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Introduction

We say that a field F lies on the bottom if F contains no field E with 1 < [F : E] < ∞.

By definition, each of the prime fields Q and Fp lie on the bottom. By a theorem of

Artin, every separably closed field of positive characteristic lies on the bottom (see for

example the proof of [Lan93, Cor. 9.3]). In particular, the absolute Galois group Gal(K)

of a field K of positive characteristic is torsion free.

The same theorem combined with another theorem of Artin [Lan93, p. 452,

Prop. 2.4] implies that every real closed field lies on the bottom. Again, this implies

that the only torsion elements of the absolute Galois group of a field K are involutions.

By a theorem of F. K. Schmidt, the Henselian closure Qp,alg of Q with respect to

a prime number p lies on the bottom (e.g. [Jar91, Cor. 15.3]).

By the “Bottom Theorem” [Jar08, Thm. 18.7.7], for every positive integer e and

almost all (σ1, . . . , σe) ∈ Gal(Q)e the field Q̃(σ1, . . . , σe) lies on the bottom. Here

Q̃(σ1, . . . , σe) is the fixed field of σ1, . . . , σe in the algebraic closure Q̃ of Q. The clause

“almost all” means “all but a subset of Gal(Q)e of Haar measure 0”.

We mention that Lior Bary-Soroker [BaS08] strengthened the bottom theorem in

the following way: Let K be a finitely generated extension of Q and let e ≥ 2 be an

integer. Then, for almost all (σ1, . . . , σe) ∈ Gal(K)e the field K̃(σ1, . . . , σe) lies on the

bottom [BSo08, Thm. 8.2.2].

Next, we recall that a field F is Pythagorean if every sum of two squares in F

is a square in F . It follows that every sum of finitely many squares in F is a square

in F . It also follows that the intersection of Pythagorean subfields of a field Ω (which

we assume to be algebraically closed) is Pythagorean. Note that every algebraically

closed field is Pythagorean. Hence, the intersection of all Pythagorean field extensions

of a given field K in Ω is the least algebraic extension of K which is Pythagorean. We

denote it by Kpyt. If char(K) ̸= 2, then Kpyt is a Galois extension of K. Indeed, Kpyt

is the smallest algebraic extension of K closed under extensions with elements of the

form
√
x2 + y2. By [Rbn72, p. 176], Qpyt lies on the bottom.

In order to present our results, we consider the field Qtr of all totally real alge-

braic numbers. It is the union of all finite extensions K of Q whoes images under all
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embeddings into C lie in R. It is also the intersection of all real closures of Q in Q̃. Since

the absolute Galois group of a real closed field has order two, Gal(Qtr) is generated by

involutions. Florian Pop proved in [Pop92] that Qtr is PRC. This means that every

absolutely irreducible variety defined over Qtr with a simple R-rational point for each

real closure R of Qtr has a Qtr-rational point. Michael Fried, Dan Haran, and Helmut

Völklein proved in [FHV94] that Gal(Qtr) is a free profinite group (in the sense of Mel-

nikov) generated by involutions. They also proved that the elementary theory of Qtr is

effectively decidable [FHV94, Thm. 10.1].

Our first goal is to enrich the already rich collection of properties of Qtr with the

following one:

Theorem A: The field Qtr of all totally real algebraic numbers lies on the bottom.

Our second result involves the notion of an “S-closure” of a field, where S is a

set of prime numbers. Given a field K, we let K(S) be the union of all finite Galois

field extensions L of K whose degrees [L : K] are divisible only by prime numbers that

belong to S. We prove:

Theorem B: Let S be a set of primes.

(a) Q(S) lies on the bottom if and only if 2 /∈ S.

(b) If 2 ∈ S, then Q(S)
tr = Q(S) ∩Qtr lies on the bottom.

The proofs of both theorems use information about Pythagorean fields, an old

theorem of George Whaples, and an older theorem of Edmund Landau.
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1. The Field Qtr QTR

input, 9

We present a few facts and results that enter the proof of Theorems A and B.

