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Abstract. A field K is ample if for every geometrically integral K-variety V with a smooth
K-point, V (K) is Zariski dense in V . A field K is Galois-potent if every geometrically
integral K-variety has a closed point whose residue field is Galois over K. We prove that
every ample field is Galois-potent. But we construct also non-ample Galois-potent fields; in
fact, every field has a regular extension with these properties.

1. Introduction

Definition 1.1. Let X be a variety over a field K. By a Galois point on X, we mean a
closed point whose residue field is Galois over K. We say that K is Galois-potent if every
geometrically integral K-variety has a Galois point.

Question 1.2. Is every field Galois-potent?

We do not even know if Q is Galois-potent. On the other hand, we have the following
definition of Florian Pop:

Definition 1.3 (cf. [Pop96, p. 2] and [Jar11, Chapter 5]). A field K is called ample (or large
or anti-Mordellic) if for every geometrically integral K-variety V with a smooth K-point,
V (K) is Zariski dense in V .

Pseudo-algebraically closed (PAC) fields and Henselian fields (e.g., Qp) are ample; see
[Jar11, Chapter 5] for these and many more examples. Our first main theorem is the following:

Theorem 1.4. Ample fields are Galois-potent.

Some non-ample fields too are Galois-potent. For example, finite fields are non-ample, but
have abelian absolute Galois group and hence trivially are Galois-potent. Less trivially, we
can also construct infinite non-ample fields that are Galois-potent: in Section 5 we will prove
the following.

Theorem 1.5. Every field admits a regular extension that is Galois-potent but not ample.

Bary-Soroker and Fehm in [BSF13, Section 2.2] write that “all infinite non-ample fields
appearing in the literature are Hilbertian”. The non-ample fields we construct in the proof
of Theorem 1.5 turn out to be Hilbertian too (Remark 5.4), and in particular they have
non-abelian absolute Galois group.
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Question 1.6. Are there also infinite non-ample fields with abelian absolute Galois group?

If the answer to Question 1.6 were yes, it would immediately yield another example of
a non-ample Galois-potent field. But there are several questions and conjectures in the
literature that each imply a negative answer to Question 1.6, as we now explain. Let GK be
the absolute Galois group of K.
• Is every infinite non-ample field Hilbertian? (Cf. [BSF13, Section 2.2] again.) A Hilbertian
field K cannot have an abelian GK .
• Is every infinite field K with topologically finitely generated GK ample? (See the paragraph
before Theorem 5.5 of [JK10], or see [BSF13, 4.2, Question III].) By [Koe01], if GK is
abelian, either K is henselian and hence ample, or GK is procyclic and in particular
topologically finitely generated, and hence ample if the question at the start of this bulleted
item has a positive answer.
• Is every infinite field with prosolvable GK ample? (See [BSF13, 4.1, Question II].) If so,
then every infinite field with abelian GK is ample too.

2. Notation

Let K be a field. Let K be an algebraic closure of K. By a K-variety we mean a separated
scheme of finite type over K. Given a K-variety X and a finite extension L ⊃ K, let XL be
the L-variety X ×K L; similarly, if φ is a K-morphism, let φL be its base change. If X is
an integral K-variety, let K(X) denote its function field. By a K-curve, we mean a smooth
geometrically integral K-variety of dimension 1. By the absolute genus gX of a K-curve X, we
mean the genus of the smooth projective model of XK . Given a curve X and n ≥ 1, let X(n)

denote the nth symmetric power, defined as the (variety) quotient of Xn by the symmetric
group Sn.

3. Restriction of scalars

Let K ⊆ L be a finite extension of fields. For any quasi-projective L-variety X, the functor
sending each K-scheme S to the set X(SL) is representable by a K-variety ResL/K X called
the restriction of scalars (cf. [BLR90, §7.6, Theorem 4]). If, in addition, L is separable over
K, then ResL/K X after base field extension becomes isomorphic to a product of [L : K]
conjugates of X; in particular, if X is geometrically integral and smooth of dimension d over
L, then ResL/K X is geometrically integral and smooth of dimension [L : K]d over K.

4. Ample fields are Galois-potent

In this section we prove Theorem 1.4.

Proposition 4.1. Let K be an ample field. Let X be a geometrically integral K-variety. Let
N be a finite separable extension of K. If X has a smooth N -point, then X has a point with
residue field N .

Proof. Replacing X by a Zariski-open subvariety, we may assume that X is smooth and
affine. For each finite separable extension L of K, define XL := ResL/K(XL). Thus XL(S) =
XL(SL) = X(SL) for any K-scheme S, and in particular, XL(K) = X(L). If L ⊆ L′ are two
such extensions, the natural map X(SL) → X(SL′) can be rewritten as XL(S) → XL′

(S),
and it is functorial in S, so Yoneda’s lemma yields a K-morphism XL → XL′ .
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We have XN (K) = X(N), which is nonempty by assumption. Also, K is ample, and XN is
smooth and geometrically integral, so XN (K) is Zariski-dense in XN . There are only finitely
many fields L with K ⊆ L ( N , and for each such L, we have dimXL < dimXN . Thus XN

has a K-point outside the image of every morphism XL → XN . In other words, X(N) has a
element outside X(L) for every L. For this element, the image of SpecN → X is a closed
point with residue field N . �

Proof of Theorem 1.4. Let K be an ample field, and let X be any geometrically integral
K-variety. Choose a finite separable extension N of K such that X(N) 6= ∅. Enlarge N to
assume that N is Galois over K. By Proposition 4.1, X has a closed point with residue field
N . �

5. Infinite Galois-potent fields that are not ample

In this section we prove Theorem 1.5.

