
SLICEABLE GROUPS and TOWERS OF FIELDS

In memory of Oleg V. Mel’nikov

by
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Abstract

Let l be a prime number, K a finite extension of Ql, and D a finite di-

mensional central division algebra over K. We prove that the profinite

group G = D×/K× is finitely sliceable, i.e. G has finitely many closed

subgroups H1, . . . ,Hn of infinite index such that G =
∪n

i=1 H
G
i . Here,

HG
i = {hg | h ∈ Hi, g ∈ G}. On the other hand, we prove for l ̸= 2

that no open subgroup of GL2(Zl) is finitely sliceable and give an arithmetic

interpretation to this result, based on the possibility to realize GL2(Zl) as

a Galois group over Q. Nevertheless, we prove that G = GL2(Zl) has an

infinite slicing, that is G =
∪∞

i=1 H
G
i , where each Hi is a closed subgroup

of G of infinite index and Hi ∩Hj has infinite index in both Hi and Hj if

i ̸= j.
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Introduction

This work grew out of questions coming from both arithmetic and group theory. We

start with the arithmetical motivation.

Kronecker towers. We denote the set of prime numbers p that have a prime divisor

p of degree 1 in a given number fieldK byD(K). Jehne [Jeh77] calls two number fields L

and L′ Kronecker equivalent if D(L) and D(L′) differ only by finitely many elements.

An infinite Kronecker tower is a strictly increasing sequence L1 ⊂ L2 ⊂ L3 ⊂ · · ·

of Kronecker equivalent number fields. The existence of such a tower has been posed

by Jehne [Jeh77, Sec. 7] as an open problem. It has also been stated as [FrJ08, p. 467,

Problem 21.5.8]. To the best of our knowledge, that problem has never been solved (see

also Notes to Chapter 21 of [FrJ08]).

A theorem of Dedekind and Kummer [Lan70, p. 27, Prop. 25] gives a number

theoretic interpretation to the Kronecker equivalence of two number fields L and L′: Let

x (resp. x′) be an integral primitive element for L/Q (resp. L′/Q) and let f = irr(x,Q)

(resp. f ′ = irr(x′,Q)). Then, L and L′ are Kronecker equivalent if and only if for

almost all p (i.e. for all but finitely many p’s), f(X) has a root modulo p if and only

if f ′(X) has one.

Chebotarev’s density theorem provides a group theoretic interpretation to the

Kronecker equivalence of L and L′: Let N be a finite Galois extension of Q that contains

both L and L′ and set G = Gal(N/Q). Then, L and L′ are Kronecker equivalent if and

only if

(1)
∪
σ∈G

Gal(N/L)σ =
∪
σ∈G

Gal(N/L′)σ

[FrJ08, p. 464, Lemma 21.5.3]. A standard compactness argument implies that L and

L′ are Kronecker equivalent if and only if (1) is true for an arbitrary (possibly infinite)

Galois extension N of Q that contains L and L′. So, the problem about the existence

of an infinite Kronecker tower can be interpreted as follows:
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Problem A: Does there exist a profinite group G which can be realized as a Galois

group over Q and which has an infinite descending sequence H1 > H2 > H3 > · · · of

open subgroups such that for each n

(2)
∪
σ∈G

Hσ
n =

∪
σ∈G

Hσ
n+1?

Let H =
∩∞

n=1 Hn. Again, a standard compactness argument shows that (2) is

equivalent to the condition

H1 ⊆
∪
σ∈G

Hσ.

Observe that H is a closed subgroup of G of infinite index. So, an affirmative solution

to Problem A will imply an affirmative solution to the following one:

Problem B: Does there exist a profinite group G which has a closed subgroup H of

infinite index such that
∪

σ∈G Hσ contains an open subgroup U of G?

This problem appears in the third paragraph of the Notes of [FrJ08, Sec. 21]. Of

course, a negative answer to the group theoretic problem B would imply that there is

no infinite Kronecker tower. On the other hand, the existence of a profinite group G

as in Problem B which can be realized over a number field, implies the existence of a

Kronecker tower.

Slicing. Given a group G and a subgroup H we write HG for the set {hg | h ∈

H and g ∈ G} of all G-conjugates (i.e. conjugates within G) of elements of H. In

recent years group theorists showed some interest in groups G with proper subgroups

H such that HG = G, and in related questions [KLS14].

A well known counting argument shows that if G is a finite group and H is a

proper subgroup, then HG ⊂ G [FrJ08, p. 238, Lemma 13.3.2]. A standard compact-

ness argument extends this result to every profinite group G and every closed proper

subgroup H of G. It is somewhat surprising that there are profinite groups which are

union of conjugates of finitely many closed subgroups of infinite index.

To this end we say that a (profinite) group G is n-sliceable if there exist (closed)

subgroups H1, . . . , Hn of G of infinite index such that G =
∪n

i=1 H
G
i . In this case we
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also say that G admits an n-slicing. We say that G is finitely sliceable if G is

n-sliceable for some positive integer n.

Open subgroups. If U is an open subgroup of a profinite group G, G =
∪s

j=1 xjU ,

and H1, . . . , Hr are closed subgroups of G of infinite index such that U ⊆
∪r

i=1 H
G
i ,

then U =
∪r

i=1

∪s
j=1(U ∩H

xj

i )U . Hence, U is finitely sliceable. In particular, this is the

case if G, H, and U are as in Problem B.

Arithmetical interpretation. The finite slicing of a profinite group has an arith-

metical interpretation similar to the interpretation that infinite Kronecker towers give

to the group theoretic situation that appears in Problem B.

Let K be a number field with ring of integers OK . We say that an n-tuple

(L1, . . . , Ln) of finite extensions of K in its algebraic closure K̃ is exhausting over K

if almost every non-zero prime ideal p of OK has a prime divisor of relative degree 1 in

OLj for at least one j between 1 and n.

A sequence (Li1, . . . , Lin)i=1,2,3,... of exhausting n-tuples over K is said to be an

n-sliceable infinite Kronecker tower over K, if Lij ⊆ Li+1,j for all i and j and

Lj =
∪∞

i=1 Lij is an infinite extension of K for all j. Again, a finitely sliceable

infinite Kronecker tower over K is just an n-sliceable infinite Kronecker tower over

K for some positive integer n.

We prove:

Proposition C: Let N be a Galois extension of a number field K with Galois group

G. Then, G is n-sliceable if and only if N contains an n-sliceable infinite Kronecker

tower over K (Proposition 5.4).

Central division algebras. As indicated above, no profinite group is 1-sliceable.

However, the Skolem-Noether theorem about division algebras gives a whole family of

finitely sliceable profinite groups:

Theorem D: Let l be a prime number, K a finite extension of Ql, and D a finite

dimensional central division algebra over K. Then, G = D×/K× is a finitely sliceable

profinite group (Theorem 4.2).
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In particular, as indicated above, every open subgroup of D×/K× with K and D

as in Theorem D is finitely sliceable.

Unfortunately, it seems to be unknown whether any of the groups G in the latter

theorem can be realized over any number field as a Galois group. If we knew that there

are no finitely sliceable infinite Kronecker towers over Q at all, it would follow from

Proposition C and Theorem D that no group D×/K× as in Theorem D can be realized

over Q.

The groups GL2(Zl). In contrast to the groups D×/K× mentioned above, each of

the groups GL2(Zl) appears as a Galois group of a Galois extension of Q. This is proved

via Serre’s theory of division points of elliptic curves without complex multiplication.

Using that GL2(Zl) is an l-adic analytic group we prove:

Theorem E: Let l be an odd prime number. Then, no open subgroup of GL2(Zl) is

finitely sliceable (Theorem 3.10).

