assumptions, let ψ be a weak solution of embedding PHSa
input, 57

problem (1) and let χ: Gal(K0) → A be a crossed homomorphism. Then, the map

ψ · χ: Gal(K0) → Ḡ defined by (ψ · χ)(σ) = ψ(σ)χ(σ) for each σ ∈ Gal(K0) is also a

weak solution of embedding problem (1).

Proof: We set ψ∗ = ψ · χ and observe by (2) that for all σ1, σ2 ∈ Gal(K0)

ψ∗(σ1σ2) = ψ(σ1σ2)χ(σ1σ2) = ψ(σ1)ψ(σ2)χ(σ1)σ2χ(σ2).

= ψ(σ1)ψ(σ2)ψ(σ2)−1χ(σ1)ψ(σ2)χ(σ2) = ψ∗(σ1)ψ∗(σ2).

Thus, ψ∗: Gal(K0)→ Ḡ is a homomorphism. Since χ(σ) ∈ A, we also have ᾱ(ψ∗(σ)) =

ᾱ(ψ(σ))ᾱ(χ(σ)) = ρ(σ), for all σ ∈ Gal(K0), as claimed.

10.3 An action on HomΓ,ρ,ᾱ(Gal(K0), Ḡ). The product defined in Lemma 10.2 gives ACTi
input, 95

rise to a right action of H1(Gal(K0), A) on HomΓ,ρ,ᾱ(Gal(K0), Ḡ). Indeed,

(3) if [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ) and x ∈ H1(Gal(K0), A), we choose a crossed homo-

morphism

χ: Gal(K0)→ A that represents x and set [ψ]x = [ψ · χ].

By Lemma 10.2, [ψ · χ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ). We claim that the class [ψ · χ] does

not depend on ψ nor on χ.

Indeed, if ψ′: Gal(K0)→ Ḡ is an additional weak solution of embedding problem

(1) with [ψ′] = [ψ], then there exists a ∈ A such that for each σ ∈ Gal(K0) we have

ψ′(σ) = a−1ψ(σ)a (Subsection 7.2). Also, if χ′: Gal(K0) → A is another crossed

homomorphism that represents x, there exists b ∈ A such that for all σ ∈ Gal(K0) we

have χ′(σ) = bσb−1χ(σ) = ψ(σ)−1bψ(σ)b−1χ(σ) (Subsection 6.1). Since A is normal in

Ḡ, we have ψ(σ)aψ(σ)−1 ∈ A. Hence, since A is abelian, we have (ψ(σ)aψ(σ)−1)b =

bψ(σ)aψ(σ)−1. Therefore, using Lemma 10.2, the weak solution ψ′′ = ψ′ · χ′ of (1)

satisfies for each σ ∈ Gal(K0) that

ψ′′(σ) = ψ′(σ)χ′(σ) = a−1(ψ(σ)aψ(σ)−1)bψ(σ)b−1χ(σ)

= a−1bψ(σ)aψ(σ)−1ψ(σ)b−1χ(σ) = a−1bψ(σ)ab−1χ(σ)

= a−1bψ(σ)χ(σ)ab−1 = (ab−1)−1ψ′(σ)(ab−1),

hence [ψ′′] = [ψ′], as claimed.
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In a similar way, for each p ∈ P(K0) the cohomology group H1(Gal(K̂0,p), A) acts

on

HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Both actions are compatible with the restriction from Gal(K0) to Gal(K̂0,p). In other

words,

(4) [ψ]x|p = [ψp]resp(x) for [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ), x ∈ H1(Gal(K0), A), and

p ∈ P(K0).

Recall that a principal homogeneous space X over a group H is a set X on

which H acts freely and transitively (from the right). This means that if x ∈ X and

η ∈ H satisfy xη = x, then η = 1; moreover for all y ∈ X there exists τ ∈ H such that

xτ = y.

Lemma 10.4: The setHomΓ,ρ,ᾱ(Gal(K0), Ḡ) (resp.HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ)) is a prin- PHSb
input, 174

cipal homogeneous space over H1(Gal(K0), A) (resp. over H1(Gal(K̂0,p), A)).

Proof: Consider [ϕ], [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ). Let χ: Gal(K0) → Ḡ be the map

defined by χ(σ) = ϕ(σ)−1ψ(σ) for each σ ∈ Gal(K0). Then, ᾱ(ϕ(σ)−1)ᾱ(ψ(σ)) =

ρ(σ)−1ρ(σ) = 1, hence ϕ(σ)−1ψ(σ) ∈ A, so χ maps Gal(K0) into A. Next observe that

χ(σ)τχ(τ) =
(
ϕ(τ)−1ϕ(σ)−1ψ(σ)ϕ(τ)

)(
ϕ(τ)−1ψ(τ)

)
= ϕ(στ)−1ψ(στ) = χ(στ),

so χ: Gal(K0) → A is a crossed homomorphism. Let x ∈ H1(Gal(K0), A) be the

cohomology class of χ. Then, by (3), [ψ] = [ϕ]x, so the action of H1(Gal(K0), A) on

HomΓ,ρ,ᾱ(Gal(K0), Ḡ) is transitive.

Now suppose that [ϕ]x = [ϕ] for some x ∈ H1(Gal(K0), A). Let χ: Gal(K0)→ A

be a crossed homomorphism that represents x. Then, by Subsection 7.2, there ex-

ists a ∈ A such that ϕ(σ)χ(σ) = a−1ϕ(σ)a for each σ ∈ Gal(K0). Hence, χ(σ) =

ϕ(σ)−1a−1ϕ(σ)a = (a−1)σa. Thus, χ is a coboundary, i.e. x = 1. Therefore, the action

of H1(Gal(K0), A) on the set HomΓ,ρ,ᾱ(Gal(K0), Ḡ) is free, as claimed.

The proof of the local statement is similar.
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Lemma 10.5: Let p ∈ Pnonarch(K0), let [ψ] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ), and let x ∈ PHSc
input, 232

H1(Gal(K0), A). Suppose that [ψ] is unramified at p and the element resp(x) ofH1(Gal(K̂0,p), A)

is unramified. Then, [ψ′] = [ψ]x is unramified at p.

Proof: By assumption, ψ(σ) = 1 for each σ ∈ Îp. Let χ be a representative of x. Then,

the restriction χp: Gal(K̂0,p) → A of χ to Gal(K̂0,p) is a crossed homomorphism that

represents resp(x). By Subsection 7.4, we may assume that ψ′ = ψ · χ. Since resp(x)

is unramified, resp(x)|Îp = 1, so there exists ap ∈ A such that χp(σ) = aσpa
−1
p for all

σ ∈ Îp. Hence, by (2), we have for each σ ∈ Îp that ψ′(σ) = ψ(σ)aσpa
−1
p = aσpa

−1
p =

ψ(σ)−1apψ(σ)a−1
p = apa

−1
p = 1. Therefore, [ψ′] is unramified at p.

The following local-global principle of Jürgen Neukirch plays a central role in the

proof of our main result. It appears in the case where K is a number field as Lemma 4

on page 149 of [Neu79] and in the general case as Lemma 9.5.6 on page 565 of [NSW15].

We recapitulate the proof in the appendix to this paper (Lemma 15.8).

Lemma 10.6: Suppose under the assumptions of Subsection 10.1 that A = Ker(α) is PHSd
input, 278

a simple Gal(K0)-module which is isomorphic to Crl , where l 6= char(K0) is a prime

number with ζl /∈ K. Then,

HomΓ,ρ,ᾱ(Gal(K0), Ḡ) 6= ∅ if and only if
∏
p

HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) 6= ∅.

11. Embedding Problems whose Kernel is a Simple Gal(K0)-Module SIMP
input, 13

We show in this section how to choose local conditions for our global embedding problem

such that every weak solution of the problem is proper and the condition on the roots

of unity in the solution field is preserved.

Setup 11.1: Again, we consider a finite Galois extension K of K0 and an embedding SIMPa
input, 19

problem

(1) (ρ: Gal(K0)→ Γ, ᾱ: Ḡ→ Γ),

where Γ = Gal(K/K0), Ḡ is a finite group, ᾱ is an epimorphism, and ρ = resK0,sep/K .

Let l 6= char(K0) be a prime number such that ζl /∈ K. Let A = Ker(ᾱ) and assume

41



that A ∼= Crl is a simple Gal(K0)-module under the action defined in Subsection 10.1.

In particular, Gal(K) acts trivially on A.

We denote the finite group of roots of unity in K by µ(K).