Lemma 1.1: Let F/K be a Galois extension. Suppose that there exists no field K ⊆ QTRa

input, 13
M ⊂ F such that [F : M ] is a prime number. Then F is a proper finite extension of no

field that contains K.

Proof: Assume that M is an extension of K in F such that 1 < [F : M ] < ∞. Then

F/M is a finite proper Galois extension. Let p be a prime divisor of [F : M ]. By a

theorem of Cauchy, Gal(F/M) has an element σ of degree p. Let M ′ be the fixed field

of σ in F . Then, [F : M ′] = p, in contrast to the assumption of the Lemma.

Lemma 1.2: If F/M is a cyclic extension of an odd prime degree p, then F has a cyclic QTRb

input, 32
extension of degree p.

Proof: By a result of Whaples from 1957 [FrJ08, Thm. 16.6.6], M has a Galois ex-

tension N with Gal(N/M) ∼= Zp. The compositum FN is a Galois extension of F and

Gal(FN/F ) ∼= Gal(N/F ∩N). The latter group is isomorphic to an open subgroup of

Zp, hence to Zp itself [FrJ08, Lemma 1.4.2]. It follows that Gal(FN/F ) ∼= Zp. Hence,

F has a finite cyclic extension of degree p in FN .

Next we need the following result about Pythagorean fields which is proved on

page 176 of [Rbn72]. It is a corollary of a theorem of Diller and Dress.

Proposition 1.3: If a finite extension of a field P0 is Pythagorean, then P0 itself is QTRd

input, 53
Pythagorean.

Finally we use a result of Landau from 1919 proved in [Lan19, p. 392, II]. To this

end recall that an algebraic number a is totally real if φ(a) ∈ R for every embedding

φ: Q → C. If in addition φ(a) > 0 for each such φ, then a is totally positive. Note

that if a is totally real and a ̸= 0, then a2 is totally positive.

Lemma 1.4: Qtr is a Pythagorean field. QTRe

input, 68

Proof: Given elements x, y ∈ Qtr, not both zero, the sum x2 + y2 is totally positive.

Hence, so is z =
√

x2 + y2. Therefore, z ∈ Qtr and x2 + y2 = z2, as claimed
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The following result is due to Landau [Lnd19].

Proposition 1.5: Every totally positive algebraic number a is a sum of finitely many QTRf

input, 82
squares of elements of Q(a).

We mention that two years after Landau published his result, Carl Ludwig Siegel

improved it by proving that every totally positive algebraic number a is a sum of four

squares in Q(a) [Sie21].

Proof of Theorem A: Assume that Qtr is a cyclic extension of degree p of a field M for

some prime number p. By Lemma 1.1, it suffices to prove that this assumption leads to

a contradiction.

There are two cases to consider.

Case A: p ̸= 2. By Proposition 1.2, Qtr has a finite cyclic extension N0 of degree p.

However, since as mentioned in the introduction, Gal(Qtr) is generated by involutions,

so is Gal(N0/Qtr). This contradicts the assumption that p ̸= 2.

Case B: p = 2. Then, Qtr/M is a quadratic extension. Thus, there exists a non-

square element a ∈ M with Qtr = M(
√
a).

Observe that a is totally positive, since otherwise
√
a would not lie in Qtr. By

Proposition 1.5, a is a sum of squares in Q(a). Hence, a is a sum of squares in M . By

Proposition 1.4, Qtr is Pythagorean. Hence, by Proposition 1.3, M is also Pythagorean.

Hence,
√
a ∈ M , in contrast to the preceding paragraph.

Thus, in both cases we achieve a contradiction.
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2. The Fields Q(S) and Q(S)
tr PROOFB

input, 9

Starting with a set S of prime numbers, we prove Theorem B about the fields that

appear in the title. We start with a few observations:

(1) For each p ∈ S the field Q(S) has no cyclic extension of degree p.

Otherwise, there exist a finite Galois extension K of Q in Q(S) and a cyclic exten-

sion L ofK of degree p such thatQ(S)L is a cyclic extension of degree p andQ(S)∩L = K.