Combining Proposition C with Theorem E for GL2(Zl) we get:

Theorem F: Let N be a Galois extension of Q with Galois group GL2(Zl) for some

odd prime number l. Then, for each number field K in N , the field N contains no

finitely sliceable infinite Kronecker tower over K (Theorem 5.6).

In light of the latter “negative result”, we wonder if there exists a finitely sliceable

infinite Kronecker tower over a number field K in a Galois extension N of K.

Finally we complete the information given in Theorem E by proving that GL2(Zl)

admits “infinite slicing”:

Theorem G: Let l be an odd prime number. Then, G = GL2(Zl) has an infinite

sequence E1, E2, E3, . . . of closed subgroups of infinite index such that G =
∪∞

i=1 E
G
i

and for all distinct positive integers i, j, the group Ei ∩Ej has an infinite index in both

Ei and Ej (Theorem 2.5).

We use Theorem G (in its detailed form Theorem 2.5) in the proof of Theorem E.

Acknowledgement: We thank Wulf-Dieter Geyer, Michael Larsen, Andrei Rap-

inchuk, Aharon Razon, and David Zywina for helpful communications and advice.
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1. GL2(Zl)

We introduce for each odd prime number l an infinite family H of closed subgroups

of GL2(Zl) of infinite index. Then, we prove that each matrix in GL2(Zl) which is

GL2(Zl)-conjugate to elements of two distinct members of H is a scalar matrix.

We start with our basic notation. We fix an odd prime number l and consider

the field Ql of l-adic numbers. Let ordl be the l-adic normalized valuation of Ql (in

particular, ordl(l) = 1). The discrete complete valuation ring of ordl is Zl = {x ∈

Ql | ordl(x) ≥ 0}. We write the elements of the Zl-module Z2
l as columns of height 2

and abbreviate them by bold faced letters. Thus, a stands for the element
(
a1

a2

)
of Z2

l .

Let M2(Zl) be the ring of two by two matrices with entries in Zl. Then, GL2(Zl) is the

group of invertible matrices in M2(Zl), that is matrices whose determinants belong to

Z×
l .

Construction 1.1: To each non-square d ∈ Zl we associate a closed subgroup Cd of

GL2(Zl) of infinite index in the following way:

Let L = Ql(
√
d) and S = Zl[

√
d]. We consider S as a free Zl-module with the

basis {1,
√
d}. The group of units S× of S acts on S by multiplication from the left.

It defines a continuous embedding Φd: S
× → GL2(Zl) of groups. Specifically, for each

λ = α+ γ
√
d in S× with α, γ ∈ Zl let

λ · 1 = α+ γ
√
d

λ ·
√
d = γd+ α

√
d

Then,

Φd(λ) =

(
α γ
γd α

)
.

Note that det(Φd(λ)) = α2 − γ2d = NormL/Ql
λ ∈ Z×

l and therefore Φd(λ) is indeed in

GL2(Zl). We write Cd for the image of S× under Φd. Thus,

Cd =
{(

α γ
γd α

) ∣∣ α, γ ∈ Zl, α2 − γ2d ∈ Z×
l

}
.

Since Cd is the image of an abelian group, Cd itself is abelian.
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Note also that trace(Φd(λ)) = 2α = traceL/Ql
λ. Hence, with λ̄ = α − γ

√
d, the

characteristic polynomial of Φd(λ) is X
2−(λ+ λ̄)X+λλ̄, so λ and λ̄ are the eigenvalues

of Φd(λ). In particular, if λ /∈ Ql, then λ and λ̄ are distinct.

Suppose that d′ is an element of Zl such that L′ = Ql(
√
d′) ̸= L. If A ∈ Cd ∩Cd′ ,

then each eigenvalue λ of A belongs to L ∩ L′ = Ql. Hence, A = Φd(λ) =
(
λ 0
0λ

)
. The

same conclusion holds if A is an upper triangular matrix in GL2(Zl) that belongs to Cd.

Notation 1.2: Using the notation of Construction 1.1, we consider for each integer

n ≥ 0 the matrix ln =
(
l−n

0
0
1

)
of GL2(Ql) and the following subgroup of GL2(Zl):

(1) Hd,n = lnCdl
−1
n ∩GL2(Zl) =

{(
α γ

l2nγd α

) ∣∣ α, γ ∈ Zl and α2 − l2nγ2d ∈ Z×
l

}
.

Note that Hd,n = Cl2nd for all n ≥ 0. Also note that Hd,0 = Cd and Hd,n ={(
α

l2nγd
γ
α

) ∣∣ α ∈ Z×
l and γ ∈ Zl} for n ≥ 1.

Remark 1.3: The union of all conjugates of a subgroup. Let H be a closed subgroup

of a profinite group G. Then, HG = {hg | h ∈ H, g ∈ G} is the image of the continuous

map φ: H ×G→ G given by φ(h, g) = g−1hg. Since both groups involved are compact

and Hausdorff, HG is closed.

We set Z =
{(

u
0

0
u

) ∣∣ u ∈ Z×
l

}
for the center of GL2(Zl).

Lemma 1.4: Let d be a non-square element of Zl and set G = GL2(Zl). Then, HG
d,i ∩

HG
d,j = Z for all distinct non-negative integers i, j.

Proof: Taking γ = 0 in (1), we find that Z is a subgroup of Hd,i for each i ≥ 0. Hence,

it suffices to prove that (HG
d,i ∩HG

d,j)rZ = ∅.

To this end we consider distinct non-negative integers i, j and let a =
(

α
l2iγd

γ
α

)
and c =

(
β

l2jδd
δ
β

)
be matrices in Hd,i and Hd,j , respectively. We assume toward

contradiction that

(2) a and c are conjugate in G and γ ̸= 0.

In particular, 2α = trace(a) = trace(c) = 2β, so α = β. Also, α2 − l2iγ2d =

det(a) = det(c) = α2 − l2jδ2d, so l2iγ2 = l2jδ2. Hence,

(3) liγ = ±ljδ.
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By (2), there exists a matrix q =
(
q
s

r
t

)
∈ G such that

(4) qa = cq.

Hence,

(5) rl2iγd = δs and tl2iγd = l2jδdq.

Using (3), we replace liγ by ±ljδ in (5) and get

(6) s = ±rli+jd and tli = ±ljq.

Since i ̸= j, one of the non-negative integers i and j is positive. Hence, by the

left equality of (6), s /∈ Z×
l . Since

(
q
s

r
t

)
∈ GL2(Zl), we must have q, t ∈ Z×

l . It follows

from the right equality of (6) that i = j, in contrast to our assumption.

We fix a root of unity ζ of order l − 1 in Ql.

Lemma 1.5: Let S be the ring of integers of a quadratic extension L of Ql. Then

L = Ql(
√
d) and S = Zl[

√
d], where d is one of the elements l, ζ, or lζ.

Proof: The multiplicative group Q×
l has a direct factorization Q×

l = ⟨l⟩ × ⟨ζ⟩ × U1,

where ⟨l⟩ = {ln | n ∈ Z} ∼= Z, ⟨ζ⟩ is the set of all roots of unity in Q×
l , and U1 = 1+ lZl.

[Koc70, p. 78]. In particular, ζ is not a square in Q×
l . Since l ̸= 2, Hensel’s lemma

implies that each of the elements of U1 is a square in Ql. Also, l, ζ are multiplicatively

independent modulo (Q×
l )

2, otherwise lζ = x2 for some x ∈ Ql, so 1 = ordl(lζ) =

2ordl(x), which is a contradiction.