Recall that if h: Gal(K0)→ A is a homomorphism and p ∈ P(K0), then hp: Gal(K̂0,p)→

A is the restriction of h to Gal(K̂0,p) (Subsection 1.3).

Lemma 11.2: Under Setup 11.1, let n be a positive integer with gcd(n, |µ(K)|) = 1 SIMPb
input, 46

and char(K) - n, let m be the minimal number of generators of Gal(K(ζn)/K), and let

T be a finite set of primes of K0. Then, there exist distinct non-archimedean primes

p1, . . . , pm, q ∈ P(K0)rT that totally split in K such that for each p ∈ {p1, . . . , pm, q}

there exists [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) such that if an element

[ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ) satisfies [ψ̄p] = [ϕp] in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for each

p ∈ {p1, . . . , pm, q}, then

(a) [ψ̄] is unramified at p1, . . . , pm, q,

(b) if N̄ is the fixed field of Ker(ψ̄) in K0,sep, then gcd(n, |µ(N̄)|) = 1, and

(c) ψ̄ is surjective.

Proof: Although q satisfies the same conditions as p1, . . . , pm in the lemma, q plays a

special role in the proof, namely to insure that ψ̄ is surjective.

We break the proof into three parts.

Part A: Choosing p1, . . . , pm. Let σ1, . . . , σm be generators of Gal(K(ζn)/K). Then,

we apply the Chebotarev density theorem and inductively choose non-archimedean

primes

Q1, . . . ,Qm ∈ P(K(ζn))rTK(ζn)

which are unramified over K0 such that
[K(ζn)/K

Qi

]
= σi for i = 1, . . . ,m and the primes

p1 = Q1|K0 , . . . , pm = Qm|K0 ∈ P(K0)rT

are distinct. For each i = 1, . . . ,m we set Pi = Qi|K . Then,
[K/K0

Pi

]
= σi|K =

1, hence K ⊆ K̂0,pi (Subsection 1.5). Since Gal(K) = Ker(ρ) (Subsection 10.1),

it follows that the homomorphism ρpi : Gal(K̂0,pi) → Γ is trivial. Hence, setting
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ϕpi : Gal(K̂0,pi) → Ḡ to be the trivial homomorphism, we find that [ϕpi ] is an element

of HomΓ,ρpi ,ᾱ
(Gal(K̂0,pi), Ḡ) for i = 1, . . . ,m.

Part B: Choosing q. We apply the Chebotarev density theorem again in order to

choose

q ∈ Pnonarch(K0)r(T ∪ {p1, . . . , pm})

which totally splits in K. By Lemma 7.4, ρq(Gal(K̂0,q)) = 1, in particular ρq is unrami-

fied. Hence, by Lemma 8.1, there exists an unramified homomorphism ϕq: Gal(K̂0,q)→

Ḡ such that ᾱ ◦ ϕq = ρq (thus [ϕq] ∈ HΓ,ρq,ᾱ(Gal(K̂0,q), Ḡ)) and A ∩ Im(ϕq) 6= 1.

Part C: Conclusion of the proof. Let ψ̄ be a weak solution of embedding problem (1)

such that [ψ̄p] = [ϕp] for each p ∈ {p1, . . . , pm, q}.

Proof of (a): By Part A, for each p ∈ {p1, . . . , pm}, the homomorphism ϕp: Gal(K̂0,p)→

Ḡ is trivial, so ϕp is unramified. Hence, [ψ̄] is unramified at p. Also, by Part B, [ϕq] is

unramified, hence [ψ] is unramified at q.

Proof of (b): Since ᾱ◦ψ̄ = ρ, we have Ker(ψ̄) ≤ Ker(ρ) = Gal(K). Hence, the fixed

field N̄ of Ker(ψ̄) contains K, so K ⊆ N̄∩K(ζn). In addition, for each i ∈ {1, . . . ,m} we

have [ψ̄pi ] = [ϕpi ], that is ψ̄(Gal(K̂0,pi)) = 1, so N̄ ⊆ K̂0,pi . Hence, pi totally splits in

N̄ (Subsection 1.5), in particular pi totally splits also in N̄ ∩K(ζn). Therefore, with P′i

being the prime of N̄ ∩K(ζn) that lies under Qi, the automorphisms σ̄i =
[N̄∩K(ζn)/K

P′i

]
,

i = 1, . . . ,m, which generate the Galois group Gal(N̄ ∩K(ζn)/K), are all the identity

maps (Subsection 1.5), so N̄ ∩K(ζn) = K.

Now let d = gcd(n, |µ(N̄)|). Then, ζd ∈ N̄∩K(ζn) = K, so d divides gcd(n, |µ(K)|).

By assumption, gcd(n, |µ(K)|) = 1, hence d = 1, as claimed.

Proof of (c): Since [ψ̄q] = [ϕq], we have Im(ψ̄q) = Im(ϕq) (Subsection 7.4). Hence,

A ∩ Im(ϕq) = A ∩ Im(ψ̄q) ≤ A ∩ Im(ψ̄). By Part B, A ∩ Im(ϕq) 6= 1, hence the

Gal(K0)-module A ∩ Im(ψ̄) is non-trivial. Since A is a simple Gal(K0)-module, we

obtain A ∩ Im(ψ̄) = A. Since ᾱ(ψ̄(Gal(K0)) = ρ(Gal(K0)) = Γ, we conclude from the

exactness of (1) that ψ̄(Gal(K0)) = Ḡ, as claimed.
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12. Bounding the Ramification BOUN
input, 13

The preparations done in the previous sections lead now to the essential step toward the

solution of our embedding problem. This is the case where the kernel of the problem

is a simple Gal(K0)-module. We properly solve the problem with a bound on the

ramification and such that the necessary conditions for the existence of a solution in

the next step will hold.

Notation 12.1: Recall that for each positive integer n, one writes Ω(n) for the number BOUa
input, 22

of prime divisors of n, counted with multiplicity. Thus, if n =
∏m
i=1 l

ri
i with distinct

prime numbers l1, . . . , lm, then Ω(n) =
∑m
i=1 ri. In particular, Ω(nn′) = Ω(n) + Ω(n′)

[HaW62, p. 354, Sec. 22.10].

Setup 12.2: An extended embedding problem. As in Section 11, let K be a finite Galois BOUb
input, 35

extension of K0. We set Γ = Gal(K/K0) and let ρ: Gal(K0) → Γ be the restriction

map. We also consider a prime number l 6= char(K0) with ζl /∈ K. Then, we consider a

diagram of profinite groups,

(1) G

γ

��

Gal(K0)

ρ

��
1 // A // Ḡ

ᾱ // Γ // 1,

with an exact short sequence. As in Setup 11.1, A ∼= Crl is a simple Gal(K0)-module

under the action defined in Subsection 10.1, in particular Gal(K) acts trivially on A.

In addition γ: G→ Ḡ is an epimorphism of finite groups.

Proposition 12.3: Under Setup 12.2 let n be a positive integral multiple of l·|Ker(γ)|. BOUd
input, 65

Let T be a finite set of primes ofK0 that contains Ram(K/K0). Suppose gcd(n, |µ(K)|) =

1, char(K0) - n, and
∏

pHomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) 6= ∅. For each p ∈ T we consider

[ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Then, there exists a finite set R ⊆ Pnonarch(K0)rT with |R| = Ω(|A|) = r, and

there exists [ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ)sur such that

(a) [ψ̄p] = [ϕp] in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) for each p ∈ T ,
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(b) [ψ̄] is unramified at each p ∈ P(K0)r(T ∪ R), so if N̄ is the solution field of ψ̄

(i.e. the fixed field of Ker(ψ̄)), then Ram(N̄/K0) ⊆ T ∪R,

(c) for each p ∈ P(K0)rT we have HomḠ,ψ̄p,γ(Gal(K̂0,p), G) 6= ∅, and

(d) gcd(n, |µ(N̄)|) = 1.

Proof: Let s1, . . . , sk be the elements of S0,l(K)|K0
rT . Since Ram(K/K0) ⊆ T , the

primes s1, . . . , sk are unramified in K. Hence, by Lemma 8.1, for each 1 ≤ i ≤ k,

there exists an unramified homomorphism ϕsi : Gal(K̂0,si)→ Ḡ such that ᾱ ◦ϕsi = ρsi .

Therefore,

(2) if an element [ψ̄] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ) satisfies [ψ̄p] = [ϕp] for each p ∈ {s1, . . . , sk},

then [ψ̄] is unramified on {s1, . . . , sk}.