Lemma 5.1. Let K be an algebraically closed field. Let X, Y,C be K-curves with gC > 1.
Any rational map X × Y 99K C factors through one of the projections to X or Y .

Proof. A rational map φ : X × Y 99K C may be viewed as an algebraic family of rational
maps X 99K C parametrized by (an open subvariety of) Y . But the de Franchis–Severi
theorem [Sam66, Théorème 1] implies that there are no nonconstant algebraic families of
nonconstant rational maps X 99K C. Thus either the rational maps in the family are all the
same, in which case φ factors through the first projection, or each rational map in the family
is constant, in which case φ factors through the second projection. �

Lemma 5.2. Let X be a curve over a field K. Let F = K(X(2)). Then X has a point over
a quadratic extension of F , and C(F ) = C(K) for every K-curve C of absolute genus > 1.

Proof. Either projection X × X → X gives a point of X over the quadratic extension
K(X ×X) of K(X(2)) = F .

Let c ∈ C(F ). Then c corresponds to a rational map X(2) 99K C. Composing X×X → X(2)

with such a rational map yields a rational map φ : X × X 99K C. By Lemma 5.1, φK is
constant on all vertical copies of XK or constant on all horizontal copies of XK . Since φK is
S2-invariant, it is constant on all vertical and horizontal copies of XK . Thus φK is constant.
Hence φ is constant. Equivalently, c ∈ C(K). �

Lemma 5.3. Every field K admits a regular extension K ′ such that
(i) Every K-curve X has a point over an at most quadratic extension of K ′ (possibly

depending on X).
(ii) For every K-curve C of absolute genus > 1, we have C(K ′) = C(K).

Proof. Let (Xα)α<τ be a well-ordering of the set of K-curves up to isomorphism, indexed by
an ordinal τ . For α ≤ τ , define Kα by transfinite induction as follows:

• Let K0 := K.
• For each α < τ , define Kα+1 := Kα(X

(2)
α );

• If α is a limit ordinal, define Kα := lim−→β<α
Kβ.

Let K ′ := Kτ . Then K ′ is regular over K by [FJ08, Corollary 2.6.5(d)], whose proof remains
valid when the cardinal m is replaced by an ordinal τ .
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(i) Any K-curve X is Xα for some α < τ . Lemma 5.2 shows that X has a point over a
quadratic extension of Kα+1, and hence also a point over an at most quadratic extension
of K ′.

(ii) Let C be a K-curve of absolute genus > 1. By Lemma 5.2 and induction, C(Kα) = C(K)
for all α ≤ τ . In particular, C(K ′) = C(K). �

Proof of Theorem 1.5. Let K be the given field. Construct a sequence of fields L0, L1, . . .
inductively as follows: let L0 := K(t) with t transcendental over K, and let Li+1 be the
regular extension of Li given by Lemma 5.3. Let L∞ := lim−→Li.

Let X be an L∞-curve. Then X is definable over some Li. The conditions in Lemma 5.3
imply that X has a point over an at most quadratic extension of Li+1, and hence a point
over an at most quadratic extension of L∞. Every geometrically integral L∞-variety other
than a point contains an L∞-curve, so L∞ is Galois-potent.

Choose a non-isotrivial curve C of absolute genus > 1 over L0 = K(t) such that C has a
smooth L0-point; then C(L0) is finite [Sam66, Théorème 4]. The conditions in Lemma 5.3
imply that C(L0) = C(L1) = · · ·, so C(L∞) = C(L0), which is finite. Thus L∞ is not
ample. �

Remark 5.4. The field L∞ constructed in the proof of Theorem 1.5 is Hilbertian, because of
the following two facts:
(a) Any finitely generated transcendental extension of a field is Hilbertian [FJ08, Theo-

rem 13.4.2].
(b) If (Kα)α≤τ is an ascending tower of fields indexed by an ordinal τ , and Kα is Hilbertian for

each α < τ , and Kα+1 is a regular extension of Kα for each α < τ , and Kα = lim−→β<α
Kβ

for each limit ordinal α ≤ τ , then Kτ is Hilbertian.
(Fact (b) appears as [FJ08, Chapter 12, Exercise 2], but the hypothesis Kα = lim−→β<α

Kβ is
missing there.)

Proof of (b). Given irreducible polynomials fi(~t, x) over Kτ for i = 1, . . . , r, each separable in
x, we must find infinitely many ~a over Kτ such that the specializations fi(~a, x) for i = 1, . . . , r
are irreducible over Kτ . There exists α < τ such that all the fi are defined over Kα. Since Kα

is Hilbertian, there exist infinitely many ~a over Kα such that fi(~a, x) for each i is irreducible
over Kα. These specializations are irreducible over Kτ as well, since Kτ is a regular extension
of Kα by [FJ08, Corollary 2.6.5(d)]. �

Remark 5.5. Padmavathi Srinivasan has constructed a field K with stronger properties than
the L∞ in the proof of Theorem 1.5, namely that C(K) is finite for every K-curve C of
absolute genus > 1, while there is a degree 2 field extension L ⊃ K that is ample [Sri15].
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