Hence, l, ζ, lζ represent the cosets of Q×
l modulo the subgroup of squares. By

Kummer’s theory, L is one of the fields Ql(
√
l), Ql(

√
ζ), or Ql(

√
lζ). In the first case

S = Zl[
√
l] [CaF67, p. 23, Thm. 1(ii)]. In the second case g(X) = irr(

√
ζ,Ql) = X2 − ζ

and NL/Ql
g′(
√
ζ) = −4ζ is a unit of Zl. Hence, S = Zl[

√
ζ] [FrJ08, p. 109, Lemma

6.1.2]. In the third case S = Zl[
√
lζ], similar to the first case.

Notation 1.6: We denote the group of all upper triangular matrices in GL2(Zl) by

B. We note that (GL2(Zl) : B) = ∞ and Z ≤ B. Then, we set H = {Hd,i | d ∈

{l, ζ, lζ}, i ∈ {0, 1, 2, . . .}} ∪ {B}.
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Lemma 1.7: Let a1 and a2 be relatively prime elements of Zl. Then there exist b1, b2 ∈

Zl such that
(
a1

a2

)
and

(
b1
b2

)
generate Z2

l .

Proof: The ideal generated by a1 and a2 is Zl. In particular, there exist b1, b2 ∈ Zl

such that a1b2 − a2b1 = 1. Hence,

(
a1 b1
a2 b2

)
∈ GL2(Zl). We conclude from Cramer’s

rule that
(
a1

a2

)
and

(
b1
b2

)
generate Z2

l .

Lemma 1.8: The eigenvalues of the matrices in B belong to Z×
l . Conversely, if the

eigenvalues λ1, λ2 of a matrix a ∈ GL2(Zl) belong to Ql, then a is GL2(Zl)-conjugate

to a matrix in B.

Proof: By definition, each matrix a in B has the form
(
α
0

β
δ

)
with α, β, δ ∈ Zl and

αδ = det(a) ∈ Z×
l . It follows that the eigenvalues α and δ of a belong to Z×

l .

Conversely, we consider a matrix a ∈ GL2(Zl) with eigenvalues λ1, λ2 ∈ Ql. These

eigenvalues are the roots of the characteristic polynomial X2 − tr(a)X + det(a) whose

coefficients belong to Zl. Since Zl is integrally closed, λ1, λ2 ∈ Zl. Let x1 =
(
x11

x12

)
∈ Q2

l

be an eigenvector of a that belongs to λ1:

ax1 = λ1x1.

We multiply x1 by an appropriate power of l, if necessary, to assume that x11, x12 are

relatively prime elements of Zl. By Lemma 1.7, there exists x2 ∈ Z2
l such that x1,x2

generate Z2
l . In particular, there exist γ, δ ∈ Zl such that

ax2 = γx1 + δx2.

Hence, x = (x1 x2) ∈ GL2(Zl) and ax = x
(

λ1

0
γ
δ

)
, so x−1ax =

(
λ1

0
γ
δ

)
∈ B.

Note that the latter equality implies also that the characteristic polynomial of a

is (X−λ1)(X−δ). Since that polynomial is also equals to (X−λ1)(X−λ2), we deduce

that δ = λ2.

Lemma 1.9: Let G = GL2(Zl). If H and H ′ are distinct groups in H, then HG ∩

(H ′)G = Z.

Proof: The case where H = Hd,i and H ′ = Hd,j with d ∈ {l, ζ, lζ} and i ̸= j is proved

in Lemma 1.4.
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Assume toward contradiction that d, d′ are distinct elements of the set {l, ζ, lζ},

i, j are non-negative integers, and there exists a ∈ HG
d,i∩HG

d′,j
rZ. Then, a is GL2(Ql)-

conjugate to an element b of Cd rZ. By Construction 1.1, each eigenvalue λ of b,

hence of a, lies in Ql(
√
d)rQl. Similarly, λ ∈ Ql(

√
d′). This contradicts the fact that

Ql(
√
d) ∩Q(

√
d′) = Ql.

Finally, assume that a ∈ HG
d,i∩BG rZ where d ∈ {l, ζ, lζ} and i ≥ 0 is an integer.

Then, a is conjugate in GL2(Ql) to an element of Cd rZ. Hence, by Construction 1.1,

the eigenvalues of A do not belong to Ql. On the other hand, a is conjugate to an

element of B, so the eigenvalues of a are in Ql (Lemma 1.8). This is a contradiction.
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2. GL2(Zl)-Conjugacy versus GL2(Ql)-Conjugacy

We fix for the whole section an odd prime number l, a root of unity ζ of order l−1 in Zl,

and an element d of the set {l, ζ, lζ}. Thus, ordl(d) = 0 or ordl(d) = 1. Using Notation

1.6, we prove a detailed version of Theorem G, namely that GL2(Zl) =
∪

H∈H HG is an

infinite slicing of G = GL2(Zl).

Lemma 2.1: Let l and d be as above and let a be a matrix in GL2(Zl) with an eigenvalue

λ ∈ Ql(
√
d)rQl. Then, λ = α+γ

√
d with α, γ ∈ Zl and γ ̸= 0. Moreover, a is GL2(Ql)-

conjugate to the matrix a′ =
(

α
γd

γ
α

)
of GL2(Zl).

Proof: The eigenvalue λ is a root of the characteristic polynomial X2 − trace(a)X +

det(a). The latter is monic with coefficients in Zl. Hence, λ is integral over Zl. By

assumption λ /∈ Ql, so [Ql(λ) : Ql] = 2. It follows from Lemma 1.5 that λ = α + γ
√
d

with α, γ ∈ Zl. Moreover, γ ̸= 0 because λ /∈ Ql. Note that λ̄ = α − γ
√
d is the other

eigenvalue of a. Like λ, we have λ̄ /∈ Ql.

We consider each element of Ql(
√
d)2 as a column of height 2. Let v ∈ Ql(

√
d)2

be an eigenvector of a that belongs to λ:

(1) av = λv.

Write v = v0+
√
d·v1 with v0,v1 ∈ Q2

l . By (1), a(v0+
√
d·v1) = (α+γ

√
d)(v0+

√
d·v1),

which may be written as

(2)
av0 = αv0 + γdv1

av1 = γv0 + αv1.

Note that v0 and v1 are linearly independent over Ql, since otherwise each of the

equalities in (2) will give an eigenvalue for a that belongs to Ql. Thus, (v0 v1) ∈

GL2(Ql). By (2), a(v0 v1) = (v0 v1)
(

α
γd

γ
α

)
. Hence, a is GL2(Ql)-conjugate to the

matrix a′. Since det(a′) = det(a) ∈ Z×
l , the matrix a′ lies in GL2(Zl). Indeed, a

′ ∈ Cd.

We compute the structure of the centralizer Ca′ of a′ in GL2(Ql) and prove that

each double coset GL2(Zl)xCa′ with x ∈ GL2(Ql) contains a matrix of the form
(
1
0

0
ln

)
10



with n ≥ 0. We use the latter matrix to prove that a is GL2(Zl)-conjugate to an element

of Cd,n.

Lemma 2.2: In the notation of Lemma 2.1, the centralizer Ca′ of a′ in GL2(Ql) consists

of all matrices of the form
(

q
rd

r
q

)
with q, r ∈ Ql not both zero.

Proof: Indeed, a matrix
(
q
s

r
t

)
in GL2(Ql) belongs to Ca′ if and only if

(
q
s

r
t

)(
α
γd

γ
α

)
=(

α
γd

γ
α

)(
q
s

r
t

)
. This happens if and only if qα + rγd = αq + γs, qγ + rα = αr + γt,

sα + tγd = γdq + αs, and sγ + tα = γdr + αt. Since γ, d ̸= 0, the latter condition is

equivalent to t = q and s = rd, as claimed.

Lemma 2.3: In the notation of Lemma 2.2, every double coset GL2(Zl)xCa′ in GL2(Ql)

contains a matrix of the form
(
1
0

0
ln

)
with a non-negative integer n.