Since Parch(K0) ⊆ S0,l(K)|K0
⊆ T ∪ {s1, . . . , sk},

(3) each p ∈ P(K0)r(T ∪ {s1, . . . , sk}) is non-archimedean.

We break up the rest of the proof into four parts.

Part A: The surjectivity and the number of roots of unity. Let m be the minimal

number of generators of Gal(K(ζn)/K). We choose distinct p1, . . . , pm, q ∈ P(K0)r(T ·∪

{s1, . . . , sk}) and elements

[ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ)

for p ∈ {p1, . . . , pm, q} that satisfy the conditions of Lemma 11.2. Thus, if [ψ̄] ∈

HomΓ,ρ,ᾱ(Gal(K0), Ḡ) satisfies [ψ̄p] = [ϕp] for each p ∈ {p1, . . . , pm, q}, then

(4a) [ψ̄] is unramified at p1, . . . , pm, q,

(4b) the fixed field N̄ in K0,sep of Ker(ψ̄) satisfies gcd(n, |µ(N̄)|) = 1, and

(4c) [ψ̄] is surjective.

Part B: Strategy of the proof. Since
∏

pHomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ) 6= ∅, there exists

by Lemma 10.6, an element [ψ0] ∈ HomΓ,ρ,ᾱ(Gal(K0), Ḡ). We are going to find x ∈

H1(Gal(K0), A) such that [ψ̄] = [ψ0]x satisfies the conclusions (a), (b), and (c) of the

proposition.

To this end, let N0 be the fixed field of Ker(ψ0) in K0,sep. Then, ρ(Gal(N0)) =

ᾱ(ψ0(Gal(N0)) = 1, so Gal(N0) ≤ Ker(ρ) = Gal(K), hence K ⊆ N0. Moreover
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ψ0|Gal(K) induces an embedding

ψ′0: Gal(N0/K)→ Ḡ

such that ᾱ(ψ′0(Gal(N0/K)) = 1, so Gal(N0/K) is isomorphic to a subgroup of A, hence

N0/K is an abelian l-extension.

Part C: The sets T ∗ and T ∗∗. We set T ∗ = T ·∪ {s1, . . . , sk} ·∪ {p1, . . . , pm, q} and let

r1, . . . , rs be the primes that belong to P(K0)rT ∗ at which ψ0 ramifies. Then, we set

T ∗∗ = T ∗ ·∪ {r1, . . . , rs} and have that

(5) ψ0 is unramified at each p ∈ P(K0)rT ∗∗.

Next observe that since Ram(K/K0) ⊆ T ⊆ T ∗, each p ∈ {r1, . . . , rs} is unramified

in K, so

ρp: Gal(K̂0,p)→ Γ

is unramified (Subsection 7.4). Hence, by Lemma 8.1,

(6) there exists an unramified element [ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ).

Then, we consider the system
(
[ϕp] ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ)

)
p∈T∗∗ . For each

p ∈ T ∗∗, Lemma 10.4 supplies a unique element yp ∈ H1(Gal(K̂0,p), A) that satisfies

(7) [ψ0,p]yp = [ϕp].

By Setup 12.2, A is a simple Gal(K0)-module on which Gal(K) acts trivially.

Since T ⊆ T ∗ and S0,l(K)|K0
⊆ T ∗, we have S0,l(K)|K0

⊆ T ∗ ⊆ T ∗∗. Hence, the

set T ∗∗K of all primes of K that lie over T ∗∗ contains S0,l(K). Also, Ram(K/K0) ⊆ T ⊆

T ∗∗. By Setup 12.2, ζl /∈ K. Since N0/K is an abelian l-extension (Part B), Proposition

9.3, applied to T ∗∗ rather than to T , yields an element x ∈ H1(Gal(K0), A) and primes

q1, . . . , qr ∈ P(K0)rT ∗∗ such that

(8a) resp(x) = yp for each p ∈ T ∗∗,

(8b) resp(x) is unramified at each p ∈ P(K0)r(T ∗∗ ·∪ {q1, . . . , qr}),

(8c) for i = 1, . . . , r, the prime qi totally splits in N0(ζn) and resqi(x): Gal(K̂0,qi)→ A

is a Cl-homomorphism, and

(8d) for i = 1, . . . , r the homomorphism resqi(x) can be lifted to a Ḡ-homomorphism

x′qi : Gal(K̂0,qi)→ G (i.e. γ ◦ x′qi = resqi(x)).
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Since S0,l(K) ⊆ T ∗∗, the primes q1, . . . , qr are non-archimedean (Subsection 1.6).

Part D: The solution ψ̄. We consider the element [ψ̄] = [ψ0]x ofHomΓ,ρ,ᾱ(Gal(K0), Ḡ).

For each p ∈ T ∗∗ we have by (8a) and (7) that

(9) [ψ̄p] = [ψ0,p]resp(x) = [ψ0,p]yp = [ϕp]

in HomΓ,ρp,ᾱ(Gal(K̂0,p), Ḡ). In particular, (9) holds for each p ∈ T , so Conclusion (a)

of the proposition holds.

Also, by Part A, [ψ̄] satisfies Conditions (4a), (4b), and (4c). In particular, by

(4b), gcd(n, |µ(N̄)|) = 1. By (4c), ψ̄ is an epimorphism. We prove that ψ̄ also satisfies

conclusions (b) and (c) of the proposition.

Proof of (b): We set R = {q1, . . . , qr}. Let p ∈ P(K0)r(T ·∪R). If p ∈ {s1, . . . , sk}∪

{p1, . . . , pm, q}, then by (9), [ψ̄p] = [ϕp]. Hence, by (2) and (4a), [ψ̄] is unramified at p.

If p ∈ {r1, . . . , rs}, then by (6), [ϕp] is unramified. Hence, by (9), ψ̄ is unramified at p

(Subsection 7.4). Thus, ψ̄ is unramified at each p ∈ T ∗∗rT .

Finally if p ∈ P(K0)r(T ∗∗ ·∪ {q1, . . . , qr}), then by (5) and (8b), [ψ0,p] and

resp(x) are unramified. By (3), p is non-archimedean. Hence, by Lemma 10.5, [ψ̄p] =

[ψ0,p]resp(x) is unramified. Thus, Condition (b) holds.

Proof of (c): Let p ∈ P(K0)rT . If p /∈ R, then by (b), [ψ̄p] is unramified. Hence,

by Lemma 8.1, ψ̄p can be lifted to an unramified element of HomḠ,ψ̄p,γ(Gal(K̂0,p), G).

If p ∈ R, then by (8c), p totally splits in N0(ζn), hence also in N0. Therefore,

ψ0,p: Gal(K̂0,p) → Ḡ is the trivial homomorphism (Subsection 7.4). Also, since p = qi

for some 1 ≤ i ≤ r, we have by (8c) that resp(x): Gal(K̂0,p)→ A is a Cl-homomorphism,

hence resp(x) represents its own cohomology class. Therefore, [ψ̄p] = [ψ0,p]resp(x) =

[ψ0,p · resp(x)] = [resp(x)].

By (8d), resp(x) can be lifted to a Ḡ-homomorphism x′p. Hence, also ψ̄p has the

same property. This implies that HomḠ,ψ̄p,γ(Gal(K̂0,p), G) 6= ∅, as (c) states.
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13. Embedding Problems with Solvable Kernel SOLV
input, 12

Following Proposition 12.3, we now prove the main result of this work by induction on

the order of the kernel of the given embedding problem.

Construction 13.1: We wish to solve a finite embedding problem SOLa
input, 17

(1) (ρ: Gal(K0)→ Γ, α: G→ Γ),

where H = Ker(α) is a solvable group and char(K0) - |H|. Without loss we may

assume that H 6= 1. For each weak solution ϕ: Gal(K0) → G of (1) and every a ∈ H,

we let ϕa: Gal(K0) → G be the homomorphism defined for each σ ∈ Gal(K0) by

ϕa(σ) = a−1ϕ(σ)a. Thus, ϕ and ϕa are Ker(α)-conjugate.

Since H is solvable, it has a normal subgroup H1 such that H/H1 is a non-trivial

abelian group. As in Remark 4.1, the subgroup
⋂
g∈GH

g
1 of G is normal, contained in

H, and H/
⋂
g∈GH

g
1 is abelian. Therefore, replacing H1 by

⋂
g∈GH

g
1 , we may assume

that H1 is normal in G. Furthermore, replacing H1 by a larger subgroup of H, we may

assume that H1 is a maximal subgroup of H with the property that H1 is normal in G

and H/H1 is non-trivial and abelian. As in Subsection 10.1, H/H1 becomes a simple

Gal(K0)-module via ρ. Thus, there exist a prime number l1 and a positive integer r1

such that H/H1
∼= Cr1l1 . In particular l1|H1| divides |H| and char(K0) 6= l1. Moreover,

we have the commutative diagram

(2) H1

��

H1

��

Gal(K0)

ρ

��
1 // H //

π

��

G

π

��

α // Γ // 1

1 // H/H1
// G/H1

ᾱ // Γ // 1

with exact horizontal sequences such that both maps π are quotient maps.