Let L̂ be the compositum of all conjugates of L over Q. In particular,

(2) L ̸⊆ Q(S).

On the other hand, L̂ is a Galois extension of Q and each prime number that divides

[L̂ : Q] belongs to S. Hence, L̂ ⊆ Q(S), so L ⊆ Q(S), in contrast to (2). This concludes

the proof of (1).

The second observation is:

(3) If M ′/M is a finite extension of fields and Q ⊆ M ⊆ M ′ ⊆ Q(S), then every prime

divisor of [M ′ : M ] belongs to S.

Indeed, Q has a finite Galois extension K in Q(S) such that M ′ ⊆ MK [FrJ08,

Lemma 1.2.5(a)]. The field K is contained in the compositum of finitely many Galois

extensions of Q with degrees whose prime divisors belong to S. Hence, every prime

divisor of [K : Q] belongs to S, Therefore, every prime divisor of [M ′ : M ] belongs to

S.

(4) If M is a Galois extension of Q in Q(S) and N is a Galois extension of M such

that the degree of each finite Galois subextension N0/M of N/M is divisible only

by prime numbers that belong to S, then N ⊆ Q(S).

Indeed, it suffices to prove that each N0 as above is contained in Q(S). To this

end we take a finite Galois extension K of Q in M and a finite Galois extension L0

of K such that M ∩ L0 = K and ML0 = N0 [FrJ08, Lemma 1.2.5(a)]. In particular,

every prime divisor of [L0 : K] = [N0 : M ] belongs to S. Let L be the compositum

of all conjugates of L0 over Q. Then, every prime divisor of [L : Q] divides [L0 : Q],

hence belongs to S. Therefore, L is contained in Q(S). It follows that L0 ⊆ Q(S), so

N0 = ML0 ⊆ Q(S), as claimed.
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Now we break up the rest of the proof of Theorem B into three parts.

Part A: If 2 /∈ S, then Q(S) lies on the bottom. By Lemma 1.1, it suffices to prove

that F is a cyclic extension of no subfield M such that p = [Q(S) : M ] is a prime number.

Assume that there exists such an M . By (3), p ∈ S, hence by our assumption p ̸= 2.

By Lemma 1.2, Q(S) has a cyclic extension of degree p. But this contradicts (1).

Part B: If 2 ∈ S, then Q(S) does not lie on the bottom. Indeed, in this case
√
−1 ∈

Q(S). Hence, after embedding Q̃ into C, we find that Q(S) ̸⊆ R, Therefore, Q(S) is a

quadratic extension of Q(S) ∩ R. This proves our claim.

The combination of Parts A and B proves Theorem B(a).

Part C: In each case Q(S)
tr lies on the bottom. As before, we have to derive a contra-

diction from the assumption that Q(S)
tr is a cyclic extension of some prime degree p of a

field M . By (3), p ∈ S. Again, we have to consider two cases.

Case C1: p ̸= 2. By Lemma 1.2, Q(S)
tr has a cyclic extension N of degree p. By (4),

N ⊆ Q(S). Since Z/pZ is not generated by involutions, N ⊆ Qtr. Hence, N = Q(S)
tr ,

which is a contradiction.

Case C2: p = 2. In this case Q(S)
tr = M(

√
a) for some non-square element a of M . In

particular,

(5) a is not a square in M .

On the other hand, Q(S) is in our case a Pythagorean field. Otherwise there exist

x, y ∈ Q(S) such that x2 + y2 is not a square in Q(S). Therefore, Q(S)(
√
x2 + y2) is a

quadratic extension of Q(S), in contrast to (1). Since Qtr is Pythagorean (Lemma 1.4)

so is the intersection Q(S)
tr = Q(S) ∩Qtr. By Lemma 1.3, M is also Pythagorean.

Since
√
a ∈ Qtr, the element a of M is totally positive. By Lemma 1.5, a is a

sum of squares in M . Hence, by the preceding paragraph, a is a square in M . This

contradiction to (5) ends the proof of Part C and the proof of Theorem B.
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