Proof: Let x ∈ GL2(Ql). We multiply x from the left by matrices belonging to GL2(Zl)

and from the right by matrices belonging to Ca′ in order to get a matrix
(
1
0

0
ln

)
with

n ≥ 0.

The multiplication of x =
(
x00

x01

x10

x11

)
from the left by elements of GL2(Zl) can be

achieved successively by the following operations:

(3a) The product of a row of x by a unit of Zl.

(3b) Exchange of the rows of x.

(3c) Addition of a row of x multiplied by an element κ of Zl to the other row.

Indeed, if u ∈ Z×
l , then

(
u
0

0
1

)(
x00

x01

x10

x11

)
=

(
ux00

x01

ux10

x11

)
. Also,

(
0
1

1
0

)(
x00

x01

x10

x11

)
=(

x01

x00

x11

x10

)
. Finally,

(
1
κ

0
1

)(
x00

x01

x10

x11

)
=

(
x00

κx00+x01

x10

κx10+x11

)
.

Claim A: The double coset GL2(Zl)xCa′ contains a matrix
(
li

0
q
lj

)
with i, j ∈ Z and

q ∈ Ql. Indeed, if x00, x01 ̸= 0, we write x00 = uli and x01 = vlk with u, v ∈ Z×
l and

i, k ∈ Z. Exchanging the rows, if necessary, we may assume that i ≤ k. Then, we add

the first row of x multiplied by −u−1vlk−i to the second row to make x01 zero. Then,

we multiply each of the rows by an element of Z×
l in order to bring x to the form

(
li

0
q
lj

)
with i, j ∈ Z and q ∈ Ql, as claimed.

Claim B: The double coset GL2(Zl)xCa′ contains a matrix
(
1
0

0
lm

)
for some integer

m. Indeed, by Part A, we may assume that x =
(
li

0
q
lj

)
with i, j ∈ Z and q ∈ Ql.

11



If q = 0, we may multiply
(
li

0
0
lj

)
from the right by the matrix

(
l−i

0
0

l−i

)
of Ca′

and get the matrix
(
1
0

0
lj−i

)
that has the desired form.

We therefore assume that q ̸= 0 and write q = ulk with k ∈ Z and u ∈ Z×
l . If

k ≥ j, we multiply the second row of x by −ulk−j and add to the first row in order to

get
(
li

0
0
lj

)
. Then, we apply the operation of the preceding paragraph.

We may therefore assume that

(4) x =
(
li

0
q
lj

)
with q = ulk, k < j, and u ∈ Z×

l . Thus, ordl(q) < ordl(l
j).

In this case we consider the matrix z =
(

1
−l−iqd

−l−iq
1

)
of Ca′ (Lemma 2.2). Then,

x′ =
(
li−l−iq2d
−lj−iqd

0
lj

)
= xz is in the same double coset as x.

Now we claim that

(5) ordl(l
2i − q2d) = min(ordl(l

2i), ordl(q
2d)).

Indeed, this is the case if ordl(d) = 1, because then ordl(q
2d) is odd while ordl(l

2i) is

even. Thus, the two orders are distinct and we may apply the basic rules of valuations

to conclude (5).

The other possibility is ordl(d) = 0. In this case we write again q = ulk as in

(4). If (5) is not an equality, then by the basic rules of valuations, ordl(l
2i) = ordl(q

2d)

and the left hand side of (5) is greater than its right hand side. The first condition

implies that i = k. Then, the second one implies that ordl(l
2i − u2l2id) > ordl(l

2i),

so ordl(1 − u2d) > 0. Since l ̸= 2, Hensel’s lemma implies that d is a square in Ql, in

contrast to our assumption. This concludes the proof of (5).

It follows from (5) that

ordl(l
i − l−iq2d) = −i+ ordl(l

2i − q2d)

= −i+min(2i, ordl(qqd))

≤ −i+min(2i, ordl(l
jqd)) (by (4))

≤ ordl(l
j−iqd).

Thus, x′ =
(
u′lr

v′ls
0
lj

)
with u′, v′ ∈ Z×

l and integers r ≤ s. Adding the first row multiplied

by −(u′)−1v′ls−r to the second row, we obtain a matrix x′′ =
(
u′lr

0
0
lj

)
in the same

12



double coset as x′. Then, we multiply the first row by (u′)−1 and multiply the resulting

matrix from the right by
(
l−r

0
1

l−r

)
to get

(
1
0

0
lj−r

)
as required by Claim B.

If j−r ≥ 0, we are done. Otherwise, we still have to apply the next claim in order

to achieve the desired conclusion.

Claim C: Every double coset GL2(Zl)
(
1
0

0
l−i

)
Ca′ with a positive integer i contains a

matrix
(
1
0

0
ln

)
for some non-negative integer n.

First assume that ordl(d) = 0. Then, det
(
1
d

1
l2i

)
= l2i − d ∈ Z×

l , so
(
1
d

1
l2i

)
∈

GL2(Zl). By Lemma 2.2,
(

1
l−id

l−i

1

)
∈ Ca′ . Now, observe that(

1 1
d l2i

)(
1 0
0 l−i

)
=

(
1 0
0 li

)(
1 l−i

l−id 1

)
,

which implies (
1 0
0 li

)
=

(
1 1
d l2i

)(
1 0
0 l−i

)(
1 l−i

l−id 1

)−1

and gives the desired conclusion.

The other case is that ordl(d) = 1. Then, l−1d ∈ Z×
l and 2i − 1 ≥ 1, so

det
(

1
l−1d

1
l2i−1

)
= l2i−1 − l−1d ∈ Z×

l . In addition,(
1 1

l−1d l2i−1

)(
1 0
0 l−i

)
=

(
1 0
0 li−1

)(
1 l−i

l−id 1

)
.

Since i− 1 ≥ 0, we get the desired conclusion as in the preceding paragraph.

We complete Lemma 1.9 with the following result:

Lemma 2.4: Let a be a matrix in GL2(Zl) with an eigenvalue λ /∈ Ql. Then, a is

GL2(Zl)-conjugate to a matrix that lies in one of the groups Hd,n (Notation 1.2) with

d ∈ {l, ζ, lζ} and n ∈ {0, 1, 2, . . .}.

Proof: Lemma 2.1 gives a matrix a′ =
(

α
γd

γ
α

)
in Cd for some d ∈ {l, ζ, lζ} and a

matrix x ∈ GL2(Ql) such that xa′x−1 = a. Lemma 2.3 produces a matrix g ∈ GL2(Zl),

a matrix z ∈ GL2(Ql) that commutes with a′, and a non-negative integer n such that

x = g
(
1
0

0
ln

)
z. It follows that

(6) a = g

(
1 0
0 ln

)
a′

(
1 0
0 l−n

)
g−1.

13



Now, taking into account that
(
ln

0
0
ln

)
lies in the center of GL2(Zl), we use the identity(

1
0

0
ln

)
=

(
l−n

0
0
1

)(
ln

0
0
ln

)
to rewrite (6) as

(7) g−1ag =

(
l−n 0
0 1

)
a′

(
ln 0
0 1

)
.

The left hand side of (7) belongs to GL2(Zl), while its right hand side is in lnCdl
−1
n . By

Notation 1.2, g−1ag ∈ Hd,n, as desired.

Finally, we combine Lemmas 1.8, 2.4, and Lemma 1.9:

Theorem 2.5: Let l be an odd prime, ζ a root of unity of order l − 1 in Zl, and Hd,n

as in Notation 1.2. Then, with G = GL2(Zl),

(8) GL2(Zl) = BG ∪
∪

d∈{l,ζ,lζ}

∞∪
n=0

HG
d,n

and HG ∩ (H ′)G = Z for all distinct groups H,H ′ ∈ H (Notation 1.6).