Strategy 13.2: Note that |H| = |H/H1| · |H1|. Hence, by Notation 12.1, SOLb
input, 77

Ω(|H|) = Ω(|H/H1|) + Ω(|H1|).
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Using Proposition 12.3, we first find a proper solution ψ1 for the lower Embedding

problem in (2) with the accompanying conditions. Then, we apply induction on the

order of the kernel to find a proper solution ψ to the embedding problem (ψ1: Gal(K0)→

G/H1, π: G → G/H1), that satisfies the accompanying conditions. Finally, we prove

that ψ is the desired solution of Embedding problem (1).

Theorem 13.3: Let K/K0 be a finite Galois extension of global fields and consider SOLc
input, 96

the finite embedding problem (1) with the solvable kernel H, where Γ = Gal(K/K0)

and ρ = resK0,sep/K . Let T be a finite set of primes of K0 that contains Ram(K/K0).

Suppose that char(K0) - |H|, gcd(|H|, |µ(K)|) = 1, and
∏

pHomΓ,ρp,α(Gal(K̂0,p), G) 6=

∅ (notation of Subsection 7.3). For each p ∈ T let [ϕp] ∈ HomΓ,ρp,α(Gal(K̂0,p), G).

Then, there exists an element [ψ] ∈ HomΓ,ρ,α(Gal(K0), G)sur and there exists a

set

R ⊆ Pnonarch(K0)rT

with |R| = Ω(|H|) such that

(a) [ψp] = [ϕp] in HomΓ,ρp,α(Gal(K̂0,p), G) for each p ∈ T and

(b) [ψ] is unramified at each p ∈ P(K0)r(T ·∪R), that is the fixed field N of Ker(ψ) in

K0,sep satisfies Ram(N/K0) ⊆ T ·∪R.

Proof: Let H1 be the normal subgroup of G contained in H with H/H1 being a simple

Gal(K0)-module (Construction 13.1). We break up the rest of the proof into three parts.

Part A: An embedding problem whose kernel is a simple Gal(K0)-module. We con-

sider Diagram (2). If p ∈ P(K0) and [ηp] ∈ HomΓ,ρp,α(Gal(K̂0,p), G), then [π ◦ ηp] ∈

HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1). Hence,
∏

pHomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1) 6= ∅. For each

p ∈ T we have that

ϕ̄p = π ◦ ϕp ∈ HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1).

Since H/H1
∼= Cr1l1 is a simple Gal(K0)-module, |H| is a multiple of l1|H1| (Con-

struction 13.1), char(K0) - |H|, and gcd(|H|, |µ(K)|) = 1, Proposition 12.3 with n = |H|

provides a finite set T1 ⊆ Pnonarch(K0)rT with |T1| = Ω(|H/H1|) and an element

(3) [ψ1] ∈ HomΓ,ρ,ᾱ(Gal(K0), G/H1)sur such that
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(4a) [ψ1,p] = [ϕ̄p] in HomΓ,ρp,ᾱ(Gal(K̂0,p), G/H1) for each p ∈ T ,

(4b) [ψ1] is unramified at each p ∈ P(K0)r(T ·∪T1), so if N1 is the fixed field of Ker(ψ1),

then Ram(N1/K0) ⊆ T ·∪ T1,

(4c) for each p ∈ P(K0)rT we have HomG/H1,ψ1,p,π(Gal(K̂0,p), G) 6= ∅, and

(4d) gcd(|H|, |µ(N1)|) = 1.

Part B: The induction step. This gives rise to an embedding problem

(5) (ψ1: Gal(K0)→ G/H1, π: G→ G/H1)

with a finite solvable kernel H1.

For each p ∈ T there exists, by (4a), an element ap ∈ H such that for each

σ ∈ Gal(K̂0,p)

ψ1,p(σ) = π(ap)−1ϕ̄p(σ)π(ap) = π(a−1
p )π(ϕp(σ))π(ap) = π(a−1

p ϕp(σ)ap) = (π ◦ϕapp )(σ),

(6) so [ϕ
ap
p ] ∈ HomG/H1,ψ1,p,π(Gal(K̂0,p), G) for every p ∈ T .

It follows from (4c) and (6) that
∏

pHomG/H1,ψ1,p,π(Gal(K̂0,p), G) 6= ∅. Moreover,

char(K0) - |H1| and (4d) implies that gcd(|H1|, |µ(N1)|) = 1.

For each p ∈ T we set ϕ1,p = ϕ
ap
p . Then, for each p ∈ T1 we use (4c) to choose

[ϕ1,p] ∈ HomG/H1,ψ1,p,π(Gal(K̂0,p), G).

Since H1 is solvable and |H1| < |H|, an induction hypothesis on the order of

the kernel of the embedding problem gives a set R1 ⊆ Pnonarch(K0)r(T ·∪ T1) and an

element

(7) [ψ] ∈ HG/H1,ψ1,π(Gal(K0), G)sur

such that |R1| = Ω(|H1|) and

(8a) [ψp] = [ϕ1,p] in HomG/H1,ψ1,p,π(Gal(K̂0,p), G), for each p ∈ T ·∪ T1,

(8b) [ψ] is unramified at each p ∈ P(K0)r(T ·∪ T1 ·∪ R1), that is if N is the solution

field of embedding problem (5), then Ram(N/K0) ⊆ T ·∪ T1
·∪R1.

We set R = T1
·∪ R1. Then, by Notation 12.1, |R| = |T1| + |R1| = Ω(|H/H1|) +

Ω(|H1|) = Ω(|H|).
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Part C: Conclusion of the proof. We prove that [ψ] satisfies the conclusion of the

theorem. Indeed, by (2), (7), and (3) we have α ◦ ψ = ᾱ ◦ π ◦ ψ = ᾱ ◦ ψ1 = ρ, so

[ψ] ∈ HomΓ,ρ,α(Gal(K0), G)sur.

1

��
H1

��

Gal(K0)
ψ

yyssssssssss

ρ

��

ψ1

������������������

1 // H //

��

G

π

��

α

%%KKKKKKKKKKKK

1 // H/H1
// G/H1

ᾱ //

��

Γ // 1

1.

Moreover, by (8a), for each p ∈ T there exists bp ∈ H1 such that for each σ ∈ Gal(K̂0,p)

we have ψp(σ) = b−1
p ϕ1,p(σ)bp = b−1

p a−1
p ϕp(σ)apbp = (apbp)−1ϕp(σ)(apbp). Since ap ∈

H and bp ∈ H1, we have apbp ∈ H. Therefore, [ψp] = [ϕp] in HomΓ,ρp,α(Gal(K̂0,p), G)

for each p ∈ T , as desired.

14. Embedding Problems with Solvable Kernel in K0,tot,S APPL
input, 12

In this section we provide some applications of the main theorem of this work. We

consider our basic global field K0 and let S be a finite set of primes of K0. Then,

K0,tot,S denotes the union of all finite Galois extensions of K0 in which each p ∈ S

totally splits. Thus,

(1) K0,tot,S =
⋂
p∈S

⋂
τ∈Gal(K0)

Kτ
0,p.

The field K0,tot,S has several distinguished properties. First of all K0,tot,S is PSC.

That is, if V is an absolutely integral variety over K0,tot,S with a simple Kτ
0,p-rational

point for each p ∈ S and τ ∈ Gal(K0), then V has a K0,tot,S-rational point [Jar11, p. 75,

Example 5.6.5 (with citation to original works)]. In particular, K0,tot,S is ample [Jar11,
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p. 67, Lemma 5.3.1]. The latter implies among other things that if t is a transcendental

element over K0,tot,S , then every finite group occurs as a Galois group over K0,tot,S(t) [a

consequence of Jar11, p. 88, Thm. 5.9.2]. Finally, by [Pop96, p. 3, Thm. 3], Gal(K0,tot,S)

is a “free product of groups of the form Gal(Kτ
0,p) in the sense of Melnikov and Haran

with p and τ as above”.

Setup 14.1: Again, with K0 and S as above, we let K be a finite Galois extension of SETP
input, 44

our global field K0 and set Γ = Gal(K/K0) and ρ = resK0,sep/K . Then we consider a

finite embedding problem

(2) (ρ: Gal(K0)→ Γ, α: G→ Γ),

where H = Ker(α) is a solvable group.

For each prime number p we write Qtot,p rather than Qtot,{p}. The thesis [Ram13]

conjectures that every finite group that occurs as a Galois group over Q is a quotient of

Gal(Qtot,p/Q). The conjecture is verified in [Ram13] for finite abelian groups, symmetric

groups, and alternating groups.

In this section we go even further as far as solvable groups are concerned. We use

Theorem 13.3 to solve Embedding problem (2) with local data and bounded ramification

in K0,tot,S once the kernel H is solvable, gcd(|H|, |µ(K)|) = 1, char(K0) - |H|, K ⊆

K0,tot,S , and each of the corresponding local embedding problems is solvable.

Remark 14.2: Let K0 and S be as above. If S′ is a subset of P(K0) that contains S, CNGa
input, 76

then by Definition (1), K0,tot,S′ ⊆ K0,tot,S .

Now, consider the set SK of all primes of K that lie over S. For each p ∈ S

we choose Pp ∈ SK that lies over p such that K0,p ⊆ KPp
(Subsection 1.4). Then,

K0,tot,S =
⋂

p∈S
⋂
τ∈Gal(K0)K

τ
0,p ⊆

⋂
P∈SK

⋂
τ∈Gal(K)K

τ
P = Ktot,SK .

Theorem 14.3: Under Setup 14.1 we assume thatK ⊆ K0,tot,S . Suppose that gcd(|H|, |µ(K)|) =APPa
input, 98

1, char(K0) - |H|, and
∏

pHomΓ,ρp,α(Gal(K̂0,p), G) 6= ∅. Let T ⊆ P(K0)rS be a finite

set such that Ram(K/K0) ⊆ T . For each p ∈ T we consider [ϕp] ∈ HomΓ,ρp,α(Gal(K̂0,p), G).

Then, there exists a proper solution ψ of Embedding problem (2) and there exists

a finite set R ⊆ Pnonarch(K0)r(S ·∪ T ) with |R| = Ω(|H|) such that if we denote
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ψp = ψ|Gal(K̂0,p), then

(a) [ψp] = [ϕp] for each p ∈ T ,

(b) the fixed field N of Ker(ψ) satisfies N ⊆ K0,tot,S , and

(c) Ram(N/K0) ⊆ R ·∪ T , so |Ram(N/K0)| ≤ Ω(|H|) + |T |.

Proof: Since K ⊆ K0,tot,S , each p ∈ S totally splits in K, in particular p is unramified

in K (if p is non-archimedean) and ρp: Gal(K̂0,p) → Γ is the trivial homomorphism

(Subsection 7.4). Hence, the Ker(α)-conjugacy class [ϕp] of the trivial homomorphism

ϕp: Gal(K̂0,p)→ G is an element of HomΓ,ρp,α(Gal(K̂0,p), G).

By Theorem 13.3 applied to S ·∪T rather than to T , there exists a proper solution

ψ of Embedding problem (2) and there exists a set R ⊆ Pnonarch(K0)r(S ·∪ T ) with

|R| = Ω(|H|) such that

(3a) [ψp] = [ϕp] for each p ∈ S ·∪ T and

(3b) the solution field N of ψ satisfies Ram(N/K0) ⊆ R ·∪ S ·∪ T .

In particular, (3a) implies (a). Also, for each p ∈ S we have [ψp] = [ϕp]. Since ϕp

is the trivial homomorphism, so is ψp (Subsection 7.4). Hence, since Gal(N) = Ker(ψ),

each p ∈ S totally splits in N (Subsection 7.4). Therefore N ⊆ K0,tot,S , as (b) claims.

Finally, each non-archimedean p ∈ S is unramified in N . It follows from (3b) that

Ram(N/K0) ⊆ R ·∪ T , as asserted by (c).

Corollary 14.4: Let S be a finite subset of P(K0) and let G be a finite solvable group APPb
input, 171

with

gcd(|G|, |µ(K0)|) = 1 and char(K0) - |G|.

Then, K0 has a Galois extension N in K0,tot,S and there exists a finite set R ⊆

Pnonarch(K0)rS with |R| = Ω(|G|) such that Gal(N/K0) ∼= G, Ram(N/K0) ⊆ R,

and |Ram(N/K0)| ≤ Ω(|G|).

Proof: We let Γ in (2) be the trivial group and let both ρ, α be the trivial homo-

morphisms. Then, H = Ker(α) = G. Moreover, for each p ∈ P(K0) the Ker(α)-

conjugacy class of the trivial homomorphism ϕp: Gal(K̂0,p) → G is an element of

HomΓ,ρp,α(Gal(K̂0,p), G). We set K = K0 and let T be the empty set. Then, by The-

orem 14.3, K0 has a Galois extension N in K0,tot,S and there exists a finite set R ⊆
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Pnonarch(K0)rS with |R| ≤ Ω(|G|) such that Gal(N/K0) ∼= G, and Ram(N/K0) ⊆ R.

Thus, |Ram(N/K0)| ≤ Ω(|G|).

Corollary 14.5: Suppose that K0 is a number field, let S be a finite subset of P(K0), APPc
input, 208

and let G be a finite group of odd order. Then, K0 has a Galois extension N in K0,tot,S

such that Gal(N/K0) ∼= G and |Ram(N/K0)| ≤ [K0 : Q] · Ω(|G|).

Proof: By the celebrated theorem of Feit and Thompson [FeT63], G is solvable. Since

µ(Q) = {1,−1}, we have |µ(Q)| = 2, hence gcd(|G|, |µ(Q)|) = 1. By Corollary 14.4

applied to Q and S|Q (Subsection 1.4) rather than to K0 and S, there exists a Galois

extension N0 of Q in Qtot,S|Q∪Ram(K0/Q) with Gal(N0/Q) ∼= G and there exists a finite

set R ∈ Pnonarch(Q)r(S|Q∪Ram(K0/Q)) with |R| = Ω(|G|) such that Ram(N0/Q) ⊆ R.

Let N = K0N0. Then, if p ∈ Pnonarch(K0) and the prime number p that lies under p

is unramified in N0, then p is unramified in N . Since over each prime number there lie

at most [K0 : Q] primes of K0, we conclude from Ram(N/K0) ⊆ RK0 (Subsection 1.4)

that |Ram(N/K0)| ≤ [K0 : Q] · |R| ≤ [K0 : Q] · Ω(|G|), as claimed.

Moreover, Ram(K0 ∩ N0/Q) ⊆ Ram(K0/Q) ∩ Ram(N0/Q) ⊆ Ram(K0/Q) ∩ R

= ∅. Thus, K0 ∩ N0 is an unramified extension of Q. By a corollary to a theorem of

Hermite-Minkowski, K0 ∩ N0 = Q [Neu99, p. 207, Thm. 2.18]. Therefore, the Galois

extension N = K0N0 of K0 satisfies Gal(N0/K0) ∼= G. Moreover, since S ⊆ (S|Q)K0
, it

follows from Remark 14.2 that Qtot,S|Q∪Ram(K0/Q) ⊆ Qtot,S|Q ⊆ K0,tot,(S|Q)K0
⊆ K0,tot,S .

Hence, by the preceding paragraph, N = K0N0 ⊆ K0,tot,S .

Remark 14.6: The interest in Corollary 14.5 lies in the fact that in contrast to previous APPd
input, 262

results of this work, we impose the condition gcd(|G|, 2) = 1 on G, rather than the

stronger condition gcd(|G|, |µ(K0)|) = 1. Of course, this comes with a price, namely

the usual upper bound Ω(|G|) for the number of ramified primes of the extension must

now be multiplied by [K0 : Q]. Nevertheless, the latter factor is independent of G.

Corollary 14.7: Under Setup 14.1 we assume that K ⊆ K0,tot,S , char(K0) - |H| and APPe
input, 273

gcd(|H|, |µ(K)|) = 1. In addition, we assume that one of the following conditions holds:

(a) α splits, that is there exists a homomorphism α′: Γ→ G such that α ◦ α′ = idΓ.
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(b) Embedding problem (3) has a weak solution.

Then, Embedding problem (3) has a proper solution with a solution field N in

K0,tot,S such that |Ram(N/K0)| ≤ |Ram(K/K0)|+ Ω(|H|).