Proof: By Lemma 1.8, the eigenvalues of a matrix a in GL2(Zl) belong to Ql if and

only if a ∈ BG. If the eigenvalues of a do not belong to Ql, then by Lemma 2.4,

a ∈
∪

d∈{l,ζ,lζ}
∪∞

n=0 H
G
d,n, as claimed.
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3. Closed subgroups of GL2(Zl)

We prove for an odd prime number l that no open subgroup of GL2(Zl) admits a finite

slicing. Our proof relies on the theory of l-adic analytic groups and its relation to the

theory of l-adic Lie algebras. We summarize the facts about these groups and algebras

that we use for the benefit of our audience, especially for the field arithmeticians.

Remark 3.1: Dimension. Let G be an l-adic analytic group [DDMS99, p. 183,

Def. 8.8] of dimension d. Thus, d is a non-negative integer such that G is covered

by l-adically open subsets Ui, i ∈ I (called charts), each of which is homeomorphic to

an open subset of Zd
l [DDMS99, p. 201, Thm. 8.36].

We use the following facts on l-adic analytic groups and their dimensions:

(1a) GLn(Ql) is an l-adic analytic group [DDMS99, p. 188, Examples 8.17(iv)].

(1b) Every closed subgroup H of an l-adic analytic group G is l-adic analytic and every

quotient G/N , where N is a closed normal subgroup is l-adic analytic [DDMS99,

p. 220, Thm. 9.6].

(1c) Since the l-adic topology of each Zd
l is Hausdorff and totally disconnected, so is

the l-adic topology of G. If in addition, G is compact in the l-adic topology, then

G is profinite [RiZ00, p. 11, Thm. 1.1.12] and the topology induced on G by its

structure as a profinite group coincides with its l-adic topology. In the notation of

(1b) we then have, dim(G) = dim(N)+dim(G/N) [DDMS99, p. 204, Exer. 4]. The

leading example for a profinite group in this context is GL2(Zl) = lim←−GL2(Z/lnZ).

Remark 3.2: l-adic Lie algebras. Recall that a Ql-algebra L with a product of two ele-

ments x, y denoted by [x, y] is called an l-adic Lie algebra if the bracket multiplication

satisfies [x, x] = 0 for each x ∈ L and the Jacobi identity [Ser92, p. 2, Def. 1]. There

is a functor from the category of l-adic analytic groups to the category of l-adic Lie

algebras that assigns to each l-adic analytic group G an l-adic Lie algebra L(G) and to

each morphism f between l-adic analytic groups a morphism f∗ of the corresponding

l-adic Lie algebras. That functor satisfies the following conditions for l-adic analytic

groups and Lie algebras of finite dimensions:
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(2a) dim(G) = dim(L(G)) [DDMS99, p. 229, Thm. 9.11].

(2b) Let f1, f2: G → H be morphisms of l-adic analytic groups and let f∗
i : L(G) →

L(H), i = 1, 2, be the morphisms of the corresponding algebras. Then, f∗
1 = f∗

2 if

and only if G has an open subgroup G0 such that f1|G0 = f2|G0 [DDMS99, p. 229,

Thm. 9.11(ii)].

Here are some consequences of the rule (2) for a given l-adic analytic group G of

finite dimension:

(3a) If G1, G2 are closed subgroups of G, then L(G1) = L(G2) if and only if G has a

closed subgroup G0 which is open in both G1 and G2 [Ser92, p. 131, Cor. 2].

(3b) If H is a closed subgroup of G, then dim(H) ≤ dim(G). Moreover, dim(H) =

dim(G) if and only if H is open in G (apply (2a) and (3a)).

(3c) L(GLn(Ql)) = Mn(Ql) [Ser92, p. 130, (1)], so by (2a), dim(GLn(Ql)) = dim(Mn(Ql)) =

n2. Since Z×
l is l-adically open in Ql = M1(Ql), we have dim(Z×

l ) = 1. It follows

that the center of GLn(Zl), which is isomorphic to Z×
l , has dimension 1. In par-

ticular, the center Z of GL2(Zl) has dimension 1.

Moreover, if a ∈ GLn(Zl) and b ∈ Mn(Zl), then (1−la−1b)−1 =
∑∞

i=0 l
i(a−1b)i ∈

Mn(Zl). Therefore, a − lb ∈ GLn(Zl), so GLn(Zl) is l-adically open in Mn(Zl),

hence also in GLn(Ql). It follows from (3b) that dim(GLn(Zl)) = dim(GLn(Ql)) =

n2.

Example 3.3: We prove that for each non-square d of Zl the dimension of each of the

closed subgroups Hd,n (Notation 1.2) of GL2(Zl), where n is a non-negative integer, is

2.

By definition (in Construction 1.1), Cd is isomorphic to the l-adic analytic group

Zl[
√
d]×. The latter is contained in Zl[

√
d] which is homeomorphic to Zl ⊕Zl, hence of

dimension 2. Therefore, dim(Zl[
√
d]×) ≤ 2. On the other hand, the analytic group Z×

l

of dimension 1 is contained in Zl[
√
d]×. Moreover, using the binomial expansion, we find

that for each positive integer k there exist r, s ∈ N with (1 + l
√
d)k = r + s

√
d. In par-

ticular, (1 + l
√
d)k ∈ Zl[

√
d]rZl, hence (1 + l

√
d)k ∈ Zl[

√
d]× rZ×

l . Hence, (Zl[
√
d]× :

Z×
l ) =∞. By (3b), dim(Zl[

√
d]×) ≥ 2. It follows that dim(Cd) = dim(Zl[

√
d]×) = 2.

Since Hd,n = Cl2nd (Notation 1.2), we have dim(Hd,n) = 2 for each n ≥ 0.
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We denote the group scheme over Zl that consists of all upper triangular invertible

matrices by B. In particular, B(Zl) = B (Notation 1.6).

Lemma 3.4: Let I be an l-adically closed solvable subgroup of GL2(Zl) of dimension

3. Then, I is GL2(Zl)-conjugate to an open subgroup of B.

Proof: We break up the proof into two parts.

Part A: Change of base field. Since I is solvable, so is the Zariski-closure Ĩ of I

in GL2(Q̃l) [Bou89, p. 342, Cor. 2]. Hence, the connected component J̃ of Ĩ is also

solvable.

By Lie-Kolchin, J̃ is GL2(Q̃l)-conjugate to a subgroup J̃∗ of B̃ = B(Q̃l) [Bor91,

p. 137, Cor. 10.5]. The dimension of a Zariski-closure H̃ of an l-adic analytic group

H in GL2(Q̃l) is greater or equal to the dimension of H, because H̃ ∩ GL2(Ql) is an

l-adically closed subgroup of GL2(Ql) that contains H. In particular, dim(I) ≤ dim(Ĩ).

By [Bor91, p. 46], J̃ is Zariski-open in Ĩ. Hence,

3 = dim(I) ≤ dim(Ĩ) = dim(J̃) = dim(J̃∗) ≤ dim(B̃) = 3.

Therefore, J̃∗ = B̃, so J̃ is conjugate to B̃. In particular, J̃ is a Borel subgroup of

GL2(Q̃l).

A direct computation proves that the commutator subgroup [B̃, B̃] of B̃ consists of

all matrices of the form
(
1
0

β
1

)
with β ∈ Q̃l. It follows that [B̃, B̃] is abelian and consists

of all unipotent elements of B̃. Hence, [J̃ , J̃ ] is abelian and consists of all unipotent

element of J̃ .

Since J̃ is Zariski-open in Ĩ and Ĩ is the Zariski-closure of I in GL2(Q̃l), the group

J̃ is the Zariski-closure of J = J̃ ∩ I. This implies that J is non-abelian (otherwise J̃ is

abelian, so B̃ is abelian, which is a contradiction). In other words, [J, J ] is non-trivial.