Proof: First note that Condition (a) of the Corollary implies Condition (b). If ψ is a

weak solution of (3), then for each p ∈ P(K0) the homomorphism ψp: Gal(K̂0,p) → G

satisfies α ◦ ψp = ρp. Hence, by Theorem 14.3, with T = Ram(K/K0), the field K0 has

a Galois extension N in K0,tot,S as asserted by the corollary.

Recall that a finite extension N/K of number fields is tame if every prime divisor

of K is tamely ramified in N . In his survey paper [Bir94], Bryan Birch asks whether for

each finite group G there exists a tame Galois extension L of Q with Gal(L/Q) = G.

Among others, he suspects that this is the case for each finite solvable group. Our last

application of 14.3 is a contribution to Birch’s problem.

Corollary 14.8: Let K be a number field, G a finite solvable group, and S a finite set APPf
input, 316

of primes of K that contain all prime divisors of |G|. Suppose that gcd(|G|, |µ(K)|) =

1. Then, K has a tame Galois extension N in Ktot,S with Gal(N/K) ∼= G and

|Ram(N/K)| ≤ Ω(|G|).

Proof: We consider the embedding problem 1 −→ G → G
α−→ 1 −→ 1, where α

is the trivial map. Without loss we enlarge S to include all primes of K that divide

|G|. By Theorem 14.3 with K0 = K and T = ∅, the field K has a Galois extension N

with Galois group G and there exists a set R ⊆ P(K)rS with |R| = Ω(|G|) such that

Ram(N/K) ⊆ R. In particular no P ∈ P(K) over R divides the order of G. Hence,

N/K is a tame extension, as claimed.

15. Appendix APND
input, 12

For the convenience of the readers, in this appendix we prove a few results about the

pairing of cohomology groups attached to global and local fields, originally proved in

[Neu79] for number fields.
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Remark 15.1: Perfect pairing. Let l be a prime number and let G and G′ be locally PONt
input, 20

compact abelian multiplicative groups of exponent l. Suppose ω: G×G′ → µl is a non-

degenerate bilinear map (also called a perfect pairing in [NSW00]). To each σ ∈ G

we attach the homomorphism χσ: G′ → µl defined by χσ(σ′) = ω(σ, σ′). Similarly, to

each σ′ ∈ G′ we attach the homomorphism χ′σ′ : G → µl defined by χ′σ′(σ) = ω(σ, σ′).

Note that since σl = 1 and (σ′)l = 1 for all σ ∈ G and σ′ ∈ G′, we can actually

identify the group of homomorphisms of G (resp. G′, resp. G × G′) into the unit

circle T = {z ∈ C | |z| = 1} with the corresponding groups of homomorphisms into µl.

We may therefore replace µl throughout by T in order to cite the results of [Pon46].

In particular, by the Pontryagin duality theorem [Pon46, p. 134, Thm. 32], for each

homomorphism χ: G→ µl (resp. χ′: G′ → µl) there exists a unique σ′ ∈ G′ (resp. σ ∈ G)

such that χ = χ′σ′ (resp. χ′ = χσ).

Next recall that for each closed subgroup H of G the orthogonal complement

of H is defined as H⊥ = {σ′ ∈ G′ | ω(η, σ′) = 1 for all η ∈ H}. Similarly, for each

closed subgroup H ′ of G′ we let (H ′)⊥ = {σ ∈ G | ω(σ, η′) = 1 for all η′ ∈ H ′}.

If H1 and H2 are closed subgroups of G, then the bilinearity of ω implies that

(H1H2)⊥ = H⊥1 ∩ H⊥2 . Similarly, if H ′1 and H ′2 are closed subgroups of G′, then

(H ′1H
′
2)⊥ = (H ′1)⊥ ∩ (H ′2)⊥.

Less obvious, but still true, is the relation (H⊥)⊥ = H for each closed subgroup

of G (resp. of G′) [Pon46, p. 136, Thm. 3.3]. By definition, 1⊥G = G′. Hence, 1G =

1⊥⊥G = (G′)⊥. Similarly, 1G′ = G⊥.

Remark 15.2: The dual module. We consider our fixed global field K0, a prime number APNa
input, 72

l 6= char(K0), and a finite simple Gal(K0)-module A = Crl , for some positive integer r.

Let µl be the group of roots of unity of order l in K0,sep. We also consider the dual

module A′ = Hom(A,µl). The group Gal(K0) acts on A′ by the rule hσ(a) = h(aσ
−1

)σ

for all h ∈ A′, σ ∈ Gal(K0), and a ∈ A. Note that for each a ∈ Ar1 there exists h ∈ A′

such that h(a) 6= 1. Hence, the map (a, h) 7→ h(a) for a ∈ A and h ∈ A′ is a perfect

pairing. In particular,

(1) A′ is isomorphic as a group to Crl .

Moreover,
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(2) A′ is a simple Gal(K0)-module.

Indeed, if B is a submodule of A′ and B⊥ = {a ∈ A | h(a) = 1 for all h ∈ B},

then B⊥ is a submodule of A. Since A is simple, B⊥ = 1A or B⊥ = A. Hence, by

Remark 15.1, B = A′ or B = 1A′ , so A′ is simple.

Note that if χ: Gal(K0)→ A or χ: Gal(K0)→ A′ is a crossed homomorphism and

σ ∈ Gal(K0), then χl(σ) = χ(σ)l = 1.

We also recall the following rule:

(3) If a profinite group G acts on A (resp. A′), then Hi(G,A)l = 1 (resp. Hi(G,A′)l =

1) for each i ≥ 0.

Indeed, if f : Gi → A (resp. f : Gi → A′) is a cochain of degree i and σ ∈ Gi, then

f l(σ) = f(σ)l = 1.

The following result is a generalization of [Neu79, Lemma 2] to global fields.

Lemma 15.3: In the notation of Remark 15.2, let K be a finite Galois extension of K0 APNb
input, 126

such that Gal(K) acts trivially on A and ζl /∈ K. Let P be a subset of P(K0) that

consists of all but finitely many primes which totally split in K(ζl). Then, the homo-

morphism H1(Gal(K0), A′)→
∏

p∈P H
1(Gal(K̂0,p), A′) defined as the direct product of

the restriction map H1(Gal(K0), A′)→ H1(Gal(K̂0,p), A′), is injective.

Proof: We set Γ = Gal(K/K0), ∆ = Gal(K(ζl)/K), and Z = Gal(K(ζl)/K0). Then,

we note that if h ∈ A′, σ ∈ Gal(K(ζl)), and a ∈ A, then aσ
−1

= a and hσ(a) =

h(aσ
−1

)σ = h(a). Hence,

(4) Gal(K(ζl)) acts trivially on A′.

Hence, the action of Gal(K0) on A′ induces an action of Z, hence also of ∆, on

A′. Since #∆|(l − 1) (Here we use the assumption that l 6= char(K0).), we have

(5) l - #∆.

Claim A: Hi(∆, A′) = 1 for all i ≥ 1. Indeed, by (3), each x ∈ Hi(∆, A′) satisfies

xl = 1. On the other hand, by [Rib70, p. 138, Cor. 6.7], ord(x)|#∆. Hence, by (5),

l - ord(x). It follows that x = 1, as claimed.
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Claim B: Hn(Γ, (A′)∆) ∼= Hn(Z,A′) for all n ≥ 1. Indeed, Claim A, applied to

i = 1, . . . , n− 1, yields an exact inflation-restriction sequence

(6) 1 // Hn(Γ, (A′)∆)
inf // Hn(Z,A′)

res // Hn(∆, A′)Γ

that corresponds to the short exact sequence 1 → ∆ → Z → Γ → 1 [NSW00, p. 64,

Prop. 1.6.6]. Again, by Claim A, Hn(∆, A′) = 1. Hence, by (6), inf: Hn(Γ, (A′)∆) →

Hn(Z,A′) is an isomorphism, as claimed.

Claim C: Hn(Z,A′) = 1 for all n ≥ 1. Indeed, since ζl /∈ K, the group ∆ acts non-

trivially on µl, so ∆ acts nontrivially on A′. Therefore, (A′)∆ is a proper Z-module

of A′. Since by (2), A′ is a simple Gal(K0)-module, A′ is also a simple Z-module, so

(A′)∆ = 1. It follows from Claim B that Hn(Z,A′) ∼= Hn(Γ, (A′)∆) = 1, as claimed.

Claim D: The map res: H1(Gal(K0), A′) → H1(Gal(K(ζl)), A
′)Z is an isomorphism.

Indeed, as in the proof of Claim B, the beginning of the five-term exact sequence at-

tached to the short exact sequence 1 → Gal(K(ζl)) → Gal(K0) → Z → 1 takes the

following form:

(7) 1 // H1(Z, (A′)Gal(K(ζl)))
inf // H1(Gal(K0), A′)

res // H1(Gal(K(ζl)), A
′)Z

tg // H2(Z, (A′)Gal(K(ζl))).

By (4), (A′)Gal(K(ζl)) = A′. Hence, by Claim C, the second and the fifth terms of (7) are

trivial, so res: H1(Gal(K0), A′)→ H1(Gal(K(ζl)), A
′)Z is an isomorphism, as claimed.

Next we consider the commutative diagram

(8) H1(Gal(K0), A′) //

��

∏
p∈P H

1(Gal(K̂0,p), A′)

��

H1(Gal(K(ζl)), A
′)Z // ∏

p∈P
∏

P|pH
1(Gal(K̂(ζl)P), A′),

where all of the arrows are restriction maps or appropriate direct products of restriction

maps.
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Claim E: The lower horizontal map in (8) is injective. Indeed, let x be an element of

H1(Gal(K(ζl)), A
′)Z .

By (4), Gal(K(ζl)) acts trivially on A′, hence x: Gal(K(ζl))→ A′ is a homomorphism.

Let N be the fixed field of Ker(x) in K0,sep. Then, N is a finite Galois extension of

K(ζl). We prove that N is a Galois extension of K0.

Indeed, we consider σ ∈ Gal(K0) and set σ̄ = resK0,sep/K(ζl)(σ) ∈ Z. Then, by

definition, xσ̄ is the element of H1(Gal(K(ζl)), A
′) defined by xσ̄(τ) = x(τσ

−1

)σ for

each τ ∈ Gal(K(ζl)) [NSW00, p. 44, 1. Conjugation]. Since, by our choice, xσ̄ = x,

we have x(τ)σ
−1

= x(τσ
−1

). In particular, if τ ∈ Gal(N) = Ker(x), then 1 = x(τσ
−1

),

so τσ
−1 ∈ Ker(x). This implies that Ker(x) is a normal subgroup of Gal(K0), which

proves our claim.

Now assume that for each p ∈ P and every P ∈ P(K(ζl)) over p we have resP(x) =

1. Thus, x(τ) = 1 for each τ ∈ Gal(K(ζl)P), so N ⊆ K(ζl)P. It follows that p totally

splits in N . Conversely, since K(ζl) ⊆ N , every prime of K0 that totally splits in N

also totally splits in K(ζl). Thus, for almost all p ∈ P(K0) we have that p totally splits

in K(ζl) if and only if p totally splits in N . By a theorem of Bauer N = K(ζl) (see

[Neu99, p. 548, Prop. 13.9] for number fields and [FrJ08, pp. 129-130, Exercise 5] for

global fields). Consequently, x = 1, as claimed.

Conclusion of the proof: By Claims D and E, both the left vertical arrow and

the lower horizontal arrow of the commutative Diagram (8) are injective. It follow that

the upper horizontal arrow of that diagram is injective, as claimed by the lemma.

For each p ∈ Pnonarch(K0) and for i = 1, 2 we denote the image of the map

inf: Hi(Gal(K̂0,p,ur/K̂0,p), A)→ Hi(Gal(K̂0,p), A)

by Hi
ur(Gal(K̂0,p), A). In particular, H1

ur(Gal(K̂0,p), A) is the subgroup of unramified

elements of

H1(Gal(K̂0,p), A)

(Subsection 9.1). Similar notation applies to A′ rather than to A.
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Lemma 15.4: In the notation of Remark 15.2, let x ∈ H1(Gal(K0), A). Then, APNc
input, 316

resp(x) ∈ H1
ur(Gal(K̂0,p), A)

for almost all p ∈ Pnonarch(K0).

Proof: Let χ be a crossed homomorphism that represents x. As such, χ is continuous.

Hence, there exists a finite Galois extension K ′ of K0 that contains K such that χ is

trivial on Gal(K ′). If χ′ is another representative of χ, then there exists a ∈ A such

that χ′(σ) = aσa−1χ(σ) for each σ ∈ Gal(K0). Let K ′′ be a finite Galois extension of

K0 that contains K ′ such that Gal(K ′′) acts trivially on A. Then, for each σ ∈ Gal(K ′′)

we have χ′(σ) = aσa−1χ(σ) = χ(σ) = 1. Thus, the restriction of x to H1(Gal(K ′′), A)

is trivial.

Now recall that almost all p ∈ P(K0) are unramified in K ′′. In other words,

K ′′ ⊆ K̂0,p,ur (Subsection 1.5). Hence, by the preceding paragraph, the restriction of

x to Gal(K̂0,p,ur) is trivial. This means that resp(x) ∈ H1
ur(Gal(K̂0,p), A), as desired.

Next we generalize [Neu79, Lemma 3] to global fields.

Lemma 15.5: In the notation of Remark 15.2, let K be a finite Galois extension of K0 APNd
input, 353

such that Gal(K) acts trivially on A and ζl /∈ K. Let S be a finite set of primes of K0 and

for each p ∈ S consider yp ∈ H1(Gal(K̂0,p), A). Then, there exists z ∈ H1(Gal(K0), A)

such that

(a) resp(z) = yp for each p ∈ S and

(b) if p ∈ P(K0)rS and resp(z) is ramified, then p totally splits in K(ζl).

Proof: Let S′ be a finite subset of P(K0) that contains S. For each p ∈ S′rS let yp

be the unit element of H1(Gal(K0,p), A). In particular, if p is non-archimedean, then

yp is unramified (Subsection 9.1). Thus, if the lemma holds for S′, then it holds for S.

It follows that we may assume without loss that S contains (in the number field case)

all prime divisors of l and all infinite primes of K0.

We denote the set of all p ∈ P(K0) that totally split in K(ζl) by Splt(K(ζl)/K0)

and set P = S ∪ Splt(K(ζl)/K0). The rest of the proof breaks up into several parts.
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Part A: A local-global principle for the first cohomology groups. By Lemma 15.3,

the product

H1(Gal(K0), A′)→
∏

p∈P rS

H1(Gal(K̂0,p), A′)

of the restriction maps is injective. Hence, so is the map

H1(Gal(K0), A′)→
∏

p∈P rS

H1(Gal(K̂0,p), A′)(9)

×
∏
p/∈P

H1(Gal(K̂0,p), A′)/H1
ur(Gal(K̂0,p), A′).

Part B: Restricted products. The cohomology groupsH1(Gal(K̂0,p), A) andH1(Gal(K̂0,p), A′)

are equipped with discrete topology [NSW00, p. 324]. In particular, each subgroup of

those groups is open. Thus, it makes sense to consider the restricted products

(10) X =
∏′

pH
1(Gal(K̂0,p), A) and X ′ =

∏′
pH

1(Gal(K̂0,p), A′) with respect to the

subgroups

H1
ur(Gal(K̂0,p), A) and H1

ur(Gal(K̂0,p), A′), respectively.

Let Y be the image of H1(Gal(K0), A) in
∏

pH
1(Gal(K̂0,p), A) under the map

x 7→ (resp(x))p. By Lemma 15.4, Y ⊆ X. Similarly, the image Y ′ of H1(Gal(K0), A′)

in
∏

pH
1(Gal(K̂0,p), A′) under the map x 7→ (resp(x))p is contained in X ′.

Part C: Duality. For each p ∈ P(K0) the cup product gives a perfect pairing

(11) H1(Gal(K̂0,p), A)×H1(Gal(K̂0,p), A′)→
∞⋃
n=1
p-n

µn,

where p = char(K0) [NSW00, p. 327, Thm. 7.2.6]. By (3), the exponent of each of the

groups on the left-hand side of (11) divides l. Hence, we actually have a perfect pairing

H1(Gal(K̂0,p), A)×H1(Gal(K̂0,p), A′)→ µl.

If x ∈ X and x′ ∈ X ′, then by definition, for almost all p ∈ P(K0) we have

resp(x) ∈ H1
ur(Gal(K̂0,p), A) and resp(x′) ∈ H1

ur(Gal(K̂0,p), A′).

Moreover, ignoring the finitely many p’s that ramify in K(ζl), we have AÎp = A and

(A′)Îp = A′ (by (4)). Hence, by [NSW00, p. 333, Thm. 7.2.15], (resp(x), resp(x′)) = 1

61



for all of those p’s. It follows that the expression (x, x′) =
∏

p(resp(x), resp(x′)) is a

well-defined element of µl. This defines a perfect pairing X ×X ′ → µl.