Part B: Eigenmodules. Let g be a non-trivial element of [J, J ]. By Part A, 1 is the

only eigenvalue of g. By Lemma 1.8, there exists h ∈ GL2(Zl) such that h−1gh ∈ B.

Since conjugation preserves the eigenvalues, h−1gh =
(
1
0

β
1

)
for some β ∈ Zl with β ̸= 0.

Replacing I and J by h−1Ih and h−1Jh, if necessary, we may assume that g =
(
1
0

β
1

)
.
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Next we consider the Zl-module M = Zl

(
1
0

)
and observe that M = {v ∈ Z2

l | gv =

v}. Each g′ ∈ [J, J ] commutes with g. Hence, for each v ∈ M we have g′v = g′gv =

gg′v, so g′v ∈M . In other words, g′M = M .

Since [J, J ] is a characteristic subgroup of J and J ▹I, we have [J, J ]▹I. Thus, for

each i ∈ I we have g′ = i−1gi ∈ [J, J ]. By the preceding paragraph, g′
(
1
0

)
=

(
1
0

)
. Hence,

gi
(
1
0

)
= ig′

(
1
0

)
= i

(
1
0

)
. Therefore, i

(
1
0

)
∈M . Writing i =

(
γ
ε

δ
η

)
with γ, δ, ε, η ∈ Zl, there

exists α ∈ Zl such that
(
γ
ε

δ
η

)(
1
0

)
= α

(
1
0

)
, hence ε = 0. It follows that I ≤ B. Since

both groups have dimension 3, I is open in B, as needed to be proved.

Lemma 3.5:

(a) Every l-adic analytic group D of dimension 1 has an open subgroup which is iso-

morphic to Zl.

(b) Every l-adic analytic group E of dimension 2 has an open solvable subgroup.

(c) Let U be an open subgroup of GL2(Zl). Then, every closed subgroup E of GL2(Zl)

of dimension 2 that contains Z has an open subgroup E0 = ⟨z, h⟩ such that E0 ≤ U ,

z ∈ Z, and ⟨h⟩ ∼= Zl.

Proof of (a): By (2a), dim(L(D)) = dim(D) = 1. Hence, L(D) is abelian. It follows

from [Ser92, p. 151, Cor. 4] that D has an open subgroup which is isomorphic to Zl.

Proof of (b): By (2a), the dimension of the l-adic Lie algebra L(E) is 2. Let x, y be

a Ql-basis of L(E). Since [x, x] = [y, y] = 0 (with [ , ] being the bracket product in

L(E)), we have [L(E),L(E)] = Ql[x, y] and the latter Lie sub-algebra is abelian. It

follows that L(E) is a solvable l-adic Lie algebra. By [Bou89, p. 240, Prop. III.9.19], E

has an open solvable subgroup E0.

Proof of (c): By (3b) and (3c), dim(U ∩ Z) = 1. By (a), U ∩ Z has an open subgroup

which is isomorphic to Zl. Let z be a generator of that group. Since Z is the center

of GL2(Zl), z is a central element of U ∩ E and dim(⟨z⟩) = 1. Hence, by (1c),

dim(U ∩ E/⟨z⟩) = 1.

Again, by (a), U∩E has an open subgroup E0 that contains ⟨z⟩ such that E0/⟨z⟩ ∼=

Zl. We choose h ∈ E0 such that E0 = ⟨z, h⟩, as claimed.
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Using the notation H = {Hd,j | d ∈ {l, ζ, lζ}, j ∈ {0, 1, 2, . . .}} ∪ {B} (Notation

1.6), we set H′ = H ∪ {SL2(Zl)}.

Proposition 3.6: Every closed subgroup D of GL2(Zl) of infinite index contains an

open subgroup D0 which is GL2(Zl)-conjugate to a subgroup of a group H that belongs

to H′.

Proof: By (3b) and (3c), dim(D) ≤ 3. We set M = D ∩ SL2(Zl). If M is open in

D, we are done. Otherwise, by (3b), dim(M) < dim(D). Hence, dim(M) ≤ 2. By

Lemma 3.5(a),(b), M has an open solvable subgroup M0. By [FrJ08, p. 8, Lemma

1.2.5(b)], D has an open subgroup D1 such that D1 ∩M = M0, so D1 ∩ SL2(Zl) = M0.

Since GL2(Zl)/SL2(Zl) ∼= Z×
l is solvable, we conclude that D1/M0 is solvable, so D1 is

solvable.

If dim(D1) = 3, then by Lemma 3.4, D1 is GL2(Zl)-conjugate to an open subgroup

of B. In this case we may choose D0 as D1.

Otherwise, dim(D1) ≤ 2. Then, the dimension of the solvable subgroup E = ZD1

of GL2(Zl) is at most 3. If dim(E) = 3, then by Lemma 3.4 again, E is GL2(Zl)-

conjugate to a subgroup of B. Hence, D1 is also GL2(Zl)-conjugate to a subgroup of

B. Again, we may choose D0 = D1.

If dim(E) = 2, then by Lemma 3.5(c), E has an open subgroup E0 = ⟨z, h⟩ with

z ∈ Z. By Theorem 2.5, there exists H ∈ H and there exists g ∈ GL2(Zl) such that

hg ∈ H. Since z commutes with g and belongs to H, we have Eg
0 = ⟨z, hg⟩ ≤ H. Then,

the open subgroup D0 = E0 ∩D of D satisfies Dg
0 ≤ H.

Finally, if dim(E) ≤ 1, then Z is an open subgroup of E. Hence, D0 = D ∩ Z is

an open subgroup of D which is contained e.g. in the group B that belongs to H, as

desired.

Lemma 3.7: Let U be an open subgroup of GL2(Zl) and let H be one of the groups

Hd,n introduced in Notation 1.2. Then, (U ∩H)r(BG ∪ SL2(Zl)) ̸= ∅.

Proof: Suppose H = Hd,n. By Notation 1.2, the matrix a =
(

1
l2n+id

li

1

)
belongs to

H. If i is large, then a =
(
1
0

0
1

)
+ li

(
0

l2nd
1
0

)
is l-adically close to the unit matrix, so

a is in the open subgroup U of GL2(Zl). On the other hand, since a is not a scalar
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matrix, a /∈ BG (Theorem 2.5). In addition, det(a) = 1− l2n+2id ̸= 1, so a /∈ SL2(Zl),

as desired.

Proposition 3.8: Let U be an open subgroup of G = GL2(Zl) and let H0 be a proper

subset of H. Then, U ̸⊆ SL2(Zl) ∪
∪

H∈H0
HG.

Proof: First we consider the case where there exists (d, j) ∈ {l, ζ, lζ} × {0, 1, 2, . . .}

such that Hd,j /∈ H0. By Lemma 3.7, there exists u ∈ (U ∩ Hd,j)r(BG ∪ SL2(Zl)).

Since Z ≤ B, we have u /∈ Z. If H ′ = Hd′,j′ with (d′, j′) ̸= (d, j), then Hd,j ∩HG
d′,j′ = Z

(Lemma 1.9). Hence, u /∈ HG
d′,j′ . It follows that u /∈ SL2(Zl) ∪

∪
H∈H0

HG.

The other possibility is that B /∈ H0. We choose in this case β ∈ Z×
l which is not

a root of unity and set b0 =
(
β
0

0
1

)
and m = (G : U). Then, b = bm!

0 =
(
βm!

0
0
1

)
belongs

to (U ∩B)r(SL2(Zl) ∩ Z).

Finally, for each pair (d, j) ∈ {l, ζ, lζ}× {0, 1, 2, . . .} we have, by Lemma 1.9, that

B ∩HG
d,j = Z. Hence, b /∈ HG

d,j . Therefore, b ∈ U r(SL2(Zl) ∪
∪

H∈H0
HG), as desired.