By [NSW00, p. 412, Prop. 8.5.2], Y and Y ′ are mutually orthogonal complements

in X ×X ′. That is Y = (Y ′)⊥ = {y ∈ X | (y, y′) = 1 for all y′ ∈ Y ′} and Y ′ = Y ⊥ =

{y′ ∈ X ′ | (y, y′) = 1 for all y ∈ Y }.

Part D: The subgroup W . We consider the following subgroup of X:

(12) W =
∏

p∈S 1p ×
∏

p∈P rS H
1(Gal(K̂0,p), A)×

∏
p/∈P H

1
ur(Gal(K̂0,p), A),

where 1p is the trivial subgroup of H1(Gal(K̂0,p), A).

By Part C, 1⊥p = H1(Gal(K̂0,p), A′) for each p ∈ S (actually, for all p), H1(Gal(K̂0,p), A)⊥

is the trivial subgroup ofH1(Gal(K̂0,p), A′) for each p ∈ P rS, andH1
ur(Gal(K̂0,p), A)⊥ =

H1
ur(Gal(K̂0,p), A′), if p ∈ Pnonarch(K0)rP [NSW00, p. 333, Thm. 7.2.15]. Hence,

W⊥ =
∏
p∈S

H1(Gal(K̂0,p), A′)×
∏

p∈P rS

1′p ×
∏
p/∈P

H1
ur(Gal(K̂0,p), A′)

(where, 1′p is the trivial subgroup of H1(Gal(K̂0,p), A′)) is a subgroup of X ′ and X ′/W⊥

is equal to the right-hand side of (9). Therefore, the map Y ′ → X ′/W⊥ defined by

y′ 7→ y′W⊥ is injective. It follows that

(13) Y ′ ∩W⊥ = 1X′ .

Part E: We prove that Y · W is a closed subgroup of X. Indeed, by the defini-

tion of the restricted topology, the open subgroups of X have the form
∏

p∈T Vp ×∏
p/∈T H

1
ur(Gal(K̂0,p), A), where T is a finite subset of P(K0) and Vp is a subgroup of

H1(Gal(K̂0,p), A) for each p /∈ T . By (12), W hence also Y ·W contains such a sub-

group. Therefore, Y ·W is an open subgroup of X. It follows that Y ·W is a closed

subgroup of X.

Part F: Conclusion of the proof. By Remark 15.1, Part C, and (13), (Y ·W )⊥ =

Y ⊥ ∩W⊥ = Y ′ ∩W⊥ = 1X′ . By Part E, Y ·W is closed. Hence, by Remark 15.1,

Y ·W = (Y ·W )⊥⊥ = 1⊥X′ = X. Thus, Y is mapped onto X/W under the quotient

map X → X/W . By (10) and (12),

(14) X/W =
∏

p∈S H
1(Gal(K̂0,p), A)×

∏
p/∈P H

1(Gal(K̂0,p), A)/H1
ur(Gal(K̂0,p), A).
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Since Y is the image of H1(Gal(K0), A) in X, there exists z ∈ H1(Gal(K0), A)

such that resp(z) = yp for each p ∈ S and resp(z) ∈ H1
ur(Gal(K̂0,p), A) for each p ∈

P(K0)rP , in particular resp(z) is unramified. Therefore, if p ∈ P(K0)rS and resp(z)

is ramified, we have p ∈ P rS, so p ∈ Splt(K(ζl)/K0), which means that p totally splits

in K(ζl), as claimed.

Definition 15.6: For a Gal(K0)-module A we denote the restricted product of the RESP
input, 570

groups

H2(Gal(K̂0,p), A) with respect to the subgroupsH2
ur(Gal(K̂0,p), A) by

∏′
pH

2(Gal(K̂0,p), A).

Lemma 15.7: In the notation of Remark 15.2 the homomorphism APNe
input, 580

(15)
∏

presp: H2(Gal(K0), A)→
∏′

pH
2(Gal(K̂0,p), A)

defined as the product of the restriction maps is injective.

Proof: First note that the image of the left-hand side of (15) does indeed lie in∏′
pH

2(Gal(K̂0,p), A) [NSW00, p. 417, Prop. 8.6.1]. Now let Sh2(Gal(K0), A) be the

kernel of the map (15) and let

Sh1(Gal(K0), A′)

be the kernel of the map H1(Gal(K0), A′) →
∏′

pH
1(Gal(K̂0,p), A′). The Poitou-Tate

duality theorem supplies a perfect pairing Sh2(Gal(K0), A)×Sh1(Gal(K0), A′)→ µl (by

[NSW00, p. 422, Thm. 8.6.8], taking into account that the exponents of the cohomology

groups are l).

By Lemma 15.3, Sh1(Gal(K0), A′) = 1. Hence, by the perfect pairing, also

Sh2(Gal(K0), A) = 1. It follows that map (15) is injective.

The following lemma appears as Lemma 4 of [Neu79] for number fields and as

Lemma 9.5.6 on page 565 of [NSW15] for global fields.

Lemma 15.8: In the notation of Remark 15.2 and Subsection 7.3 we have APNf
input, 617

(16) HomΓ,ρ,α(Gal(K0), G) 6= ∅ ⇐⇒
∏
HomΓ,ρp,α(Gal(K̂0,p), G) 6= ∅.
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Proof: We have already noticed in Subsection 7.3 that the restrictions to the local

groups Gal(K̂0,p) give the implication “=⇒” of (16). The proof of the reverse implication

“⇐=” of (16) breaks up into three parts.

Part A: Global short exact sequences. We consider the commutative diagram

(17) 1 // A // Ĝ
α̂ //

��

Gal(K0) //

ρ

��

1

1 // A // G
α // Γ // 1,

where the right square is cartesian (with the fiber product Ĝ = G×A Gal(K0)) [FrJ08,

p. 500, Def. 22.2.2]. By the basic property of cartesian squares, the upper row of (17)

splits if and only if there exists a homomorphism ψ: Gal(K0)→ G such that α ◦ψ = ρ.

Thus, HomΓ,ρ,α(Gal(K0), G) 6= ∅ if and only if the upper row of (17) splits.

By a theorem of Schreier [NSW00, p. 7, Thm. 1.2.5], each element y ofH2(Gal(K0), A)

bijectively corresponds to a short exact sequence, as in the upper row of (17), modulo a

natural “congruence relation”. The unit element of H2(Gal(K0), A) corresponds to the

class of the splitting short exact sequences.

Next consider the homomorphism ρ∗: H2(Γ, A) → H2(Gal(K0), A) that attaches

the cohomology class of each inhomogeneous cocycle f : Γ2 → A to the cohomology class

of the inhomogeneous cocycle f ◦ρ: Gal(K0)2 → A. Thus, if x is the element of H2(Γ, A)

that corresponds (under the theorem of Schreier) to the lower row of (17), then by the

two preceding paragraphs, HomΓ,ρ,α(Gal(K0), G) 6= ∅ if and only if ρ∗(x) = 1.

Part B: Local short exact sequences. Similarly, for each p ∈ P(K0) we consider the

local counterpart of Diagram (17):

(18) 1 // A // Ĝp

α̂p //

��

Gal(K̂0,p) //

ρp

��

1

1 // A // G
α // Γ // 1,

where, as in Subsection 7.3, ρp = ρ|Gal(K̂0,p), and again the right square is cartesian.

Then, resp(x) is the element of H2(Γp, A) that corresponds to the lower short exact
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sequence in (18). As in Part A, HomΓ,ρp,α(Gal(K̂0,p), G) 6= ∅ if and only if ρ∗p(x) = 1,

where ρ∗p: H2(Γp, A)→ H2(Gal(K̂0,p), A) is the map associated with ρp.

Part C: Conclusion of the proof. Note that resp(ρ∗(x)) = ρ∗p(x). Thus, the diagram

(19) H2(Γ, A)

ρ∗

wwoooooooooooo ∏
ρ∗p

((QQQQQQQQQQQQ

H2(Gal(K0), A)

∏
p resp

// ∏′
pH

2(Gal(K̂0,p), A)

is commutative.

Now suppose that
∏

pHomΓ,ρp,α(Gal(K̂0,p), G) 6= ∅. Then, by Part B,
∏

p ρ
∗
p(x) =

1. Since Triangle (19) is commutative and
∏

p resp is injective (Lemma 15.7), we have

ρ∗(x) = 1. Hence, by Part A, HomΓ,ρ,α(Gal(K0), G) 6= ∅, as claimed.
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