Remark 3.9: We can not replace H in Proposition 3.8 by H ∪ {SL2(Zl)}. Indeed, by

Theorem 2.5, GL2(Zl) =
∪

H∈H HG, where G = GL2(Zl).

Theorem 3.10: Let U be an open subgroup of G = GL2(Zl). Then U is not finitely

sliceable.

Proof: We assume toward contradiction that G has closed subgroups E1, . . . , En of

infinite index such that U ⊆
∪n

i=1 E
G
i . In particular, n ≥ 1. By Proposition 3.6,

each Ei has an open subgroup Ei,0 which is G-conjugate to a subgroup of a group Hi

that belongs to H ∪ {SL2(Zl)}. We choose an open normal subgroup N of G which is

contained in U such that Ei∩N ≤ Ei,0. Then, N ⊆
∪n

i=1(E
G
i ∩N) =

∪n
i=1(Ei∩N)G ⊆∪n

i=1 E
G
i,0 ⊆

∪n
i=1 H

G
i . Thus, we may replace U by N and Ei by Hi for i = 1, . . . , n, if

necessary, to assume that

(4) U ⊆
∪n

i=1 E
G
i and each Ei belongs to H ∪ {SL2(Zl)}.

But then, H0 = {E1, . . . , En}r{SL2(Zl)} is a proper subset of H (because H is

infinite) and U ⊆ SL2(Zl) ∪
∪

H∈H0
HG, in contrast to Proposition 3.8. This concludes

the proof of the theorem.
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4. Central Division Algebras over l-adic Fields

Division algebras of finite dimension over finite extensions of the fields Ql give rise to

another family of l-adic analytic groups. However, in contrast to the groups GL2(Zl),

each member of the new family admits a finite slicing. Unfortunately, we do not know

if any of those groups occurs as a Galois group of a Galois extension of any number field

[LaR15].

We recall basic facts about division algebras, which will be used in the sequel.

Remark 4.1: On division algebras. Recall that a central division algebra over a

field K is a K-algebra D in which each of the elements of D× = Dr{0} is invertible

and K is the center of D. We denote the dimension of D over K by [D : K] and assume

that [D : K] < ∞. Then, [D : K] = d2 for some positive integer d, which is called the

degree of D [FaD93, p. 90, Thm. 3.10].

For each x ∈ D× there exists a positive integer n such that 1, x, . . . , xn are linearly

dependent overK. Hence, K[x] is a subfield ofD. Since [D : K] <∞, K[x] is contained

in a maximal subfield of D.

If L is an arbitrary maximal subfield of D that contains K, then [L : K] = d and

D ⊗K L is isomorphic to the L-algebra Md(L) [FaD93, p. 96, Cor. 3.17].

Let L and L′ be two field extensions of K in D and τ : L→ L′ a K-isomorphism.

By Skolem-Noether, there exists δ ∈ D× such that τ(x) = δ−1xδ for each x ∈ L. Thus,

L× and (L′)× are conjugate in D×.

Theorem 4.2: Let l be a prime number, K a finite extension of Ql, and D a finite

dimensional central division algebra over K with d = deg(D) ≥ 2. Then, G = D×/K×

is a profinite group with finitely many closed subgroups H1, . . . , Hn of infinite index

such that G =
∪n

i=1 H
G
i .

Proof: We consider G as the projective space P(D) = D×/K× of the finitely gen-

erated vector space D over the l-adic field K. Thus, G is a Hausdorff, compact, and

totally disconnected group in the l-adic topology. Hence, G is profinite [RiZ00, p. 11,

Thm. 1.1.12].

By Remark 4.1, every element of D× is contained in a maximal field extension
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L in D and [L : K] = d. By [Lan70, p. 54, Prop. 14], K has only finitely many

field extensions of degree d in its algebraic closure K̃. Thus, K has finitely many field

extensions L1, . . . , Ln of degree d in D such that every maximal field extension L of K

in D is K-isomorphic to Li for some i between 1 and n. By Remark 4.1, there exist

1 ≤ i ≤ n and δ ∈ D× such that (L×)δ = L×
i . Hence, H = L×/K× is G-conjugate to

Hi = L×
i /K

× in G = D×/K×. It follows that G =
∪n

i=1 H
G
i .

Since L is a finite extension of K, it is complete under the l-adic topology of D.

Therefore, L is closed in D. It follows that L× is closed in D×.

Next, we consider L× and D× as l-adic analytic submanifolds of L and D, re-

spectively, to conclude that dim(L×) = dim(L) = [K : Ql]d and dim(D×) = dim(D) =

[K : Ql]d
2. Hence, dim(D×/L×) = dim(D×) − dim(L×) = [K : Ql](d

2 − d) > 0. In

particular, L× is a closed non-open subgroup of D× (by (3b) of Section 3).

Given an i between 1 and n, we apply the preceding two paragraphs to Li rather

than to L and conclude that Hi = L×
i /K

× is closed in G = D×/K×. Also, (G : Hi) =

(D×/K× : L×
i /K

×) = (D× : L×
i ) =∞, as claimed.

Remark 4.3: The argument in the second paragraph of the proof of Theorem 4.2 fails

for local fields of positive characteristic p. Indeed, in this case each of these fields has

the form K = Fq((t)), where q is a power of p [CaF67, p. 129, 2.]. Consider for example

the field K = Fp((t)). Then, K has infinitely many extensions of degree p. To this end

let I be the set of all negative integers that are not divisible by p. Let i < j be in I.

Then, there exists no x ∈ K such that ti − tj = xp − x. Otherwise, x =
∑∞

k=m akt
k for

some integer m with ak ∈ Fp and am ̸= 0. Then, ti − tj =
∑∞

k=m ak(t
kp − tk). Since

i, j < 0, the smallest exponent of t in the right hand side is mp, and since p divides

neither i nor j, we have am = 0, which is a contradiction (see also [Art67, Sec. 10.4]).

By Artin-Schreier [Bou90, p. A.V.92, Thm. 5] (see also [Lan93, p. 290, Thm. 6.4]), the

field extensions K(ti/p) of K of degree p with i ∈ I are distinct.
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5. Towers of Tuples of Polynomials

We give an arithmetic interpretation to the slicing of a profinite group G which can be

realized over a number field as a Galois group. Using a theorem of Serre, we apply this

interpretation to the group GL2(Zl) for each large prime number l.

We denote the ring of integers of a number field K by OK and the set of non-

zero prime ideals of OK by P (K). We choose an algebraic closure K̃ of K and set

Gal(K) = Gal(K̃/K). For each τ ∈ Gal(K) let K̃(τ) be the fixed field of τ in K̃.

We say that K̃(τ) has a certain property P for almost all τ ∈ Gal(K) if the set of

τ ∈ Gal(K) for which P is false in K̃(τ) has Haar measure 0. Likewise we use the

expression “for almost all p ∈ P (K)” instead of “for all but finitely many p ∈ P (K)”.

Given p ∈ P (K), we write K̄p for the residue field OK/p. This field is a finite extension

of Fp, where p is the prime number that lies under p. If L is a finite extension of K

and P ∈ P (L) lies over p (i.e. P ∩ OK = p), then L̄P can be considered as a finite

extension of K̄p. We say that P has degree 1 over K if L̄P = K̄p.

We use these concepts in the following consequence of the transfer theorem [FrJ08,

p. 447, Thm. 20.9.3. See also Proposition 20.9.5 for the special case when K = Q.]. In

that theorem we write L(ring, OK) for the first order language of the theory of rings

with a constant symbol for each element of OK [FrJ08, p. 135, Example 7.3.1].

Proposition 5.1: A sentence θ in L(ring, OK) is true in K̄p for almost all p ∈ P (K)

if and only if θ is true in K̃(τ) for almost all τ ∈ Gal(K).

Lemma 5.2: Let K be a number field and let f1, . . . , fn be polynomials in OK [X] which

are irreducible over K. For each i between 1 and n let xi be a root of fi(X) in K̃. Then

the following statements are equivalent:

(1a) For almost all p ∈ P (K) there exist i and a prime ideal P ∈ P (K(xi)) of degree 1

over K that lies over p.

(1b) For almost all p ∈ P (K) there exist i and x ∈ K̄p such that fi(x) = 0.

(1c) For almost all τ ∈ Gal(K) there exist i and x ∈ K̃(τ) such that fi(x) = 0.
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(1d) There exists a finite Galois extension N of K that contains x1, . . . , xn such that

(∗) Gal(N/K) =
n∪

i=1

∪
σ∈Gal(N/K)

Gal(N/K(xi))
σ.

(1e) Equality (*) holds for each Galois extension N of K that contains x1, . . . , xn.

(1f) For each τ ∈ Gal(K) there exist i and x ∈ K̃(τ) such that fi(x) = 0.

Proof: The equivalence of (1a) and (1b) follows from a theorem of Dedekind and

Kummer (see [Jan73, p. 32, Thm. 7.6, and p. 33, Prop. 7.7] or [Lan70, p. 27, Prop. 25

and the remark on p. 29]).

The equivalence of (1b) and (1c) is a special case of Proposition 5.1 applied to the

sentence
∨n

i=1 ∃X: fi(X) = 0.

If (1d) is true, then for each τ ∈ Gal(K) there exist i between 1 and n and

σ ∈ Gal(N/K) such that xστ
i = xσ

i . Hence, x = xσ
i is a root of fi that belongs to K̃(τ).

Therefore, (1f) holds, so also (1c) is true.

If (1d) is false, then there exists τ̄ ∈ Gal(N/K) such that xστ̄
i ̸= xσ

i for all i and

σ. The set of all τ ∈ Gal(K) whose restriction to N is τ̄ has a positive measure. For

each τ in this set none of the polynomials f1, · · · , fn has a root in K̃(τ). Hence, (1c) is

false, so (1f) is also false.

We leave the proof of the equivalence between (1d) and (1e) to the reader.

Definition 5.3: Let K be a number field. We say that an n-tuple (f1, . . . , fn) of poly-

nomials in OK [X] which are irreducible over K are exhausting if it satisfies each of

the equivalent conditions (1a)–(1f) of Lemma 5.2.

For each 1 ≤ i ≤ n we choose a zero xi of fi in K̃ and let Li = K(xi). Then,

the n-tuple (L1, . . . , Ln) is exhausting over K if (1a) holds, that is if the n-tuple

(f1, . . . , fn) is exhausting.

Let N be a Galois extension of K. We say that N/K is n-sliceable if there exists

a sequence (Li1, . . . , Lin)i=1,2,3,... of exhausting n-tuples of finite extensions of K in N

such that Lij ⊆ Li+1,j for all i, j, and Lj =
∪∞

i=1 Lij is an infinite extension of K

for j = 1, . . . , n. The above sequence of n-tuples of extensions of K may be called an

n-sliceable infinite Kronecker tower between K and N .
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We say that the Galois extension N/K is finitely sliceable if N/K is n-sliceable

for some positive integer n.

Proposition 5.4: Let K be a number field, N a Galois extension of K with G =

Gal(N/K), and n a positive integer. Then, the profinite group G is n-sliceable if and

only if the Galois extension N/K is n-sliceable.

Proof: First suppose that G is n-sliceable. Then, G has closed subgroups H1, . . . , Hn

of infinite index such that G =
∪n

j=1 H
G
j . For each j between 1 and n let Lj be the

fixed field in N of Hj . Then,

(2) Gal(N/K) =
n∪

j=1

∪
σ∈Gal(N/K)

Gal(N/Lj)
σ.

Since (G : Hj) = ∞, the field Lj is an infinite extension of K. Choose a sequence of

finite Galois extensions N1 ⊆ N2 ⊆ N3 ⊆ · · · of K in N whose union is N . For each i

let Lij = Ni ∩ Lj . Then, we choose a primitive element xij for Lij/K which is integral

over OK and let fij ∈ OK [X] be the monic irreducible polynomial of xij over K. By

(2),

Gal(Ni/K) =

n∪
j=1

∪
σ∈Gal(Ni/K)

Gal(Ni/K(xij))
σ.

Thus, fi1, . . . , , fin satisfy Condition (1d), so the n-tuple (fi1, . . . , fin) is exhausting.

Hence, the n-tuples (Li,1, . . . , Li,n) are exhausting over K (Definition 5.3). By con-

struction Lij ⊆ Li+1,j and Lj =
∪∞

i=1 Lij for all i and j. It follows that N/K is

n-sliceable.

Conversely, suppose that N/K is n-sliceable. Arguing backwards, Galois corre-

spondence gives a sequence (G1, G2, G3, . . .) of open normal subgroups of G with a

trivial intersection, and for each positive integer i an n-tuple (Hi1, . . . , Hin) of open

subgroups of G that contain Gi such that G/Gi =
∪n

j=1(Hij/Gi)
G/Gi , Hi+1,j ≤ Hij ,

and Hj =
∩∞

i′=1 Hi′j is of infinite index in G for all j. Using compactness we find an

n-slicing G =
∪n

j=1 H
G
j of G, as desired.

Elliptic curves over Q without complex multiplication supply an interesting ap-

plication of Theorem 3.10.
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Proposition 5.5 (Serre): Let E be an elliptic curve without complex multiplication

defined over Q. For each prime l let Nl∞ be the field generated over Q by all points of

E having an l-power order. Then, for almost all l we have Gal(Nl∞/Q) ∼= GL2(Zl).

The condition about E not to have complex multiplication is satisfied if the j-

invariant of E is non-integral. In particular, this is the case if E is defined by the

equation Y 2 + Y = X3 −X, where j = 21233

37 . In this case, Gal(Nl∞/Q) ∼= GL2(Zl) for

all l.

Proof: The first statement is a reformulation of [Ser72, Statement (6) on p. 2].

A proof that j is integral if E has complex multiplication can be found for example

in [Lan73, p. 57].

The example of the elliptic curve defined by Y 2 + Y = X3−X appears in [Ser72,

p. 310, Subsection 5.5.6]. That Gal(Nl∞/Q) ∼= GL2(Zl) for all l is mentioned (without

proof) on page 311 at the end of Subsection 5.5 of [Ser72].

Theorem 5.6: Each of the groups GL2(Zl) can be realized over Q as a Galois group.

However, there exists no triple (l, N,K), where l is an odd prime number, N is a Galois

extension of Q, and K is a finite extension of Q in N , such that Gal(N/Q) ∼= GL2(Zl)

and N/K is finitely sliceable.

Proof: By Proposition 5.5, G = GL2(Zl) can be realized over Q, for each l. On the

other hand, let l be an odd prime number, N/Q a Galois extension with Galois group

GL2(Zl), and K a finite extension of Q in N . Then, Gal(N/K) is an open subgroup of

GL2(Zl). By Theorem 3.10, Gal(N/K) admits no finite slicing. Hence, by Proposition

5.4, N/K admits no finite slicing.

Remark 5.7: Let D be a central division algebra of finite degree ≥ 2 over a finite

extension K of Ql. Suppose that U is an open subgroup of G = D×/K× and there

exists a Galois extension N of Q with Galois group U . By Theorem 4.2, G is finitely

sliceable, hence by the subsection “Open subgroups” of the introduction, also U is

finitely sliceable.

However, it seems to be unknown, if any open subgroup of G can be realized as a

Galois group over Q.
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